// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package downloader import ( "errors" "fmt" "math/big" "sync" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/trie" ) var ( testdb, _ = ethdb.NewMemDatabase() testKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") testAddress = crypto.PubkeyToAddress(testKey.PublicKey) genesis = core.GenesisBlockForTesting(testdb, testAddress, big.NewInt(1000000000)) ) // Reduce some of the parameters to make the tester faster. func init() { MaxForkAncestry = uint64(10000) blockCacheLimit = 1024 } // makeChain creates a chain of n blocks starting at and including parent. // the returned hash chain is ordered head->parent. In addition, every 3rd block // contains a transaction and every 5th an uncle to allow testing correct block // reassembly. func makeChain(n int, seed byte, parent *types.Block, parentReceipts types.Receipts, heavy bool) ([]common.Hash, map[common.Hash]*types.Header, map[common.Hash]*types.Block, map[common.Hash]types.Receipts) { // Generate the block chain blocks, receipts := core.GenerateChain(nil, parent, testdb, n, func(i int, block *core.BlockGen) { block.SetCoinbase(common.Address{seed}) // If a heavy chain is requested, delay blocks to raise difficulty if heavy { block.OffsetTime(-1) } // If the block number is multiple of 3, send a bonus transaction to the miner if parent == genesis && i%3 == 0 { tx, err := types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(testKey) if err != nil { panic(err) } block.AddTx(tx) } // If the block number is a multiple of 5, add a bonus uncle to the block if i > 0 && i%5 == 0 { block.AddUncle(&types.Header{ ParentHash: block.PrevBlock(i - 1).Hash(), Number: big.NewInt(block.Number().Int64() - 1), }) } }) // Convert the block-chain into a hash-chain and header/block maps hashes := make([]common.Hash, n+1) hashes[len(hashes)-1] = parent.Hash() headerm := make(map[common.Hash]*types.Header, n+1) headerm[parent.Hash()] = parent.Header() blockm := make(map[common.Hash]*types.Block, n+1) blockm[parent.Hash()] = parent receiptm := make(map[common.Hash]types.Receipts, n+1) receiptm[parent.Hash()] = parentReceipts for i, b := range blocks { hashes[len(hashes)-i-2] = b.Hash() headerm[b.Hash()] = b.Header() blockm[b.Hash()] = b receiptm[b.Hash()] = receipts[i] } return hashes, headerm, blockm, receiptm } // makeChainFork creates two chains of length n, such that h1[:f] and // h2[:f] are different but have a common suffix of length n-f. func makeChainFork(n, f int, parent *types.Block, parentReceipts types.Receipts, balanced bool) ([]common.Hash, []common.Hash, map[common.Hash]*types.Header, map[common.Hash]*types.Header, map[common.Hash]*types.Block, map[common.Hash]*types.Block, map[common.Hash]types.Receipts, map[common.Hash]types.Receipts) { // Create the common suffix hashes, headers, blocks, receipts := makeChain(n-f, 0, parent, parentReceipts, false) // Create the forks, making the second heavyer if non balanced forks were requested hashes1, headers1, blocks1, receipts1 := makeChain(f, 1, blocks[hashes[0]], receipts[hashes[0]], false) hashes1 = append(hashes1, hashes[1:]...) heavy := false if !balanced { heavy = true } hashes2, headers2, blocks2, receipts2 := makeChain(f, 2, blocks[hashes[0]], receipts[hashes[0]], heavy) hashes2 = append(hashes2, hashes[1:]...) for hash, header := range headers { headers1[hash] = header headers2[hash] = header } for hash, block := range blocks { blocks1[hash] = block blocks2[hash] = block } for hash, receipt := range receipts { receipts1[hash] = receipt receipts2[hash] = receipt } return hashes1, hashes2, headers1, headers2, blocks1, blocks2, receipts1, receipts2 } // downloadTester is a test simulator for mocking out local block chain. type downloadTester struct { stateDb ethdb.Database downloader *Downloader ownHashes []common.Hash // Hash chain belonging to the tester ownHeaders map[common.Hash]*types.Header // Headers belonging to the tester ownBlocks map[common.Hash]*types.Block // Blocks belonging to the tester ownReceipts map[common.Hash]types.Receipts // Receipts belonging to the tester ownChainTd map[common.Hash]*big.Int // Total difficulties of the blocks in the local chain peerHashes map[string][]common.Hash // Hash chain belonging to different test peers peerHeaders map[string]map[common.Hash]*types.Header // Headers belonging to different test peers peerBlocks map[string]map[common.Hash]*types.Block // Blocks belonging to different test peers peerReceipts map[string]map[common.Hash]types.Receipts // Receipts belonging to different test peers peerChainTds map[string]map[common.Hash]*big.Int // Total difficulties of the blocks in the peer chains peerMissingStates map[string]map[common.Hash]bool // State entries that fast sync should not return lock sync.RWMutex } // newTester creates a new downloader test mocker. func newTester() *downloadTester { tester := &downloadTester{ ownHashes: []common.Hash{genesis.Hash()}, ownHeaders: map[common.Hash]*types.Header{genesis.Hash(): genesis.Header()}, ownBlocks: map[common.Hash]*types.Block{genesis.Hash(): genesis}, ownReceipts: map[common.Hash]types.Receipts{genesis.Hash(): nil}, ownChainTd: map[common.Hash]*big.Int{genesis.Hash(): genesis.Difficulty()}, peerHashes: make(map[string][]common.Hash), peerHeaders: make(map[string]map[common.Hash]*types.Header), peerBlocks: make(map[string]map[common.Hash]*types.Block), peerReceipts: make(map[string]map[common.Hash]types.Receipts), peerChainTds: make(map[string]map[common.Hash]*big.Int), peerMissingStates: make(map[string]map[common.Hash]bool), } tester.stateDb, _ = ethdb.NewMemDatabase() tester.stateDb.Put(genesis.Root().Bytes(), []byte{0x00}) tester.downloader = New(tester.stateDb, new(event.TypeMux), tester.hasHeader, tester.hasBlock, tester.getHeader, tester.getBlock, tester.headHeader, tester.headBlock, tester.headFastBlock, tester.commitHeadBlock, tester.getTd, tester.insertHeaders, tester.insertBlocks, tester.insertReceipts, tester.rollback, tester.dropPeer) return tester } // terminate aborts any operations on the embedded downloader and releases all // held resources. func (dl *downloadTester) terminate() { dl.downloader.Terminate() } // sync starts synchronizing with a remote peer, blocking until it completes. func (dl *downloadTester) sync(id string, td *big.Int, mode SyncMode) error { dl.lock.RLock() hash := dl.peerHashes[id][0] // If no particular TD was requested, load from the peer's blockchain if td == nil { td = big.NewInt(1) if diff, ok := dl.peerChainTds[id][hash]; ok { td = diff } } dl.lock.RUnlock() // Synchronise with the chosen peer and ensure proper cleanup afterwards err := dl.downloader.synchronise(id, hash, td, mode) select { case <-dl.downloader.cancelCh: // Ok, downloader fully cancelled after sync cycle default: // Downloader is still accepting packets, can block a peer up panic("downloader active post sync cycle") // panic will be caught by tester } return err } // hasHeader checks if a header is present in the testers canonical chain. func (dl *downloadTester) hasHeader(hash common.Hash) bool { return dl.getHeader(hash) != nil } // hasBlock checks if a block and associated state is present in the testers canonical chain. func (dl *downloadTester) hasBlock(hash common.Hash) bool { block := dl.getBlock(hash) if block == nil { return false } _, err := dl.stateDb.Get(block.Root().Bytes()) return err == nil } // getHeader retrieves a header from the testers canonical chain. func (dl *downloadTester) getHeader(hash common.Hash) *types.Header { dl.lock.RLock() defer dl.lock.RUnlock() return dl.ownHeaders[hash] } // getBlock retrieves a block from the testers canonical chain. func (dl *downloadTester) getBlock(hash common.Hash) *types.Block { dl.lock.RLock() defer dl.lock.RUnlock() return dl.ownBlocks[hash] } // headHeader retrieves the current head header from the canonical chain. func (dl *downloadTester) headHeader() *types.Header { dl.lock.RLock() defer dl.lock.RUnlock() for i := len(dl.ownHashes) - 1; i >= 0; i-- { if header := dl.ownHeaders[dl.ownHashes[i]]; header != nil { return header } } return genesis.Header() } // headBlock retrieves the current head block from the canonical chain. func (dl *downloadTester) headBlock() *types.Block { dl.lock.RLock() defer dl.lock.RUnlock() for i := len(dl.ownHashes) - 1; i >= 0; i-- { if block := dl.ownBlocks[dl.ownHashes[i]]; block != nil { if _, err := dl.stateDb.Get(block.Root().Bytes()); err == nil { return block } } } return genesis } // headFastBlock retrieves the current head fast-sync block from the canonical chain. func (dl *downloadTester) headFastBlock() *types.Block { dl.lock.RLock() defer dl.lock.RUnlock() for i := len(dl.ownHashes) - 1; i >= 0; i-- { if block := dl.ownBlocks[dl.ownHashes[i]]; block != nil { return block } } return genesis } // commitHeadBlock manually sets the head block to a given hash. func (dl *downloadTester) commitHeadBlock(hash common.Hash) error { // For now only check that the state trie is correct if block := dl.getBlock(hash); block != nil { _, err := trie.NewSecure(block.Root(), dl.stateDb) return err } return fmt.Errorf("non existent block: %x", hash[:4]) } // getTd retrieves the block's total difficulty from the canonical chain. func (dl *downloadTester) getTd(hash common.Hash) *big.Int { dl.lock.RLock() defer dl.lock.RUnlock() return dl.ownChainTd[hash] } // insertHeaders injects a new batch of headers into the simulated chain. func (dl *downloadTester) insertHeaders(headers []*types.Header, checkFreq int) (int, error) { dl.lock.Lock() defer dl.lock.Unlock() // Do a quick check, as the blockchain.InsertHeaderChain doesn't insert anything in case of errors if _, ok := dl.ownHeaders[headers[0].ParentHash]; !ok { return 0, errors.New("unknown parent") } for i := 1; i < len(headers); i++ { if headers[i].ParentHash != headers[i-1].Hash() { return i, errors.New("unknown parent") } } // Do a full insert if pre-checks passed for i, header := range headers { if _, ok := dl.ownHeaders[header.Hash()]; ok { continue } if _, ok := dl.ownHeaders[header.ParentHash]; !ok { return i, errors.New("unknown parent") } dl.ownHashes = append(dl.ownHashes, header.Hash()) dl.ownHeaders[header.Hash()] = header dl.ownChainTd[header.Hash()] = new(big.Int).Add(dl.ownChainTd[header.ParentHash], header.Difficulty) } return len(headers), nil } // insertBlocks injects a new batch of blocks into the simulated chain. func (dl *downloadTester) insertBlocks(blocks types.Blocks) (int, error) { dl.lock.Lock() defer dl.lock.Unlock() for i, block := range blocks { if parent, ok := dl.ownBlocks[block.ParentHash()]; !ok { return i, errors.New("unknown parent") } else if _, err := dl.stateDb.Get(parent.Root().Bytes()); err != nil { return i, fmt.Errorf("unknown parent state %x: %v", parent.Root(), err) } if _, ok := dl.ownHeaders[block.Hash()]; !ok { dl.ownHashes = append(dl.ownHashes, block.Hash()) dl.ownHeaders[block.Hash()] = block.Header() } dl.ownBlocks[block.Hash()] = block dl.stateDb.Put(block.Root().Bytes(), []byte{0x00}) dl.ownChainTd[block.Hash()] = new(big.Int).Add(dl.ownChainTd[block.ParentHash()], block.Difficulty()) } return len(blocks), nil } // insertReceipts injects a new batch of blocks into the simulated chain. func (dl *downloadTester) insertReceipts(blocks types.Blocks, receipts []types.Receipts) (int, error) { dl.lock.Lock() defer dl.lock.Unlock() for i := 0; i < len(blocks) && i < len(receipts); i++ { if _, ok := dl.ownHeaders[blocks[i].Hash()]; !ok { return i, errors.New("unknown owner") } if _, ok := dl.ownBlocks[blocks[i].ParentHash()]; !ok { return i, errors.New("unknown parent") } dl.ownBlocks[blocks[i].Hash()] = blocks[i] dl.ownReceipts[blocks[i].Hash()] = receipts[i] } return len(blocks), nil } // rollback removes some recently added elements from the chain. func (dl *downloadTester) rollback(hashes []common.Hash) { dl.lock.Lock() defer dl.lock.Unlock() for i := len(hashes) - 1; i >= 0; i-- { if dl.ownHashes[len(dl.ownHashes)-1] == hashes[i] { dl.ownHashes = dl.ownHashes[:len(dl.ownHashes)-1] } delete(dl.ownChainTd, hashes[i]) delete(dl.ownHeaders, hashes[i]) delete(dl.ownReceipts, hashes[i]) delete(dl.ownBlocks, hashes[i]) } } // newPeer registers a new block download source into the downloader. func (dl *downloadTester) newPeer(id string, version int, hashes []common.Hash, headers map[common.Hash]*types.Header, blocks map[common.Hash]*types.Block, receipts map[common.Hash]types.Receipts) error { return dl.newSlowPeer(id, version, hashes, headers, blocks, receipts, 0) } // newSlowPeer registers a new block download source into the downloader, with a // specific delay time on processing the network packets sent to it, simulating // potentially slow network IO. func (dl *downloadTester) newSlowPeer(id string, version int, hashes []common.Hash, headers map[common.Hash]*types.Header, blocks map[common.Hash]*types.Block, receipts map[common.Hash]types.Receipts, delay time.Duration) error { dl.lock.Lock() defer dl.lock.Unlock() var err error switch version { case 62: err = dl.downloader.RegisterPeer(id, version, dl.peerCurrentHeadFn(id), dl.peerGetRelHeadersFn(id, delay), dl.peerGetAbsHeadersFn(id, delay), dl.peerGetBodiesFn(id, delay), nil, nil) case 63: err = dl.downloader.RegisterPeer(id, version, dl.peerCurrentHeadFn(id), dl.peerGetRelHeadersFn(id, delay), dl.peerGetAbsHeadersFn(id, delay), dl.peerGetBodiesFn(id, delay), dl.peerGetReceiptsFn(id, delay), dl.peerGetNodeDataFn(id, delay)) case 64: err = dl.downloader.RegisterPeer(id, version, dl.peerCurrentHeadFn(id), dl.peerGetRelHeadersFn(id, delay), dl.peerGetAbsHeadersFn(id, delay), dl.peerGetBodiesFn(id, delay), dl.peerGetReceiptsFn(id, delay), dl.peerGetNodeDataFn(id, delay)) } if err == nil { // Assign the owned hashes, headers and blocks to the peer (deep copy) dl.peerHashes[id] = make([]common.Hash, len(hashes)) copy(dl.peerHashes[id], hashes) dl.peerHeaders[id] = make(map[common.Hash]*types.Header) dl.peerBlocks[id] = make(map[common.Hash]*types.Block) dl.peerReceipts[id] = make(map[common.Hash]types.Receipts) dl.peerChainTds[id] = make(map[common.Hash]*big.Int) dl.peerMissingStates[id] = make(map[common.Hash]bool) genesis := hashes[len(hashes)-1] if header := headers[genesis]; header != nil { dl.peerHeaders[id][genesis] = header dl.peerChainTds[id][genesis] = header.Difficulty } if block := blocks[genesis]; block != nil { dl.peerBlocks[id][genesis] = block dl.peerChainTds[id][genesis] = block.Difficulty() } for i := len(hashes) - 2; i >= 0; i-- { hash := hashes[i] if header, ok := headers[hash]; ok { dl.peerHeaders[id][hash] = header if _, ok := dl.peerHeaders[id][header.ParentHash]; ok { dl.peerChainTds[id][hash] = new(big.Int).Add(header.Difficulty, dl.peerChainTds[id][header.ParentHash]) } } if block, ok := blocks[hash]; ok { dl.peerBlocks[id][hash] = block if _, ok := dl.peerBlocks[id][block.ParentHash()]; ok { dl.peerChainTds[id][hash] = new(big.Int).Add(block.Difficulty(), dl.peerChainTds[id][block.ParentHash()]) } } if receipt, ok := receipts[hash]; ok { dl.peerReceipts[id][hash] = receipt } } } return err } // dropPeer simulates a hard peer removal from the connection pool. func (dl *downloadTester) dropPeer(id string) { dl.lock.Lock() defer dl.lock.Unlock() delete(dl.peerHashes, id) delete(dl.peerHeaders, id) delete(dl.peerBlocks, id) delete(dl.peerChainTds, id) dl.downloader.UnregisterPeer(id) } // peerCurrentHeadFn constructs a function to retrieve a peer's current head hash // and total difficulty. func (dl *downloadTester) peerCurrentHeadFn(id string) func() (common.Hash, *big.Int) { return func() (common.Hash, *big.Int) { dl.lock.RLock() defer dl.lock.RUnlock() return dl.peerHashes[id][0], nil } } // peerGetRelHeadersFn constructs a GetBlockHeaders function based on a hashed // origin; associated with a particular peer in the download tester. The returned // function can be used to retrieve batches of headers from the particular peer. func (dl *downloadTester) peerGetRelHeadersFn(id string, delay time.Duration) func(common.Hash, int, int, bool) error { return func(origin common.Hash, amount int, skip int, reverse bool) error { // Find the canonical number of the hash dl.lock.RLock() number := uint64(0) for num, hash := range dl.peerHashes[id] { if hash == origin { number = uint64(len(dl.peerHashes[id]) - num - 1) break } } dl.lock.RUnlock() // Use the absolute header fetcher to satisfy the query return dl.peerGetAbsHeadersFn(id, delay)(number, amount, skip, reverse) } } // peerGetAbsHeadersFn constructs a GetBlockHeaders function based on a numbered // origin; associated with a particular peer in the download tester. The returned // function can be used to retrieve batches of headers from the particular peer. func (dl *downloadTester) peerGetAbsHeadersFn(id string, delay time.Duration) func(uint64, int, int, bool) error { return func(origin uint64, amount int, skip int, reverse bool) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() // Gather the next batch of headers hashes := dl.peerHashes[id] headers := dl.peerHeaders[id] result := make([]*types.Header, 0, amount) for i := 0; i < amount && len(hashes)-int(origin)-1-i*(skip+1) >= 0; i++ { if header, ok := headers[hashes[len(hashes)-int(origin)-1-i*(skip+1)]]; ok { result = append(result, header) } } // Delay delivery a bit to allow attacks to unfold go func() { time.Sleep(time.Millisecond) dl.downloader.DeliverHeaders(id, result) }() return nil } } // peerGetBodiesFn constructs a getBlockBodies method associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of block bodies from the particularly requested peer. func (dl *downloadTester) peerGetBodiesFn(id string, delay time.Duration) func([]common.Hash) error { return func(hashes []common.Hash) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() blocks := dl.peerBlocks[id] transactions := make([][]*types.Transaction, 0, len(hashes)) uncles := make([][]*types.Header, 0, len(hashes)) for _, hash := range hashes { if block, ok := blocks[hash]; ok { transactions = append(transactions, block.Transactions()) uncles = append(uncles, block.Uncles()) } } go dl.downloader.DeliverBodies(id, transactions, uncles) return nil } } // peerGetReceiptsFn constructs a getReceipts method associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of block receipts from the particularly requested peer. func (dl *downloadTester) peerGetReceiptsFn(id string, delay time.Duration) func([]common.Hash) error { return func(hashes []common.Hash) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() receipts := dl.peerReceipts[id] results := make([][]*types.Receipt, 0, len(hashes)) for _, hash := range hashes { if receipt, ok := receipts[hash]; ok { results = append(results, receipt) } } go dl.downloader.DeliverReceipts(id, results) return nil } } // peerGetNodeDataFn constructs a getNodeData method associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of node state data from the particularly requested peer. func (dl *downloadTester) peerGetNodeDataFn(id string, delay time.Duration) func([]common.Hash) error { return func(hashes []common.Hash) error { time.Sleep(delay) dl.lock.RLock() defer dl.lock.RUnlock() results := make([][]byte, 0, len(hashes)) for _, hash := range hashes { if data, err := testdb.Get(hash.Bytes()); err == nil { if !dl.peerMissingStates[id][hash] { results = append(results, data) } } } go dl.downloader.DeliverNodeData(id, results) return nil } } // assertOwnChain checks if the local chain contains the correct number of items // of the various chain components. func assertOwnChain(t *testing.T, tester *downloadTester, length int) { assertOwnForkedChain(t, tester, 1, []int{length}) } // assertOwnForkedChain checks if the local forked chain contains the correct // number of items of the various chain components. func assertOwnForkedChain(t *testing.T, tester *downloadTester, common int, lengths []int) { // Initialize the counters for the first fork headers, blocks := lengths[0], lengths[0] minReceipts, maxReceipts := lengths[0]-fsMinFullBlocks-fsPivotInterval, lengths[0]-fsMinFullBlocks if minReceipts < 0 { minReceipts = 1 } if maxReceipts < 0 { maxReceipts = 1 } // Update the counters for each subsequent fork for _, length := range lengths[1:] { headers += length - common blocks += length - common minReceipts += length - common - fsMinFullBlocks - fsPivotInterval maxReceipts += length - common - fsMinFullBlocks } switch tester.downloader.mode { case FullSync: minReceipts, maxReceipts = 1, 1 case LightSync: blocks, minReceipts, maxReceipts = 1, 1, 1 } if hs := len(tester.ownHeaders); hs != headers { t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, headers) } if bs := len(tester.ownBlocks); bs != blocks { t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, blocks) } if rs := len(tester.ownReceipts); rs < minReceipts || rs > maxReceipts { t.Fatalf("synchronised receipts mismatch: have %v, want between [%v, %v]", rs, minReceipts, maxReceipts) } // Verify the state trie too for fast syncs if tester.downloader.mode == FastSync { index := 0 if pivot := int(tester.downloader.queue.fastSyncPivot); pivot < common { index = pivot } else { index = len(tester.ownHashes) - lengths[len(lengths)-1] + int(tester.downloader.queue.fastSyncPivot) } if index > 0 { if statedb, err := state.New(tester.ownHeaders[tester.ownHashes[index]].Root, tester.stateDb); statedb == nil || err != nil { t.Fatalf("state reconstruction failed: %v", err) } } } } // Tests that simple synchronization against a canonical chain works correctly. // In this test common ancestor lookup should be short circuited and not require // binary searching. func TestCanonicalSynchronisation62(t *testing.T) { testCanonicalSynchronisation(t, 62, FullSync) } func TestCanonicalSynchronisation63Full(t *testing.T) { testCanonicalSynchronisation(t, 63, FullSync) } func TestCanonicalSynchronisation63Fast(t *testing.T) { testCanonicalSynchronisation(t, 63, FastSync) } func TestCanonicalSynchronisation64Full(t *testing.T) { testCanonicalSynchronisation(t, 64, FullSync) } func TestCanonicalSynchronisation64Fast(t *testing.T) { testCanonicalSynchronisation(t, 64, FastSync) } func TestCanonicalSynchronisation64Light(t *testing.T) { testCanonicalSynchronisation(t, 64, LightSync) } func testCanonicalSynchronisation(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() tester.newPeer("peer", protocol, hashes, headers, blocks, receipts) // Synchronise with the peer and make sure all relevant data was retrieved if err := tester.sync("peer", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, targetBlocks+1) } // Tests that if a large batch of blocks are being downloaded, it is throttled // until the cached blocks are retrieved. func TestThrottling62(t *testing.T) { testThrottling(t, 62, FullSync) } func TestThrottling63Full(t *testing.T) { testThrottling(t, 63, FullSync) } func TestThrottling63Fast(t *testing.T) { testThrottling(t, 63, FastSync) } func TestThrottling64Full(t *testing.T) { testThrottling(t, 64, FullSync) } func TestThrottling64Fast(t *testing.T) { testThrottling(t, 64, FastSync) } func testThrottling(t *testing.T, protocol int, mode SyncMode) { // Create a long block chain to download and the tester targetBlocks := 8 * blockCacheLimit hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() tester.newPeer("peer", protocol, hashes, headers, blocks, receipts) // Wrap the importer to allow stepping blocked, proceed := uint32(0), make(chan struct{}) tester.downloader.chainInsertHook = func(results []*fetchResult) { atomic.StoreUint32(&blocked, uint32(len(results))) <-proceed } // Start a synchronisation concurrently errc := make(chan error) go func() { errc <- tester.sync("peer", nil, mode) }() // Iteratively take some blocks, always checking the retrieval count for { // Check the retrieval count synchronously (! reason for this ugly block) tester.lock.RLock() retrieved := len(tester.ownBlocks) tester.lock.RUnlock() if retrieved >= targetBlocks+1 { break } // Wait a bit for sync to throttle itself var cached, frozen int for start := time.Now(); time.Since(start) < 3*time.Second; { time.Sleep(25 * time.Millisecond) tester.lock.Lock() tester.downloader.queue.lock.Lock() cached = len(tester.downloader.queue.blockDonePool) if mode == FastSync { if receipts := len(tester.downloader.queue.receiptDonePool); receipts < cached { if tester.downloader.queue.resultCache[receipts].Header.Number.Uint64() < tester.downloader.queue.fastSyncPivot { cached = receipts } } } frozen = int(atomic.LoadUint32(&blocked)) retrieved = len(tester.ownBlocks) tester.downloader.queue.lock.Unlock() tester.lock.Unlock() if cached == blockCacheLimit || retrieved+cached+frozen == targetBlocks+1 { break } } // Make sure we filled up the cache, then exhaust it time.Sleep(25 * time.Millisecond) // give it a chance to screw up tester.lock.RLock() retrieved = len(tester.ownBlocks) tester.lock.RUnlock() if cached != blockCacheLimit && retrieved+cached+frozen != targetBlocks+1 { t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheLimit, retrieved, frozen, targetBlocks+1) } // Permit the blocked blocks to import if atomic.LoadUint32(&blocked) > 0 { atomic.StoreUint32(&blocked, uint32(0)) proceed <- struct{}{} } } // Check that we haven't pulled more blocks than available assertOwnChain(t, tester, targetBlocks+1) if err := <-errc; err != nil { t.Fatalf("block synchronization failed: %v", err) } } // Tests that simple synchronization against a forked chain works correctly. In // this test common ancestor lookup should *not* be short circuited, and a full // binary search should be executed. func TestForkedSync62(t *testing.T) { testForkedSync(t, 62, FullSync) } func TestForkedSync63Full(t *testing.T) { testForkedSync(t, 63, FullSync) } func TestForkedSync63Fast(t *testing.T) { testForkedSync(t, 63, FastSync) } func TestForkedSync64Full(t *testing.T) { testForkedSync(t, 64, FullSync) } func TestForkedSync64Fast(t *testing.T) { testForkedSync(t, 64, FastSync) } func TestForkedSync64Light(t *testing.T) { testForkedSync(t, 64, LightSync) } func testForkedSync(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a long enough forked chain common, fork := MaxHashFetch, 2*MaxHashFetch hashesA, hashesB, headersA, headersB, blocksA, blocksB, receiptsA, receiptsB := makeChainFork(common+fork, fork, genesis, nil, true) tester := newTester() defer tester.terminate() tester.newPeer("fork A", protocol, hashesA, headersA, blocksA, receiptsA) tester.newPeer("fork B", protocol, hashesB, headersB, blocksB, receiptsB) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("fork A", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, common+fork+1) // Synchronise with the second peer and make sure that fork is pulled too if err := tester.sync("fork B", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnForkedChain(t, tester, common+1, []int{common + fork + 1, common + fork + 1}) } // Tests that synchronising against a much shorter but much heavyer fork works // corrently and is not dropped. func TestHeavyForkedSync62(t *testing.T) { testHeavyForkedSync(t, 62, FullSync) } func TestHeavyForkedSync63Full(t *testing.T) { testHeavyForkedSync(t, 63, FullSync) } func TestHeavyForkedSync63Fast(t *testing.T) { testHeavyForkedSync(t, 63, FastSync) } func TestHeavyForkedSync64Full(t *testing.T) { testHeavyForkedSync(t, 64, FullSync) } func TestHeavyForkedSync64Fast(t *testing.T) { testHeavyForkedSync(t, 64, FastSync) } func TestHeavyForkedSync64Light(t *testing.T) { testHeavyForkedSync(t, 64, LightSync) } func testHeavyForkedSync(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a long enough forked chain common, fork := MaxHashFetch, 4*MaxHashFetch hashesA, hashesB, headersA, headersB, blocksA, blocksB, receiptsA, receiptsB := makeChainFork(common+fork, fork, genesis, nil, false) tester := newTester() defer tester.terminate() tester.newPeer("light", protocol, hashesA, headersA, blocksA, receiptsA) tester.newPeer("heavy", protocol, hashesB[fork/2:], headersB, blocksB, receiptsB) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("light", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, common+fork+1) // Synchronise with the second peer and make sure that fork is pulled too if err := tester.sync("heavy", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnForkedChain(t, tester, common+1, []int{common + fork + 1, common + fork/2 + 1}) } // Tests that chain forks are contained within a certain interval of the current // chain head, ensuring that malicious peers cannot waste resources by feeding // long dead chains. func TestBoundedForkedSync62(t *testing.T) { testBoundedForkedSync(t, 62, FullSync) } func TestBoundedForkedSync63Full(t *testing.T) { testBoundedForkedSync(t, 63, FullSync) } func TestBoundedForkedSync63Fast(t *testing.T) { testBoundedForkedSync(t, 63, FastSync) } func TestBoundedForkedSync64Full(t *testing.T) { testBoundedForkedSync(t, 64, FullSync) } func TestBoundedForkedSync64Fast(t *testing.T) { testBoundedForkedSync(t, 64, FastSync) } func TestBoundedForkedSync64Light(t *testing.T) { testBoundedForkedSync(t, 64, LightSync) } func testBoundedForkedSync(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a long enough forked chain common, fork := 13, int(MaxForkAncestry+17) hashesA, hashesB, headersA, headersB, blocksA, blocksB, receiptsA, receiptsB := makeChainFork(common+fork, fork, genesis, nil, true) tester := newTester() defer tester.terminate() tester.newPeer("original", protocol, hashesA, headersA, blocksA, receiptsA) tester.newPeer("rewriter", protocol, hashesB, headersB, blocksB, receiptsB) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("original", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, common+fork+1) // Synchronise with the second peer and ensure that the fork is rejected to being too old if err := tester.sync("rewriter", nil, mode); err != errInvalidAncestor { t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor) } } // Tests that chain forks are contained within a certain interval of the current // chain head for short but heavy forks too. These are a bit special because they // take different ancestor lookup paths. func TestBoundedHeavyForkedSync62(t *testing.T) { testBoundedHeavyForkedSync(t, 62, FullSync) } func TestBoundedHeavyForkedSync63Full(t *testing.T) { testBoundedHeavyForkedSync(t, 63, FullSync) } func TestBoundedHeavyForkedSync63Fast(t *testing.T) { testBoundedHeavyForkedSync(t, 63, FastSync) } func TestBoundedHeavyForkedSync64Full(t *testing.T) { testBoundedHeavyForkedSync(t, 64, FullSync) } func TestBoundedHeavyForkedSync64Fast(t *testing.T) { testBoundedHeavyForkedSync(t, 64, FastSync) } func TestBoundedHeavyForkedSync64Light(t *testing.T) { testBoundedHeavyForkedSync(t, 64, LightSync) } func testBoundedHeavyForkedSync(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a long enough forked chain common, fork := 13, int(MaxForkAncestry+17) hashesA, hashesB, headersA, headersB, blocksA, blocksB, receiptsA, receiptsB := makeChainFork(common+fork, fork, genesis, nil, false) tester := newTester() defer tester.terminate() tester.newPeer("original", protocol, hashesA, headersA, blocksA, receiptsA) tester.newPeer("heavy-rewriter", protocol, hashesB[MaxForkAncestry-17:], headersB, blocksB, receiptsB) // Root the fork below the ancestor limit // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("original", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, common+fork+1) // Synchronise with the second peer and ensure that the fork is rejected to being too old if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor { t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor) } } // Tests that an inactive downloader will not accept incoming block headers and // bodies. func TestInactiveDownloader62(t *testing.T) { t.Parallel() tester := newTester() defer tester.terminate() // Check that neither block headers nor bodies are accepted if err := tester.downloader.DeliverHeaders("bad peer", []*types.Header{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } if err := tester.downloader.DeliverBodies("bad peer", [][]*types.Transaction{}, [][]*types.Header{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } } // Tests that an inactive downloader will not accept incoming block headers, // bodies and receipts. func TestInactiveDownloader63(t *testing.T) { t.Parallel() tester := newTester() defer tester.terminate() // Check that neither block headers nor bodies are accepted if err := tester.downloader.DeliverHeaders("bad peer", []*types.Header{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } if err := tester.downloader.DeliverBodies("bad peer", [][]*types.Transaction{}, [][]*types.Header{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } if err := tester.downloader.DeliverReceipts("bad peer", [][]*types.Receipt{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } } // Tests that a canceled download wipes all previously accumulated state. func TestCancel62(t *testing.T) { testCancel(t, 62, FullSync) } func TestCancel63Full(t *testing.T) { testCancel(t, 63, FullSync) } func TestCancel63Fast(t *testing.T) { testCancel(t, 63, FastSync) } func TestCancel64Full(t *testing.T) { testCancel(t, 64, FullSync) } func TestCancel64Fast(t *testing.T) { testCancel(t, 64, FastSync) } func TestCancel64Light(t *testing.T) { testCancel(t, 64, LightSync) } func testCancel(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small enough block chain to download and the tester targetBlocks := blockCacheLimit - 15 if targetBlocks >= MaxHashFetch { targetBlocks = MaxHashFetch - 15 } if targetBlocks >= MaxHeaderFetch { targetBlocks = MaxHeaderFetch - 15 } hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() tester.newPeer("peer", protocol, hashes, headers, blocks, receipts) // Make sure canceling works with a pristine downloader tester.downloader.cancel() if !tester.downloader.queue.Idle() { t.Errorf("download queue not idle") } // Synchronise with the peer, but cancel afterwards if err := tester.sync("peer", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } tester.downloader.cancel() if !tester.downloader.queue.Idle() { t.Errorf("download queue not idle") } } // Tests that synchronisation from multiple peers works as intended (multi thread sanity test). func TestMultiSynchronisation62(t *testing.T) { testMultiSynchronisation(t, 62, FullSync) } func TestMultiSynchronisation63Full(t *testing.T) { testMultiSynchronisation(t, 63, FullSync) } func TestMultiSynchronisation63Fast(t *testing.T) { testMultiSynchronisation(t, 63, FastSync) } func TestMultiSynchronisation64Full(t *testing.T) { testMultiSynchronisation(t, 64, FullSync) } func TestMultiSynchronisation64Fast(t *testing.T) { testMultiSynchronisation(t, 64, FastSync) } func TestMultiSynchronisation64Light(t *testing.T) { testMultiSynchronisation(t, 64, LightSync) } func testMultiSynchronisation(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create various peers with various parts of the chain targetPeers := 8 targetBlocks := targetPeers*blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() for i := 0; i < targetPeers; i++ { id := fmt.Sprintf("peer #%d", i) tester.newPeer(id, protocol, hashes[i*blockCacheLimit:], headers, blocks, receipts) } if err := tester.sync("peer #0", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, targetBlocks+1) } // Tests that synchronisations behave well in multi-version protocol environments // and not wreak havoc on other nodes in the network. func TestMultiProtoSynchronisation62(t *testing.T) { testMultiProtoSync(t, 62, FullSync) } func TestMultiProtoSynchronisation63Full(t *testing.T) { testMultiProtoSync(t, 63, FullSync) } func TestMultiProtoSynchronisation63Fast(t *testing.T) { testMultiProtoSync(t, 63, FastSync) } func TestMultiProtoSynchronisation64Full(t *testing.T) { testMultiProtoSync(t, 64, FullSync) } func TestMultiProtoSynchronisation64Fast(t *testing.T) { testMultiProtoSync(t, 64, FastSync) } func TestMultiProtoSynchronisation64Light(t *testing.T) { testMultiProtoSync(t, 64, LightSync) } func testMultiProtoSync(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) // Create peers of every type tester := newTester() defer tester.terminate() tester.newPeer("peer 62", 62, hashes, headers, blocks, nil) tester.newPeer("peer 63", 63, hashes, headers, blocks, receipts) tester.newPeer("peer 64", 64, hashes, headers, blocks, receipts) // Synchronise with the requested peer and make sure all blocks were retrieved if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, targetBlocks+1) // Check that no peers have been dropped off for _, version := range []int{62, 63, 64} { peer := fmt.Sprintf("peer %d", version) if _, ok := tester.peerHashes[peer]; !ok { t.Errorf("%s dropped", peer) } } } // Tests that if a block is empty (e.g. header only), no body request should be // made, and instead the header should be assembled into a whole block in itself. func TestEmptyShortCircuit62(t *testing.T) { testEmptyShortCircuit(t, 62, FullSync) } func TestEmptyShortCircuit63Full(t *testing.T) { testEmptyShortCircuit(t, 63, FullSync) } func TestEmptyShortCircuit63Fast(t *testing.T) { testEmptyShortCircuit(t, 63, FastSync) } func TestEmptyShortCircuit64Full(t *testing.T) { testEmptyShortCircuit(t, 64, FullSync) } func TestEmptyShortCircuit64Fast(t *testing.T) { testEmptyShortCircuit(t, 64, FastSync) } func TestEmptyShortCircuit64Light(t *testing.T) { testEmptyShortCircuit(t, 64, LightSync) } func testEmptyShortCircuit(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a block chain to download targetBlocks := 2*blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() tester.newPeer("peer", protocol, hashes, headers, blocks, receipts) // Instrument the downloader to signal body requests bodiesHave, receiptsHave := int32(0), int32(0) tester.downloader.bodyFetchHook = func(headers []*types.Header) { atomic.AddInt32(&bodiesHave, int32(len(headers))) } tester.downloader.receiptFetchHook = func(headers []*types.Header) { atomic.AddInt32(&receiptsHave, int32(len(headers))) } // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("peer", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, targetBlocks+1) // Validate the number of block bodies that should have been requested bodiesNeeded, receiptsNeeded := 0, 0 for _, block := range blocks { if mode != LightSync && block != genesis && (len(block.Transactions()) > 0 || len(block.Uncles()) > 0) { bodiesNeeded++ } } for hash, receipt := range receipts { if mode == FastSync && len(receipt) > 0 && headers[hash].Number.Uint64() <= tester.downloader.queue.fastSyncPivot { receiptsNeeded++ } } if int(bodiesHave) != bodiesNeeded { t.Errorf("body retrieval count mismatch: have %v, want %v", bodiesHave, bodiesNeeded) } if int(receiptsHave) != receiptsNeeded { t.Errorf("receipt retrieval count mismatch: have %v, want %v", receiptsHave, receiptsNeeded) } } // Tests that headers are enqueued continuously, preventing malicious nodes from // stalling the downloader by feeding gapped header chains. func TestMissingHeaderAttack62(t *testing.T) { testMissingHeaderAttack(t, 62, FullSync) } func TestMissingHeaderAttack63Full(t *testing.T) { testMissingHeaderAttack(t, 63, FullSync) } func TestMissingHeaderAttack63Fast(t *testing.T) { testMissingHeaderAttack(t, 63, FastSync) } func TestMissingHeaderAttack64Full(t *testing.T) { testMissingHeaderAttack(t, 64, FullSync) } func TestMissingHeaderAttack64Fast(t *testing.T) { testMissingHeaderAttack(t, 64, FastSync) } func TestMissingHeaderAttack64Light(t *testing.T) { testMissingHeaderAttack(t, 64, LightSync) } func testMissingHeaderAttack(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() // Attempt a full sync with an attacker feeding gapped headers tester.newPeer("attack", protocol, hashes, headers, blocks, receipts) missing := targetBlocks / 2 delete(tester.peerHeaders["attack"], hashes[missing]) if err := tester.sync("attack", nil, mode); err == nil { t.Fatalf("succeeded attacker synchronisation") } // Synchronise with the valid peer and make sure sync succeeds tester.newPeer("valid", protocol, hashes, headers, blocks, receipts) if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, targetBlocks+1) } // Tests that if requested headers are shifted (i.e. first is missing), the queue // detects the invalid numbering. func TestShiftedHeaderAttack62(t *testing.T) { testShiftedHeaderAttack(t, 62, FullSync) } func TestShiftedHeaderAttack63Full(t *testing.T) { testShiftedHeaderAttack(t, 63, FullSync) } func TestShiftedHeaderAttack63Fast(t *testing.T) { testShiftedHeaderAttack(t, 63, FastSync) } func TestShiftedHeaderAttack64Full(t *testing.T) { testShiftedHeaderAttack(t, 64, FullSync) } func TestShiftedHeaderAttack64Fast(t *testing.T) { testShiftedHeaderAttack(t, 64, FastSync) } func TestShiftedHeaderAttack64Light(t *testing.T) { testShiftedHeaderAttack(t, 64, LightSync) } func testShiftedHeaderAttack(t *testing.T, protocol int, mode SyncMode) { // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() // Attempt a full sync with an attacker feeding shifted headers tester.newPeer("attack", protocol, hashes, headers, blocks, receipts) delete(tester.peerHeaders["attack"], hashes[len(hashes)-2]) delete(tester.peerBlocks["attack"], hashes[len(hashes)-2]) delete(tester.peerReceipts["attack"], hashes[len(hashes)-2]) if err := tester.sync("attack", nil, mode); err == nil { t.Fatalf("succeeded attacker synchronisation") } // Synchronise with the valid peer and make sure sync succeeds tester.newPeer("valid", protocol, hashes, headers, blocks, receipts) if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, targetBlocks+1) } // Tests that upon detecting an invalid header, the recent ones are rolled back // for various failure scenarios. Afterwards a full sync is attempted to make // sure no state was corrupted. func TestInvalidHeaderRollback63Fast(t *testing.T) { testInvalidHeaderRollback(t, 63, FastSync) } func TestInvalidHeaderRollback64Fast(t *testing.T) { testInvalidHeaderRollback(t, 64, FastSync) } func TestInvalidHeaderRollback64Light(t *testing.T) { testInvalidHeaderRollback(t, 64, LightSync) } func testInvalidHeaderRollback(t *testing.T, protocol int, mode SyncMode) { // Create a small enough block chain to download targetBlocks := 3*fsHeaderSafetyNet + fsMinFullBlocks hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) tester := newTester() defer tester.terminate() // Attempt to sync with an attacker that feeds junk during the fast sync phase. // This should result in the last fsHeaderSafetyNet headers being rolled back. tester.newPeer("fast-attack", protocol, hashes, headers, blocks, receipts) missing := fsHeaderSafetyNet + MaxHeaderFetch + 1 delete(tester.peerHeaders["fast-attack"], hashes[len(hashes)-missing]) if err := tester.sync("fast-attack", nil, mode); err == nil { t.Fatalf("succeeded fast attacker synchronisation") } if head := tester.headHeader().Number.Int64(); int(head) > MaxHeaderFetch { t.Errorf("rollback head mismatch: have %v, want at most %v", head, MaxHeaderFetch) } // Attempt to sync with an attacker that feeds junk during the block import phase. // This should result in both the last fsHeaderSafetyNet number of headers being // rolled back, and also the pivot point being reverted to a non-block status. tester.newPeer("block-attack", protocol, hashes, headers, blocks, receipts) missing = 3*fsHeaderSafetyNet + MaxHeaderFetch + 1 delete(tester.peerHeaders["fast-attack"], hashes[len(hashes)-missing]) // Make sure the fast-attacker doesn't fill in delete(tester.peerHeaders["block-attack"], hashes[len(hashes)-missing]) if err := tester.sync("block-attack", nil, mode); err == nil { t.Fatalf("succeeded block attacker synchronisation") } if head := tester.headHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch { t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch) } if mode == FastSync { if head := tester.headBlock().NumberU64(); head != 0 { t.Errorf("fast sync pivot block #%d not rolled back", head) } } // Attempt to sync with an attacker that withholds promised blocks after the // fast sync pivot point. This could be a trial to leave the node with a bad // but already imported pivot block. tester.newPeer("withhold-attack", protocol, hashes, headers, blocks, receipts) missing = 3*fsHeaderSafetyNet + MaxHeaderFetch + 1 tester.downloader.fsPivotFails = 0 tester.downloader.syncInitHook = func(uint64, uint64) { for i := missing; i <= len(hashes); i++ { delete(tester.peerHeaders["withhold-attack"], hashes[len(hashes)-i]) } tester.downloader.syncInitHook = nil } if err := tester.sync("withhold-attack", nil, mode); err == nil { t.Fatalf("succeeded withholding attacker synchronisation") } if head := tester.headHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch { t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch) } if mode == FastSync { if head := tester.headBlock().NumberU64(); head != 0 { t.Errorf("fast sync pivot block #%d not rolled back", head) } } tester.downloader.fsPivotFails = fsCriticalTrials // Synchronise with the valid peer and make sure sync succeeds. Since the last // rollback should also disable fast syncing for this process, verify that we // did a fresh full sync. Note, we can't assert anything about the receipts // since we won't purge the database of them, hence we can't use assertOwnChain. tester.newPeer("valid", protocol, hashes, headers, blocks, receipts) if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if hs := len(tester.ownHeaders); hs != len(headers) { t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, len(headers)) } if mode != LightSync { if bs := len(tester.ownBlocks); bs != len(blocks) { t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, len(blocks)) } } } // Tests that a peer advertising an high TD doesn't get to stall the downloader // afterwards by not sending any useful hashes. func TestHighTDStarvationAttack62(t *testing.T) { testHighTDStarvationAttack(t, 62, FullSync) } func TestHighTDStarvationAttack63Full(t *testing.T) { testHighTDStarvationAttack(t, 63, FullSync) } func TestHighTDStarvationAttack63Fast(t *testing.T) { testHighTDStarvationAttack(t, 63, FastSync) } func TestHighTDStarvationAttack64Full(t *testing.T) { testHighTDStarvationAttack(t, 64, FullSync) } func TestHighTDStarvationAttack64Fast(t *testing.T) { testHighTDStarvationAttack(t, 64, FastSync) } func TestHighTDStarvationAttack64Light(t *testing.T) { testHighTDStarvationAttack(t, 64, LightSync) } func testHighTDStarvationAttack(t *testing.T, protocol int, mode SyncMode) { t.Parallel() tester := newTester() defer tester.terminate() hashes, headers, blocks, receipts := makeChain(0, 0, genesis, nil, false) tester.newPeer("attack", protocol, []common.Hash{hashes[0]}, headers, blocks, receipts) if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer) } } // Tests that misbehaving peers are disconnected, whilst behaving ones are not. func TestBlockHeaderAttackerDropping62(t *testing.T) { testBlockHeaderAttackerDropping(t, 62) } func TestBlockHeaderAttackerDropping63(t *testing.T) { testBlockHeaderAttackerDropping(t, 63) } func TestBlockHeaderAttackerDropping64(t *testing.T) { testBlockHeaderAttackerDropping(t, 64) } func testBlockHeaderAttackerDropping(t *testing.T, protocol int) { // Define the disconnection requirement for individual hash fetch errors tests := []struct { result error drop bool }{ {nil, false}, // Sync succeeded, all is well {errBusy, false}, // Sync is already in progress, no problem {errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop {errBadPeer, true}, // Peer was deemed bad for some reason, drop it {errStallingPeer, true}, // Peer was detected to be stalling, drop it {errNoPeers, false}, // No peers to download from, soft race, no issue {errTimeout, true}, // No hashes received in due time, drop the peer {errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end {errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser {errInvalidAncestor, true}, // Agreed upon ancestor is not acceptable, drop the chain rewriter {errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop {errInvalidBlock, false}, // A bad peer was detected, but not the sync origin {errInvalidBody, false}, // A bad peer was detected, but not the sync origin {errInvalidReceipt, false}, // A bad peer was detected, but not the sync origin {errCancelBlockFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelHeaderFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelBodyFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelReceiptFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelHeaderProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelContentProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop } // Run the tests and check disconnection status tester := newTester() defer tester.terminate() for i, tt := range tests { // Register a new peer and ensure it's presence id := fmt.Sprintf("test %d", i) if err := tester.newPeer(id, protocol, []common.Hash{genesis.Hash()}, nil, nil, nil); err != nil { t.Fatalf("test %d: failed to register new peer: %v", i, err) } if _, ok := tester.peerHashes[id]; !ok { t.Fatalf("test %d: registered peer not found", i) } // Simulate a synchronisation and check the required result tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result } tester.downloader.Synchronise(id, genesis.Hash(), big.NewInt(1000), FullSync) if _, ok := tester.peerHashes[id]; !ok != tt.drop { t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop) } } } // Tests that synchronisation progress (origin block number, current block number // and highest block number) is tracked and updated correctly. func TestSyncProgress62(t *testing.T) { testSyncProgress(t, 62, FullSync) } func TestSyncProgress63Full(t *testing.T) { testSyncProgress(t, 63, FullSync) } func TestSyncProgress63Fast(t *testing.T) { testSyncProgress(t, 63, FastSync) } func TestSyncProgress64Full(t *testing.T) { testSyncProgress(t, 64, FullSync) } func TestSyncProgress64Fast(t *testing.T) { testSyncProgress(t, 64, FastSync) } func TestSyncProgress64Light(t *testing.T) { testSyncProgress(t, 64, LightSync) } func testSyncProgress(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() defer tester.terminate() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync progress and ensure they are zero (pristine sync) if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != 0 { t.Fatalf("Pristine progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, 0) } // Synchronise half the blocks and check initial progress tester.newPeer("peer-half", protocol, hashes[targetBlocks/2:], headers, blocks, receipts) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("peer-half", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != uint64(targetBlocks/2+1) { t.Fatalf("Initial progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, targetBlocks/2+1) } progress <- struct{}{} pending.Wait() // Synchronise all the blocks and check continuation progress tester.newPeer("peer-full", protocol, hashes, headers, blocks, receipts) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("peer-full", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != uint64(targetBlocks/2+1) || current != uint64(targetBlocks/2+1) || latest != uint64(targetBlocks) { t.Fatalf("Completing progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, targetBlocks/2+1, targetBlocks/2+1, targetBlocks) } progress <- struct{}{} pending.Wait() // Check final progress after successful sync if origin, current, latest, _, _ := tester.downloader.Progress(); origin != uint64(targetBlocks/2+1) || current != uint64(targetBlocks) || latest != uint64(targetBlocks) { t.Fatalf("Final progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, targetBlocks/2+1, targetBlocks, targetBlocks) } } // Tests that synchronisation progress (origin block number and highest block // number) is tracked and updated correctly in case of a fork (or manual head // revertal). func TestForkedSyncProgress62(t *testing.T) { testForkedSyncProgress(t, 62, FullSync) } func TestForkedSyncProgress63Full(t *testing.T) { testForkedSyncProgress(t, 63, FullSync) } func TestForkedSyncProgress63Fast(t *testing.T) { testForkedSyncProgress(t, 63, FastSync) } func TestForkedSyncProgress64Full(t *testing.T) { testForkedSyncProgress(t, 64, FullSync) } func TestForkedSyncProgress64Fast(t *testing.T) { testForkedSyncProgress(t, 64, FastSync) } func TestForkedSyncProgress64Light(t *testing.T) { testForkedSyncProgress(t, 64, LightSync) } func testForkedSyncProgress(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a forked chain to simulate origin revertal common, fork := MaxHashFetch, 2*MaxHashFetch hashesA, hashesB, headersA, headersB, blocksA, blocksB, receiptsA, receiptsB := makeChainFork(common+fork, fork, genesis, nil, true) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() defer tester.terminate() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync progress and ensure they are zero (pristine sync) if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != 0 { t.Fatalf("Pristine progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, 0) } // Synchronise with one of the forks and check progress tester.newPeer("fork A", protocol, hashesA, headersA, blocksA, receiptsA) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("fork A", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != uint64(len(hashesA)-1) { t.Fatalf("Initial progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, len(hashesA)-1) } progress <- struct{}{} pending.Wait() // Simulate a successful sync above the fork tester.downloader.syncStatsChainOrigin = tester.downloader.syncStatsChainHeight // Synchronise with the second fork and check progress resets tester.newPeer("fork B", protocol, hashesB, headersB, blocksB, receiptsB) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("fork B", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != uint64(common) || current != uint64(len(hashesA)-1) || latest != uint64(len(hashesB)-1) { t.Fatalf("Forking progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, common, len(hashesA)-1, len(hashesB)-1) } progress <- struct{}{} pending.Wait() // Check final progress after successful sync if origin, current, latest, _, _ := tester.downloader.Progress(); origin != uint64(common) || current != uint64(len(hashesB)-1) || latest != uint64(len(hashesB)-1) { t.Fatalf("Final progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, common, len(hashesB)-1, len(hashesB)-1) } } // Tests that if synchronisation is aborted due to some failure, then the progress // origin is not updated in the next sync cycle, as it should be considered the // continuation of the previous sync and not a new instance. func TestFailedSyncProgress62(t *testing.T) { testFailedSyncProgress(t, 62, FullSync) } func TestFailedSyncProgress63Full(t *testing.T) { testFailedSyncProgress(t, 63, FullSync) } func TestFailedSyncProgress63Fast(t *testing.T) { testFailedSyncProgress(t, 63, FastSync) } func TestFailedSyncProgress64Full(t *testing.T) { testFailedSyncProgress(t, 64, FullSync) } func TestFailedSyncProgress64Fast(t *testing.T) { testFailedSyncProgress(t, 64, FastSync) } func TestFailedSyncProgress64Light(t *testing.T) { testFailedSyncProgress(t, 64, LightSync) } func testFailedSyncProgress(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small enough block chain to download targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() defer tester.terminate() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync progress and ensure they are zero (pristine sync) if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != 0 { t.Fatalf("Pristine progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, 0) } // Attempt a full sync with a faulty peer tester.newPeer("faulty", protocol, hashes, headers, blocks, receipts) missing := targetBlocks / 2 delete(tester.peerHeaders["faulty"], hashes[missing]) delete(tester.peerBlocks["faulty"], hashes[missing]) delete(tester.peerReceipts["faulty"], hashes[missing]) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("faulty", nil, mode); err == nil { t.Fatalf("succeeded faulty synchronisation") } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != uint64(targetBlocks) { t.Fatalf("Initial progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, targetBlocks) } progress <- struct{}{} pending.Wait() // Synchronise with a good peer and check that the progress origin remind the same after a failure tester.newPeer("valid", protocol, hashes, headers, blocks, receipts) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current > uint64(targetBlocks/2) || latest != uint64(targetBlocks) { t.Fatalf("Completing progress mismatch: have %v/%v/%v, want %v/0-%v/%v", origin, current, latest, 0, targetBlocks/2, targetBlocks) } progress <- struct{}{} pending.Wait() // Check final progress after successful sync if origin, current, latest, _, _ := tester.downloader.Progress(); origin > uint64(targetBlocks/2) || current != uint64(targetBlocks) || latest != uint64(targetBlocks) { t.Fatalf("Final progress mismatch: have %v/%v/%v, want 0-%v/%v/%v", origin, current, latest, targetBlocks/2, targetBlocks, targetBlocks) } } // Tests that if an attacker fakes a chain height, after the attack is detected, // the progress height is successfully reduced at the next sync invocation. func TestFakedSyncProgress62(t *testing.T) { testFakedSyncProgress(t, 62, FullSync) } func TestFakedSyncProgress63Full(t *testing.T) { testFakedSyncProgress(t, 63, FullSync) } func TestFakedSyncProgress63Fast(t *testing.T) { testFakedSyncProgress(t, 63, FastSync) } func TestFakedSyncProgress64Full(t *testing.T) { testFakedSyncProgress(t, 64, FullSync) } func TestFakedSyncProgress64Fast(t *testing.T) { testFakedSyncProgress(t, 64, FastSync) } func TestFakedSyncProgress64Light(t *testing.T) { testFakedSyncProgress(t, 64, LightSync) } func testFakedSyncProgress(t *testing.T, protocol int, mode SyncMode) { t.Parallel() // Create a small block chain targetBlocks := blockCacheLimit - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks+3, 0, genesis, nil, false) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester := newTester() defer tester.terminate() tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } // Retrieve the sync progress and ensure they are zero (pristine sync) if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != 0 { t.Fatalf("Pristine progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, 0) } // Create and sync with an attacker that promises a higher chain than available tester.newPeer("attack", protocol, hashes, headers, blocks, receipts) for i := 1; i < 3; i++ { delete(tester.peerHeaders["attack"], hashes[i]) delete(tester.peerBlocks["attack"], hashes[i]) delete(tester.peerReceipts["attack"], hashes[i]) } pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("attack", nil, mode); err == nil { t.Fatalf("succeeded attacker synchronisation") } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current != 0 || latest != uint64(targetBlocks+3) { t.Fatalf("Initial progress mismatch: have %v/%v/%v, want %v/%v/%v", origin, current, latest, 0, 0, targetBlocks+3) } progress <- struct{}{} pending.Wait() // Synchronise with a good peer and check that the progress height has been reduced to the true value tester.newPeer("valid", protocol, hashes[3:], headers, blocks, receipts) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } }() <-starting if origin, current, latest, _, _ := tester.downloader.Progress(); origin != 0 || current > uint64(targetBlocks) || latest != uint64(targetBlocks) { t.Fatalf("Completing progress mismatch: have %v/%v/%v, want %v/0-%v/%v", origin, current, latest, 0, targetBlocks, targetBlocks) } progress <- struct{}{} pending.Wait() // Check final progress after successful sync if origin, current, latest, _, _ := tester.downloader.Progress(); origin > uint64(targetBlocks) || current != uint64(targetBlocks) || latest != uint64(targetBlocks) { t.Fatalf("Final progress mismatch: have %v/%v/%v, want 0-%v/%v/%v", origin, current, latest, targetBlocks, targetBlocks, targetBlocks) } } // This test reproduces an issue where unexpected deliveries would // block indefinitely if they arrived at the right time. func TestDeliverHeadersHang62(t *testing.T) { testDeliverHeadersHang(t, 62, FullSync) } func TestDeliverHeadersHang63Full(t *testing.T) { testDeliverHeadersHang(t, 63, FullSync) } func TestDeliverHeadersHang63Fast(t *testing.T) { testDeliverHeadersHang(t, 63, FastSync) } func TestDeliverHeadersHang64Full(t *testing.T) { testDeliverHeadersHang(t, 64, FullSync) } func TestDeliverHeadersHang64Fast(t *testing.T) { testDeliverHeadersHang(t, 64, FastSync) } func TestDeliverHeadersHang64Light(t *testing.T) { testDeliverHeadersHang(t, 64, LightSync) } func testDeliverHeadersHang(t *testing.T, protocol int, mode SyncMode) { t.Parallel() hashes, headers, blocks, receipts := makeChain(5, 0, genesis, nil, false) fakeHeads := []*types.Header{{}, {}, {}, {}} for i := 0; i < 200; i++ { tester := newTester() tester.newPeer("peer", protocol, hashes, headers, blocks, receipts) // Whenever the downloader requests headers, flood it with // a lot of unrequested header deliveries. tester.downloader.peers.peers["peer"].getAbsHeaders = func(from uint64, count, skip int, reverse bool) error { deliveriesDone := make(chan struct{}, 500) for i := 0; i < cap(deliveriesDone); i++ { peer := fmt.Sprintf("fake-peer%d", i) go func() { tester.downloader.DeliverHeaders(peer, fakeHeads) deliveriesDone <- struct{}{} }() } // Deliver the actual requested headers. impl := tester.peerGetAbsHeadersFn("peer", 0) go impl(from, count, skip, reverse) // None of the extra deliveries should block. timeout := time.After(15 * time.Second) for i := 0; i < cap(deliveriesDone); i++ { select { case <-deliveriesDone: case <-timeout: panic("blocked") } } return nil } if err := tester.sync("peer", nil, mode); err != nil { t.Errorf("sync failed: %v", err) } tester.terminate() } } // Tests that if fast sync aborts in the critical section, it can restart a few // times before giving up. func TestFastCriticalRestarts63(t *testing.T) { testFastCriticalRestarts(t, 63) } func TestFastCriticalRestarts64(t *testing.T) { testFastCriticalRestarts(t, 64) } func testFastCriticalRestarts(t *testing.T, protocol int) { t.Parallel() // Create a large enough blockchin to actually fast sync on targetBlocks := fsMinFullBlocks + 2*fsPivotInterval - 15 hashes, headers, blocks, receipts := makeChain(targetBlocks, 0, genesis, nil, false) // Create a tester peer with the critical section state roots missing (force failures) tester := newTester() defer tester.terminate() tester.newPeer("peer", protocol, hashes, headers, blocks, receipts) for i := 0; i < fsPivotInterval; i++ { tester.peerMissingStates["peer"][headers[hashes[fsMinFullBlocks+i]].Root] = true } tester.downloader.dropPeer = func(id string) {} // We reuse the same "faulty" peer throughout the test // Synchronise with the peer a few times and make sure they fail until the retry limit for i := 0; i < fsCriticalTrials; i++ { // Attempt a sync and ensure it fails properly if err := tester.sync("peer", nil, FastSync); err == nil { t.Fatalf("failing fast sync succeeded: %v", err) } time.Sleep(100 * time.Millisecond) // Make sure no in-flight requests remain // If it's the first failure, pivot should be locked => reenable all others to detect pivot changes if i == 0 { tester.lock.Lock() tester.peerMissingStates["peer"] = map[common.Hash]bool{tester.downloader.fsPivotLock.Root: true} tester.lock.Unlock() } } // Retry limit exhausted, downloader will switch to full sync, should succeed if err := tester.sync("peer", nil, FastSync); err != nil { t.Fatalf("failed to synchronise blocks in slow sync: %v", err) } assertOwnChain(t, tester, targetBlocks+1) }