// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains the block download scheduler to collect download tasks and schedule // them in an ordered, and throttled way. package downloader import ( "errors" "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" ) var ( blockCacheItems = 8192 // Maximum number of blocks to cache before throttling the download blockCacheMemory = 64 * 1024 * 1024 // Maximum amount of memory to use for block caching blockCacheSizeWeight = 0.1 // Multiplier to approximate the average block size based on past ones ) var ( errNoFetchesPending = errors.New("no fetches pending") errStaleDelivery = errors.New("stale delivery") ) // fetchRequest is a currently running data retrieval operation. type fetchRequest struct { Peer *peerConnection // Peer to which the request was sent From uint64 // [eth/62] Requested chain element index (used for skeleton fills only) Headers []*types.Header // [eth/62] Requested headers, sorted by request order Time time.Time // Time when the request was made } // fetchResult is a struct collecting partial results from data fetchers until // all outstanding pieces complete and the result as a whole can be processed. type fetchResult struct { Pending int // Number of data fetches still pending Hash common.Hash // Hash of the header to prevent recalculating Header *types.Header Uncles []*types.Header Transactions types.Transactions Receipts types.Receipts } // queue represents hashes that are either need fetching or are being fetched type queue struct { mode SyncMode // Synchronisation mode to decide on the block parts to schedule for fetching // Headers are "special", they download in batches, supported by a skeleton chain headerHead common.Hash // [eth/62] Hash of the last queued header to verify order headerTaskPool map[uint64]*types.Header // [eth/62] Pending header retrieval tasks, mapping starting indexes to skeleton headers headerTaskQueue *prque.Prque // [eth/62] Priority queue of the skeleton indexes to fetch the filling headers for headerPeerMiss map[string]map[uint64]struct{} // [eth/62] Set of per-peer header batches known to be unavailable headerPendPool map[string]*fetchRequest // [eth/62] Currently pending header retrieval operations headerResults []*types.Header // [eth/62] Result cache accumulating the completed headers headerProced int // [eth/62] Number of headers already processed from the results headerOffset uint64 // [eth/62] Number of the first header in the result cache headerContCh chan bool // [eth/62] Channel to notify when header download finishes // All data retrievals below are based on an already assembles header chain blockTaskPool map[common.Hash]*types.Header // [eth/62] Pending block (body) retrieval tasks, mapping hashes to headers blockTaskQueue *prque.Prque // [eth/62] Priority queue of the headers to fetch the blocks (bodies) for blockPendPool map[string]*fetchRequest // [eth/62] Currently pending block (body) retrieval operations blockDonePool map[common.Hash]struct{} // [eth/62] Set of the completed block (body) fetches receiptTaskPool map[common.Hash]*types.Header // [eth/63] Pending receipt retrieval tasks, mapping hashes to headers receiptTaskQueue *prque.Prque // [eth/63] Priority queue of the headers to fetch the receipts for receiptPendPool map[string]*fetchRequest // [eth/63] Currently pending receipt retrieval operations receiptDonePool map[common.Hash]struct{} // [eth/63] Set of the completed receipt fetches resultCache []*fetchResult // Downloaded but not yet delivered fetch results resultOffset uint64 // Offset of the first cached fetch result in the block chain resultSize common.StorageSize // Approximate size of a block (exponential moving average) lock *sync.Mutex active *sync.Cond closed bool } // newQueue creates a new download queue for scheduling block retrieval. func newQueue() *queue { lock := new(sync.Mutex) return &queue{ headerPendPool: make(map[string]*fetchRequest), headerContCh: make(chan bool), blockTaskPool: make(map[common.Hash]*types.Header), blockTaskQueue: prque.New(nil), blockPendPool: make(map[string]*fetchRequest), blockDonePool: make(map[common.Hash]struct{}), receiptTaskPool: make(map[common.Hash]*types.Header), receiptTaskQueue: prque.New(nil), receiptPendPool: make(map[string]*fetchRequest), receiptDonePool: make(map[common.Hash]struct{}), resultCache: make([]*fetchResult, blockCacheItems), active: sync.NewCond(lock), lock: lock, } } // Reset clears out the queue contents. func (q *queue) Reset() { q.lock.Lock() defer q.lock.Unlock() q.closed = false q.mode = FullSync q.headerHead = common.Hash{} q.headerPendPool = make(map[string]*fetchRequest) q.blockTaskPool = make(map[common.Hash]*types.Header) q.blockTaskQueue.Reset() q.blockPendPool = make(map[string]*fetchRequest) q.blockDonePool = make(map[common.Hash]struct{}) q.receiptTaskPool = make(map[common.Hash]*types.Header) q.receiptTaskQueue.Reset() q.receiptPendPool = make(map[string]*fetchRequest) q.receiptDonePool = make(map[common.Hash]struct{}) q.resultCache = make([]*fetchResult, blockCacheItems) q.resultOffset = 0 } // Close marks the end of the sync, unblocking Results. // It may be called even if the queue is already closed. func (q *queue) Close() { q.lock.Lock() q.closed = true q.lock.Unlock() q.active.Broadcast() } // PendingHeaders retrieves the number of header requests pending for retrieval. func (q *queue) PendingHeaders() int { q.lock.Lock() defer q.lock.Unlock() return q.headerTaskQueue.Size() } // PendingBlocks retrieves the number of block (body) requests pending for retrieval. func (q *queue) PendingBlocks() int { q.lock.Lock() defer q.lock.Unlock() return q.blockTaskQueue.Size() } // PendingReceipts retrieves the number of block receipts pending for retrieval. func (q *queue) PendingReceipts() int { q.lock.Lock() defer q.lock.Unlock() return q.receiptTaskQueue.Size() } // InFlightHeaders retrieves whether there are header fetch requests currently // in flight. func (q *queue) InFlightHeaders() bool { q.lock.Lock() defer q.lock.Unlock() return len(q.headerPendPool) > 0 } // InFlightBlocks retrieves whether there are block fetch requests currently in // flight. func (q *queue) InFlightBlocks() bool { q.lock.Lock() defer q.lock.Unlock() return len(q.blockPendPool) > 0 } // InFlightReceipts retrieves whether there are receipt fetch requests currently // in flight. func (q *queue) InFlightReceipts() bool { q.lock.Lock() defer q.lock.Unlock() return len(q.receiptPendPool) > 0 } // Idle returns if the queue is fully idle or has some data still inside. func (q *queue) Idle() bool { q.lock.Lock() defer q.lock.Unlock() queued := q.blockTaskQueue.Size() + q.receiptTaskQueue.Size() pending := len(q.blockPendPool) + len(q.receiptPendPool) cached := len(q.blockDonePool) + len(q.receiptDonePool) return (queued + pending + cached) == 0 } // ShouldThrottleBlocks checks if the download should be throttled (active block (body) // fetches exceed block cache). func (q *queue) ShouldThrottleBlocks() bool { q.lock.Lock() defer q.lock.Unlock() return q.resultSlots(q.blockPendPool, q.blockDonePool) <= 0 } // ShouldThrottleReceipts checks if the download should be throttled (active receipt // fetches exceed block cache). func (q *queue) ShouldThrottleReceipts() bool { q.lock.Lock() defer q.lock.Unlock() return q.resultSlots(q.receiptPendPool, q.receiptDonePool) <= 0 } // resultSlots calculates the number of results slots available for requests // whilst adhering to both the item and the memory limits of the result cache. func (q *queue) resultSlots(pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}) int { // Calculate the maximum length capped by the memory limit limit := len(q.resultCache) if common.StorageSize(len(q.resultCache))*q.resultSize > common.StorageSize(blockCacheMemory) { limit = int((common.StorageSize(blockCacheMemory) + q.resultSize - 1) / q.resultSize) } // Calculate the number of slots already finished finished := 0 for _, result := range q.resultCache[:limit] { if result == nil { break } if _, ok := donePool[result.Hash]; ok { finished++ } } // Calculate the number of slots currently downloading pending := 0 for _, request := range pendPool { for _, header := range request.Headers { if header.Number.Uint64() < q.resultOffset+uint64(limit) { pending++ } } } // Return the free slots to distribute return limit - finished - pending } // ScheduleSkeleton adds a batch of header retrieval tasks to the queue to fill // up an already retrieved header skeleton. func (q *queue) ScheduleSkeleton(from uint64, skeleton []*types.Header) { q.lock.Lock() defer q.lock.Unlock() // No skeleton retrieval can be in progress, fail hard if so (huge implementation bug) if q.headerResults != nil { panic("skeleton assembly already in progress") } // Schedule all the header retrieval tasks for the skeleton assembly q.headerTaskPool = make(map[uint64]*types.Header) q.headerTaskQueue = prque.New(nil) q.headerPeerMiss = make(map[string]map[uint64]struct{}) // Reset availability to correct invalid chains q.headerResults = make([]*types.Header, len(skeleton)*MaxHeaderFetch) q.headerProced = 0 q.headerOffset = from q.headerContCh = make(chan bool, 1) for i, header := range skeleton { index := from + uint64(i*MaxHeaderFetch) q.headerTaskPool[index] = header q.headerTaskQueue.Push(index, -int64(index)) } } // RetrieveHeaders retrieves the header chain assemble based on the scheduled // skeleton. func (q *queue) RetrieveHeaders() ([]*types.Header, int) { q.lock.Lock() defer q.lock.Unlock() headers, proced := q.headerResults, q.headerProced q.headerResults, q.headerProced = nil, 0 return headers, proced } // Schedule adds a set of headers for the download queue for scheduling, returning // the new headers encountered. func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header { q.lock.Lock() defer q.lock.Unlock() // Insert all the headers prioritised by the contained block number inserts := make([]*types.Header, 0, len(headers)) for _, header := range headers { // Make sure chain order is honoured and preserved throughout hash := header.Hash() if header.Number == nil || header.Number.Uint64() != from { log.Warn("Header broke chain ordering", "number", header.Number, "hash", hash, "expected", from) break } if q.headerHead != (common.Hash{}) && q.headerHead != header.ParentHash { log.Warn("Header broke chain ancestry", "number", header.Number, "hash", hash) break } // Make sure no duplicate requests are executed if _, ok := q.blockTaskPool[hash]; ok { log.Warn("Header already scheduled for block fetch", "number", header.Number, "hash", hash) continue } if _, ok := q.receiptTaskPool[hash]; ok { log.Warn("Header already scheduled for receipt fetch", "number", header.Number, "hash", hash) continue } // Queue the header for content retrieval q.blockTaskPool[hash] = header q.blockTaskQueue.Push(header, -int64(header.Number.Uint64())) if q.mode == FastSync { q.receiptTaskPool[hash] = header q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64())) } inserts = append(inserts, header) q.headerHead = hash from++ } return inserts } // Results retrieves and permanently removes a batch of fetch results from // the cache. The result slice will be empty if the queue has been closed. func (q *queue) Results(block bool) []*fetchResult { q.lock.Lock() defer q.lock.Unlock() // Count the number of items available for processing nproc := q.countProcessableItems() for nproc == 0 && !q.closed { if !block { return nil } q.active.Wait() nproc = q.countProcessableItems() } // Since we have a batch limit, don't pull more into "dangling" memory if nproc > maxResultsProcess { nproc = maxResultsProcess } results := make([]*fetchResult, nproc) copy(results, q.resultCache[:nproc]) if len(results) > 0 { // Mark results as done before dropping them from the cache. for _, result := range results { hash := result.Header.Hash() delete(q.blockDonePool, hash) delete(q.receiptDonePool, hash) } // Delete the results from the cache and clear the tail. copy(q.resultCache, q.resultCache[nproc:]) for i := len(q.resultCache) - nproc; i < len(q.resultCache); i++ { q.resultCache[i] = nil } // Advance the expected block number of the first cache entry. q.resultOffset += uint64(nproc) // Recalculate the result item weights to prevent memory exhaustion for _, result := range results { size := result.Header.Size() for _, uncle := range result.Uncles { size += uncle.Size() } for _, receipt := range result.Receipts { size += receipt.Size() } for _, tx := range result.Transactions { size += tx.Size() } q.resultSize = common.StorageSize(blockCacheSizeWeight)*size + (1-common.StorageSize(blockCacheSizeWeight))*q.resultSize } } return results } // countProcessableItems counts the processable items. func (q *queue) countProcessableItems() int { for i, result := range q.resultCache { if result == nil || result.Pending > 0 { return i } } return len(q.resultCache) } // ReserveHeaders reserves a set of headers for the given peer, skipping any // previously failed batches. func (q *queue) ReserveHeaders(p *peerConnection, count int) *fetchRequest { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the peer's already downloading something (sanity check to // not corrupt state) if _, ok := q.headerPendPool[p.id]; ok { return nil } // Retrieve a batch of hashes, skipping previously failed ones send, skip := uint64(0), []uint64{} for send == 0 && !q.headerTaskQueue.Empty() { from, _ := q.headerTaskQueue.Pop() if q.headerPeerMiss[p.id] != nil { if _, ok := q.headerPeerMiss[p.id][from.(uint64)]; ok { skip = append(skip, from.(uint64)) continue } } send = from.(uint64) } // Merge all the skipped batches back for _, from := range skip { q.headerTaskQueue.Push(from, -int64(from)) } // Assemble and return the block download request if send == 0 { return nil } request := &fetchRequest{ Peer: p, From: send, Time: time.Now(), } q.headerPendPool[p.id] = request return request } // ReserveBodies reserves a set of body fetches for the given peer, skipping any // previously failed downloads. Beside the next batch of needed fetches, it also // returns a flag whether empty blocks were queued requiring processing. func (q *queue) ReserveBodies(p *peerConnection, count int) (*fetchRequest, bool, error) { isNoop := func(header *types.Header) bool { return header.TxHash == types.EmptyRootHash && header.UncleHash == types.EmptyUncleHash } q.lock.Lock() defer q.lock.Unlock() return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, isNoop) } // ReserveReceipts reserves a set of receipt fetches for the given peer, skipping // any previously failed downloads. Beside the next batch of needed fetches, it // also returns a flag whether empty receipts were queued requiring importing. func (q *queue) ReserveReceipts(p *peerConnection, count int) (*fetchRequest, bool, error) { isNoop := func(header *types.Header) bool { return header.ReceiptHash == types.EmptyRootHash } q.lock.Lock() defer q.lock.Unlock() return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, isNoop) } // reserveHeaders reserves a set of data download operations for a given peer, // skipping any previously failed ones. This method is a generic version used // by the individual special reservation functions. // // Note, this method expects the queue lock to be already held for writing. The // reason the lock is not obtained in here is because the parameters already need // to access the queue, so they already need a lock anyway. func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque, pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, isNoop func(*types.Header) bool) (*fetchRequest, bool, error) { // Short circuit if the pool has been depleted, or if the peer's already // downloading something (sanity check not to corrupt state) if taskQueue.Empty() { return nil, false, nil } if _, ok := pendPool[p.id]; ok { return nil, false, nil } // Calculate an upper limit on the items we might fetch (i.e. throttling) space := q.resultSlots(pendPool, donePool) // Retrieve a batch of tasks, skipping previously failed ones send := make([]*types.Header, 0, count) skip := make([]*types.Header, 0) progress := false for proc := 0; proc < space && len(send) < count && !taskQueue.Empty(); proc++ { header := taskQueue.PopItem().(*types.Header) hash := header.Hash() // If we're the first to request this task, initialise the result container index := int(header.Number.Int64() - int64(q.resultOffset)) if index >= len(q.resultCache) || index < 0 { common.Report("index allocation went beyond available resultCache space") return nil, false, fmt.Errorf("%w: index allocation went beyond available resultCache space", errInvalidChain) } if q.resultCache[index] == nil { components := 1 if q.mode == FastSync { components = 2 } q.resultCache[index] = &fetchResult{ Pending: components, Hash: hash, Header: header, } } // If this fetch task is a noop, skip this fetch operation if isNoop(header) { donePool[hash] = struct{}{} delete(taskPool, hash) space, proc = space-1, proc-1 q.resultCache[index].Pending-- progress = true continue } // Otherwise unless the peer is known not to have the data, add to the retrieve list if p.Lacks(hash) { skip = append(skip, header) } else { send = append(send, header) } } // Merge all the skipped headers back for _, header := range skip { taskQueue.Push(header, -int64(header.Number.Uint64())) } if progress { // Wake Results, resultCache was modified q.active.Signal() } // Assemble and return the block download request if len(send) == 0 { return nil, progress, nil } request := &fetchRequest{ Peer: p, Headers: send, Time: time.Now(), } pendPool[p.id] = request return request, progress, nil } // CancelHeaders aborts a fetch request, returning all pending skeleton indexes to the queue. func (q *queue) CancelHeaders(request *fetchRequest) { q.lock.Lock() defer q.lock.Unlock() q.cancel(request, q.headerTaskQueue, q.headerPendPool) } // CancelBodies aborts a body fetch request, returning all pending headers to the // task queue. func (q *queue) CancelBodies(request *fetchRequest) { q.lock.Lock() defer q.lock.Unlock() q.cancel(request, q.blockTaskQueue, q.blockPendPool) } // CancelReceipts aborts a body fetch request, returning all pending headers to // the task queue. func (q *queue) CancelReceipts(request *fetchRequest) { q.lock.Lock() defer q.lock.Unlock() q.cancel(request, q.receiptTaskQueue, q.receiptPendPool) } // Cancel aborts a fetch request, returning all pending hashes to the task queue. func (q *queue) cancel(request *fetchRequest, taskQueue *prque.Prque, pendPool map[string]*fetchRequest) { if request.From > 0 { taskQueue.Push(request.From, -int64(request.From)) } for _, header := range request.Headers { taskQueue.Push(header, -int64(header.Number.Uint64())) } delete(pendPool, request.Peer.id) } // Revoke cancels all pending requests belonging to a given peer. This method is // meant to be called during a peer drop to quickly reassign owned data fetches // to remaining nodes. func (q *queue) Revoke(peerID string) { q.lock.Lock() defer q.lock.Unlock() if request, ok := q.blockPendPool[peerID]; ok { for _, header := range request.Headers { q.blockTaskQueue.Push(header, -int64(header.Number.Uint64())) } delete(q.blockPendPool, peerID) } if request, ok := q.receiptPendPool[peerID]; ok { for _, header := range request.Headers { q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64())) } delete(q.receiptPendPool, peerID) } } // ExpireHeaders checks for in flight requests that exceeded a timeout allowance, // canceling them and returning the responsible peers for penalisation. func (q *queue) ExpireHeaders(timeout time.Duration) map[string]int { q.lock.Lock() defer q.lock.Unlock() return q.expire(timeout, q.headerPendPool, q.headerTaskQueue, headerTimeoutMeter) } // ExpireBodies checks for in flight block body requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalisation. func (q *queue) ExpireBodies(timeout time.Duration) map[string]int { q.lock.Lock() defer q.lock.Unlock() return q.expire(timeout, q.blockPendPool, q.blockTaskQueue, bodyTimeoutMeter) } // ExpireReceipts checks for in flight receipt requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalisation. func (q *queue) ExpireReceipts(timeout time.Duration) map[string]int { q.lock.Lock() defer q.lock.Unlock() return q.expire(timeout, q.receiptPendPool, q.receiptTaskQueue, receiptTimeoutMeter) } // expire is the generic check that move expired tasks from a pending pool back // into a task pool, returning all entities caught with expired tasks. // // Note, this method expects the queue lock to be already held. The // reason the lock is not obtained in here is because the parameters already need // to access the queue, so they already need a lock anyway. func (q *queue) expire(timeout time.Duration, pendPool map[string]*fetchRequest, taskQueue *prque.Prque, timeoutMeter metrics.Meter) map[string]int { // Iterate over the expired requests and return each to the queue expiries := make(map[string]int) for id, request := range pendPool { if time.Since(request.Time) > timeout { // Update the metrics with the timeout timeoutMeter.Mark(1) // Return any non satisfied requests to the pool if request.From > 0 { taskQueue.Push(request.From, -int64(request.From)) } for _, header := range request.Headers { taskQueue.Push(header, -int64(header.Number.Uint64())) } // Add the peer to the expiry report along the number of failed requests expiries[id] = len(request.Headers) // Remove the expired requests from the pending pool directly delete(pendPool, id) } } return expiries } // DeliverHeaders injects a header retrieval response into the header results // cache. This method either accepts all headers it received, or none of them // if they do not map correctly to the skeleton. // // If the headers are accepted, the method makes an attempt to deliver the set // of ready headers to the processor to keep the pipeline full. However it will // not block to prevent stalling other pending deliveries. func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh chan []*types.Header) (int, error) { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the data was never requested request := q.headerPendPool[id] if request == nil { return 0, errNoFetchesPending } headerReqTimer.UpdateSince(request.Time) delete(q.headerPendPool, id) // Ensure headers can be mapped onto the skeleton chain target := q.headerTaskPool[request.From].Hash() accepted := len(headers) == MaxHeaderFetch if accepted { if headers[0].Number.Uint64() != request.From { log.Trace("First header broke chain ordering", "peer", id, "number", headers[0].Number, "hash", headers[0].Hash(), request.From) accepted = false } else if headers[len(headers)-1].Hash() != target { log.Trace("Last header broke skeleton structure ", "peer", id, "number", headers[len(headers)-1].Number, "hash", headers[len(headers)-1].Hash(), "expected", target) accepted = false } } if accepted { for i, header := range headers[1:] { hash := header.Hash() if want := request.From + 1 + uint64(i); header.Number.Uint64() != want { log.Warn("Header broke chain ordering", "peer", id, "number", header.Number, "hash", hash, "expected", want) accepted = false break } if headers[i].Hash() != header.ParentHash { log.Warn("Header broke chain ancestry", "peer", id, "number", header.Number, "hash", hash) accepted = false break } } } // If the batch of headers wasn't accepted, mark as unavailable if !accepted { log.Trace("Skeleton filling not accepted", "peer", id, "from", request.From) miss := q.headerPeerMiss[id] if miss == nil { q.headerPeerMiss[id] = make(map[uint64]struct{}) miss = q.headerPeerMiss[id] } miss[request.From] = struct{}{} q.headerTaskQueue.Push(request.From, -int64(request.From)) return 0, errors.New("delivery not accepted") } // Clean up a successful fetch and try to deliver any sub-results copy(q.headerResults[request.From-q.headerOffset:], headers) delete(q.headerTaskPool, request.From) ready := 0 for q.headerProced+ready < len(q.headerResults) && q.headerResults[q.headerProced+ready] != nil { ready += MaxHeaderFetch } if ready > 0 { // Headers are ready for delivery, gather them and push forward (non blocking) process := make([]*types.Header, ready) copy(process, q.headerResults[q.headerProced:q.headerProced+ready]) select { case headerProcCh <- process: log.Trace("Pre-scheduled new headers", "peer", id, "count", len(process), "from", process[0].Number) q.headerProced += len(process) default: } } // Check for termination and return if len(q.headerTaskPool) == 0 { q.headerContCh <- false } return len(headers), nil } // DeliverBodies injects a block body retrieval response into the results queue. // The method returns the number of blocks bodies accepted from the delivery and // also wakes any threads waiting for data delivery. func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) (int, error) { q.lock.Lock() defer q.lock.Unlock() reconstruct := func(header *types.Header, index int, result *fetchResult) error { if types.DeriveSha(types.Transactions(txLists[index])) != header.TxHash || types.CalcUncleHash(uncleLists[index]) != header.UncleHash { return errInvalidBody } result.Transactions = txLists[index] result.Uncles = uncleLists[index] return nil } return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, bodyReqTimer, len(txLists), reconstruct) } // DeliverReceipts injects a receipt retrieval response into the results queue. // The method returns the number of transaction receipts accepted from the delivery // and also wakes any threads waiting for data delivery. func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int, error) { q.lock.Lock() defer q.lock.Unlock() reconstruct := func(header *types.Header, index int, result *fetchResult) error { if types.DeriveSha(types.Receipts(receiptList[index])) != header.ReceiptHash { return errInvalidReceipt } result.Receipts = receiptList[index] return nil } return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, receiptReqTimer, len(receiptList), reconstruct) } // deliver injects a data retrieval response into the results queue. // // Note, this method expects the queue lock to be already held for writing. The // reason the lock is not obtained in here is because the parameters already need // to access the queue, so they already need a lock anyway. func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque, pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, reqTimer metrics.Timer, results int, reconstruct func(header *types.Header, index int, result *fetchResult) error) (int, error) { // Short circuit if the data was never requested request := pendPool[id] if request == nil { return 0, errNoFetchesPending } reqTimer.UpdateSince(request.Time) delete(pendPool, id) // If no data items were retrieved, mark them as unavailable for the origin peer if results == 0 { for _, header := range request.Headers { request.Peer.MarkLacking(header.Hash()) } } // Assemble each of the results with their headers and retrieved data parts var ( accepted int failure error useful bool ) for i, header := range request.Headers { // Short circuit assembly if no more fetch results are found if i >= results { break } // Reconstruct the next result if contents match up index := int(header.Number.Int64() - int64(q.resultOffset)) if index >= len(q.resultCache) || index < 0 || q.resultCache[index] == nil { failure = errInvalidChain break } if err := reconstruct(header, i, q.resultCache[index]); err != nil { failure = err break } hash := header.Hash() donePool[hash] = struct{}{} q.resultCache[index].Pending-- useful = true accepted++ // Clean up a successful fetch request.Headers[i] = nil delete(taskPool, hash) } // Return all failed or missing fetches to the queue for _, header := range request.Headers { if header != nil { taskQueue.Push(header, -int64(header.Number.Uint64())) } } // Wake up Results if accepted > 0 { q.active.Signal() } // If none of the data was good, it's a stale delivery if failure == nil { return accepted, nil } if errors.Is(failure, errInvalidChain) { return accepted, failure } if useful { return accepted, fmt.Errorf("partial failure: %v", failure) } return accepted, fmt.Errorf("%w: %v", failure, errStaleDelivery) } // Prepare configures the result cache to allow accepting and caching inbound // fetch results. func (q *queue) Prepare(offset uint64, mode SyncMode) { q.lock.Lock() defer q.lock.Unlock() // Prepare the queue for sync results if q.resultOffset < offset { q.resultOffset = offset } q.mode = mode }