// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package les import ( "io" "math" "sync" "time" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/rlp" ) const ( negBalanceExpTC = time.Hour // time constant for exponentially reducing negative balance fixedPointMultiplier = 0x1000000 // constant to convert logarithms to fixed point format connectedBias = time.Minute // this bias is applied in favor of already connected clients in order to avoid kicking them out very soon lazyQueueRefresh = time.Second * 10 // refresh period of the connected queue ) var ( clientPoolDbKey = []byte("clientPool") clientBalanceDbKey = []byte("clientPool-balance") ) // clientPool implements a client database that assigns a priority to each client // based on a positive and negative balance. Positive balance is externally assigned // to prioritized clients and is decreased with connection time and processed // requests (unless the price factors are zero). If the positive balance is zero // then negative balance is accumulated. Balance tracking and priority calculation // for connected clients is done by balanceTracker. connectedQueue ensures that // clients with the lowest positive or highest negative balance get evicted when // the total capacity allowance is full and new clients with a better balance want // to connect. Already connected nodes receive a small bias in their favor in order // to avoid accepting and instantly kicking out clients. // Balances of disconnected clients are stored in posBalanceQueue and negBalanceQueue // and are also saved in the database. Negative balance is transformed into a // logarithmic form with a constantly shifting linear offset in order to implement // an exponential decrease. negBalanceQueue has a limited size and drops the smallest // values when necessary. Positive balances are stored in the database as long as // they exist, posBalanceQueue only acts as a cache for recently accessed entries. type clientPool struct { db ethdb.Database lock sync.Mutex clock mclock.Clock stopCh chan chan struct{} closed bool removePeer func(enode.ID) queueLimit, countLimit int freeClientCap, capacityLimit, connectedCapacity uint64 connectedMap map[enode.ID]*clientInfo posBalanceMap map[enode.ID]*posBalance negBalanceMap map[string]*negBalance connectedQueue *prque.LazyQueue posBalanceQueue, negBalanceQueue *prque.Prque posFactors, negFactors priceFactors posBalanceAccessCounter int64 startupTime mclock.AbsTime logOffsetAtStartup int64 } // clientPeer represents a client in the pool. // Positive balances are assigned to node key while negative balances are assigned // to freeClientId. Currently network IP address without port is used because // clients have a limited access to IP addresses while new node keys can be easily // generated so it would be useless to assign a negative value to them. type clientPeer interface { ID() enode.ID freeClientId() string updateCapacity(uint64) } // clientInfo represents a connected client type clientInfo struct { address string id enode.ID capacity uint64 priority bool pool *clientPool peer clientPeer queueIndex int // position in connectedQueue balanceTracker balanceTracker } // connSetIndex callback updates clientInfo item index in connectedQueue func connSetIndex(a interface{}, index int) { a.(*clientInfo).queueIndex = index } // connPriority callback returns actual priority of clientInfo item in connectedQueue func connPriority(a interface{}, now mclock.AbsTime) int64 { c := a.(*clientInfo) return c.balanceTracker.getPriority(now) } // connMaxPriority callback returns estimated maximum priority of clientInfo item in connectedQueue func connMaxPriority(a interface{}, until mclock.AbsTime) int64 { c := a.(*clientInfo) pri := c.balanceTracker.estimatedPriority(until, true) c.balanceTracker.addCallback(balanceCallbackQueue, pri+1, func() { c.pool.lock.Lock() if c.queueIndex != -1 { c.pool.connectedQueue.Update(c.queueIndex) } c.pool.lock.Unlock() }) return pri } // priceFactors determine the pricing policy (may apply either to positive or // negative balances which may have different factors). // - timeFactor is cost unit per nanosecond of connection time // - capacityFactor is cost unit per nanosecond of connection time per 1000000 capacity // - requestFactor is cost unit per request "realCost" unit type priceFactors struct { timeFactor, capacityFactor, requestFactor float64 } // newClientPool creates a new client pool func newClientPool(db ethdb.Database, freeClientCap uint64, queueLimit int, clock mclock.Clock, removePeer func(enode.ID)) *clientPool { pool := &clientPool{ db: db, clock: clock, connectedMap: make(map[enode.ID]*clientInfo), posBalanceMap: make(map[enode.ID]*posBalance), negBalanceMap: make(map[string]*negBalance), connectedQueue: prque.NewLazyQueue(connSetIndex, connPriority, connMaxPriority, clock, lazyQueueRefresh), negBalanceQueue: prque.New(negSetIndex), posBalanceQueue: prque.New(posSetIndex), freeClientCap: freeClientCap, queueLimit: queueLimit, removePeer: removePeer, stopCh: make(chan chan struct{}), } pool.loadFromDb() go func() { for { select { case <-clock.After(lazyQueueRefresh): pool.lock.Lock() pool.connectedQueue.Refresh() pool.lock.Unlock() case stop := <-pool.stopCh: close(stop) return } } }() return pool } // stop shuts the client pool down func (f *clientPool) stop() { stop := make(chan struct{}) f.stopCh <- stop <-stop f.lock.Lock() f.closed = true f.saveToDb() f.lock.Unlock() } // connect should be called after a successful handshake. If the connection was // rejected, there is no need to call disconnect. func (f *clientPool) connect(peer clientPeer, capacity uint64) bool { f.lock.Lock() defer f.lock.Unlock() // Short circuit is clientPool is already closed. if f.closed { return false } // Dedup connected peers. id, freeID := peer.ID(), peer.freeClientId() if _, ok := f.connectedMap[id]; ok { clientRejectedMeter.Mark(1) log.Debug("Client already connected", "address", freeID, "id", peerIdToString(id)) return false } // Create a clientInfo but do not add it yet now := f.clock.Now() posBalance := f.getPosBalance(id).value e := &clientInfo{pool: f, peer: peer, address: freeID, queueIndex: -1, id: id, priority: posBalance != 0} var negBalance uint64 nb := f.negBalanceMap[freeID] if nb != nil { negBalance = uint64(math.Exp(float64(nb.logValue-f.logOffset(now)) / fixedPointMultiplier)) } // If the client is a free client, assign with a low free capacity, // Otherwise assign with the given value(priority client) if !e.priority { capacity = f.freeClientCap } // Ensure the capacity will never lower than the free capacity. if capacity < f.freeClientCap { capacity = f.freeClientCap } e.capacity = capacity e.balanceTracker.init(f.clock, capacity) e.balanceTracker.setBalance(posBalance, negBalance) f.setClientPriceFactors(e) // If the number of clients already connected in the clientpool exceeds its // capacity, evict some clients with lowest priority. // // If the priority of the newly added client is lower than the priority of // all connected clients, the client is rejected. newCapacity := f.connectedCapacity + capacity newCount := f.connectedQueue.Size() + 1 if newCapacity > f.capacityLimit || newCount > f.countLimit { var ( kickList []*clientInfo kickPriority int64 ) f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool { c := data.(*clientInfo) kickList = append(kickList, c) kickPriority = priority newCapacity -= c.capacity newCount-- return newCapacity > f.capacityLimit || newCount > f.countLimit }) if newCapacity > f.capacityLimit || newCount > f.countLimit || (e.balanceTracker.estimatedPriority(now+mclock.AbsTime(connectedBias), false)-kickPriority) > 0 { // reject client for _, c := range kickList { f.connectedQueue.Push(c) } clientRejectedMeter.Mark(1) log.Debug("Client rejected", "address", freeID, "id", peerIdToString(id)) return false } // accept new client, drop old ones for _, c := range kickList { f.dropClient(c, now, true) } } // client accepted, finish setting it up if nb != nil { delete(f.negBalanceMap, freeID) f.negBalanceQueue.Remove(nb.queueIndex) } if e.priority { e.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) }) } f.connectedMap[id] = e f.connectedQueue.Push(e) f.connectedCapacity += e.capacity totalConnectedGauge.Update(int64(f.connectedCapacity)) if e.capacity != f.freeClientCap { e.peer.updateCapacity(e.capacity) } clientConnectedMeter.Mark(1) log.Debug("Client accepted", "address", freeID) return true } // disconnect should be called when a connection is terminated. If the disconnection // was initiated by the pool itself using disconnectFn then calling disconnect is // not necessary but permitted. func (f *clientPool) disconnect(p clientPeer) { f.lock.Lock() defer f.lock.Unlock() if f.closed { return } address := p.freeClientId() id := p.ID() // Short circuit if the peer hasn't been registered. e := f.connectedMap[id] if e == nil { log.Debug("Client not connected", "address", address, "id", peerIdToString(id)) return } f.dropClient(e, f.clock.Now(), false) } // dropClient removes a client from the connected queue and finalizes its balance. // If kick is true then it also initiates the disconnection. func (f *clientPool) dropClient(e *clientInfo, now mclock.AbsTime, kick bool) { if _, ok := f.connectedMap[e.id]; !ok { return } f.finalizeBalance(e, now) f.connectedQueue.Remove(e.queueIndex) delete(f.connectedMap, e.id) f.connectedCapacity -= e.capacity totalConnectedGauge.Update(int64(f.connectedCapacity)) if kick { clientKickedMeter.Mark(1) log.Debug("Client kicked out", "address", e.address) f.removePeer(e.id) } else { clientDisconnectedMeter.Mark(1) log.Debug("Client disconnected", "address", e.address) } } // finalizeBalance stops the balance tracker, retrieves the final balances and // stores them in posBalanceQueue and negBalanceQueue func (f *clientPool) finalizeBalance(c *clientInfo, now mclock.AbsTime) { c.balanceTracker.stop(now) pos, neg := c.balanceTracker.getBalance(now) pb := f.getPosBalance(c.id) pb.value = pos f.storePosBalance(pb) if neg < 1 { neg = 1 } nb := &negBalance{address: c.address, queueIndex: -1, logValue: int64(math.Log(float64(neg))*fixedPointMultiplier) + f.logOffset(now)} f.negBalanceMap[c.address] = nb f.negBalanceQueue.Push(nb, -nb.logValue) if f.negBalanceQueue.Size() > f.queueLimit { nn := f.negBalanceQueue.PopItem().(*negBalance) delete(f.negBalanceMap, nn.address) } } // balanceExhausted callback is called by balanceTracker when positive balance is exhausted. // It revokes priority status and also reduces the client capacity if necessary. func (f *clientPool) balanceExhausted(id enode.ID) { f.lock.Lock() defer f.lock.Unlock() c := f.connectedMap[id] if c == nil || !c.priority { return } c.priority = false if c.capacity != f.freeClientCap { f.connectedCapacity += f.freeClientCap - c.capacity totalConnectedGauge.Update(int64(f.connectedCapacity)) c.capacity = f.freeClientCap c.peer.updateCapacity(c.capacity) } } // setConnLimit sets the maximum number and total capacity of connected clients, // dropping some of them if necessary. func (f *clientPool) setLimits(count int, totalCap uint64) { f.lock.Lock() defer f.lock.Unlock() f.countLimit = count f.capacityLimit = totalCap now := mclock.Now() f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool { c := data.(*clientInfo) f.dropClient(c, now, true) return f.connectedCapacity > f.capacityLimit || f.connectedQueue.Size() > f.countLimit }) } // requestCost feeds request cost after serving a request from the given peer. func (f *clientPool) requestCost(p *peer, cost uint64) { f.lock.Lock() defer f.lock.Unlock() info, exist := f.connectedMap[p.ID()] if !exist || f.closed { return } info.balanceTracker.requestCost(cost) } // logOffset calculates the time-dependent offset for the logarithmic // representation of negative balance func (f *clientPool) logOffset(now mclock.AbsTime) int64 { // Note: fixedPointMultiplier acts as a multiplier here; the reason for dividing the divisor // is to avoid int64 overflow. We assume that int64(negBalanceExpTC) >> fixedPointMultiplier. logDecay := int64((time.Duration(now - f.startupTime)) / (negBalanceExpTC / fixedPointMultiplier)) return f.logOffsetAtStartup + logDecay } // setPriceFactors changes pricing factors for both positive and negative balances. // Applies to connected clients and also future connections. func (f *clientPool) setPriceFactors(posFactors, negFactors priceFactors) { f.lock.Lock() defer f.lock.Unlock() f.posFactors, f.negFactors = posFactors, negFactors for _, c := range f.connectedMap { f.setClientPriceFactors(c) } } // setClientPriceFactors sets the pricing factors for an individual connected client func (f *clientPool) setClientPriceFactors(c *clientInfo) { c.balanceTracker.setFactors(true, f.negFactors.timeFactor+float64(c.capacity)*f.negFactors.capacityFactor/1000000, f.negFactors.requestFactor) c.balanceTracker.setFactors(false, f.posFactors.timeFactor+float64(c.capacity)*f.posFactors.capacityFactor/1000000, f.posFactors.requestFactor) } // clientPoolStorage is the RLP representation of the pool's database storage type clientPoolStorage struct { LogOffset uint64 List []*negBalance } // loadFromDb restores pool status from the database storage // (automatically called at initialization) func (f *clientPool) loadFromDb() { enc, err := f.db.Get(clientPoolDbKey) if err != nil { return } var storage clientPoolStorage err = rlp.DecodeBytes(enc, &storage) if err != nil { log.Error("Failed to decode client list", "err", err) return } f.logOffsetAtStartup = int64(storage.LogOffset) f.startupTime = f.clock.Now() for _, e := range storage.List { log.Debug("Loaded free client record", "address", e.address, "logValue", e.logValue) f.negBalanceMap[e.address] = e f.negBalanceQueue.Push(e, -e.logValue) } } // saveToDb saves pool status to the database storage // (automatically called during shutdown) func (f *clientPool) saveToDb() { now := f.clock.Now() storage := clientPoolStorage{ LogOffset: uint64(f.logOffset(now)), } for _, c := range f.connectedMap { f.finalizeBalance(c, now) } i := 0 storage.List = make([]*negBalance, len(f.negBalanceMap)) for _, e := range f.negBalanceMap { storage.List[i] = e i++ } enc, err := rlp.EncodeToBytes(storage) if err != nil { log.Error("Failed to encode negative balance list", "err", err) } else { f.db.Put(clientPoolDbKey, enc) } } // storePosBalance stores a single positive balance entry in the database func (f *clientPool) storePosBalance(b *posBalance) { if b.value == b.lastStored { return } enc, err := rlp.EncodeToBytes(b) if err != nil { log.Error("Failed to encode client balance", "err", err) } else { f.db.Put(append(clientBalanceDbKey, b.id[:]...), enc) b.lastStored = b.value } } // getPosBalance retrieves a single positive balance entry from cache or the database func (f *clientPool) getPosBalance(id enode.ID) *posBalance { if b, ok := f.posBalanceMap[id]; ok { f.posBalanceQueue.Remove(b.queueIndex) f.posBalanceAccessCounter-- f.posBalanceQueue.Push(b, f.posBalanceAccessCounter) return b } balance := &posBalance{} if enc, err := f.db.Get(append(clientBalanceDbKey, id[:]...)); err == nil { if err := rlp.DecodeBytes(enc, balance); err != nil { log.Error("Failed to decode client balance", "err", err) balance = &posBalance{} } } balance.id = id balance.queueIndex = -1 if f.posBalanceQueue.Size() >= f.queueLimit { b := f.posBalanceQueue.PopItem().(*posBalance) f.storePosBalance(b) delete(f.posBalanceMap, b.id) } f.posBalanceAccessCounter-- f.posBalanceQueue.Push(balance, f.posBalanceAccessCounter) f.posBalanceMap[id] = balance return balance } // addBalance updates the positive balance of a client. // If setTotal is false then the given amount is added to the balance. // If setTotal is true then amount represents the total amount ever added to the // given ID and positive balance is increased by (amount-lastTotal) while lastTotal // is updated to amount. This method also allows removing positive balance. func (f *clientPool) addBalance(id enode.ID, amount uint64, setTotal bool) { f.lock.Lock() defer f.lock.Unlock() pb := f.getPosBalance(id) c := f.connectedMap[id] var negBalance uint64 if c != nil { pb.value, negBalance = c.balanceTracker.getBalance(f.clock.Now()) } if setTotal { if pb.value+amount > pb.lastTotal { pb.value += amount - pb.lastTotal } else { pb.value = 0 } pb.lastTotal = amount } else { pb.value += amount pb.lastTotal += amount } f.storePosBalance(pb) if c != nil { c.balanceTracker.setBalance(pb.value, negBalance) if !c.priority && pb.value > 0 { c.priority = true c.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) }) } } } // posBalance represents a recently accessed positive balance entry type posBalance struct { id enode.ID value, lastStored, lastTotal uint64 queueIndex int // position in posBalanceQueue } // EncodeRLP implements rlp.Encoder func (e *posBalance) EncodeRLP(w io.Writer) error { return rlp.Encode(w, []interface{}{e.value, e.lastTotal}) } // DecodeRLP implements rlp.Decoder func (e *posBalance) DecodeRLP(s *rlp.Stream) error { var entry struct { Value, LastTotal uint64 } if err := s.Decode(&entry); err != nil { return err } e.value = entry.Value e.lastStored = entry.Value e.lastTotal = entry.LastTotal return nil } // posSetIndex callback updates posBalance item index in posBalanceQueue func posSetIndex(a interface{}, index int) { a.(*posBalance).queueIndex = index } // negBalance represents a negative balance entry of a disconnected client type negBalance struct { address string logValue int64 queueIndex int // position in negBalanceQueue } // EncodeRLP implements rlp.Encoder func (e *negBalance) EncodeRLP(w io.Writer) error { return rlp.Encode(w, []interface{}{e.address, uint64(e.logValue)}) } // DecodeRLP implements rlp.Decoder func (e *negBalance) DecodeRLP(s *rlp.Stream) error { var entry struct { Address string LogValue uint64 } if err := s.Decode(&entry); err != nil { return err } e.address = entry.Address e.logValue = int64(entry.LogValue) e.queueIndex = -1 return nil } // negSetIndex callback updates negBalance item index in negBalanceQueue func negSetIndex(a interface{}, index int) { a.(*negBalance).queueIndex = index }