package p2p import ( // "binary" "crypto/ecdsa" "crypto/rand" "fmt" "io" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/ecies" "github.com/ethereum/go-ethereum/crypto/secp256k1" ethlogger "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/p2p/discover" ) var clogger = ethlogger.NewLogger("CRYPTOID") const ( sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 sigLen = 65 // elliptic S256 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte shaLen = 32 // hash length (for nonce etc) authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 authRespLen = pubLen + shaLen + 1 eciesBytes = 65 + 16 + 32 iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake ) type hexkey []byte func (self hexkey) String() string { return fmt.Sprintf("(%d) %x", len(self), []byte(self)) } func encHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, dial *discover.Node) ( remoteID discover.NodeID, sessionToken []byte, err error, ) { if dial == nil { var remotePubkey []byte sessionToken, remotePubkey, err = inboundEncHandshake(conn, prv, nil) copy(remoteID[:], remotePubkey) } else { remoteID = dial.ID sessionToken, err = outboundEncHandshake(conn, prv, remoteID[:], nil) } return remoteID, sessionToken, err } // outboundEncHandshake negotiates a session token on conn. // it should be called on the dialing side of the connection. // // privateKey is the local client's private key // remotePublicKey is the remote peer's node ID // sessionToken is the token from a previous session with this node. func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) ( newSessionToken []byte, err error, ) { auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken) if err != nil { return nil, err } if sessionToken != nil { clogger.Debugf("session-token: %v", hexkey(sessionToken)) } clogger.Debugf("initiator-nonce: %v", hexkey(initNonce)) clogger.Debugf("initiator-random-private-key: %v", hexkey(crypto.FromECDSA(randomPrivKey))) randomPublicKeyS, _ := exportPublicKey(&randomPrivKey.PublicKey) clogger.Debugf("initiator-random-public-key: %v", hexkey(randomPublicKeyS)) if _, err = conn.Write(auth); err != nil { return nil, err } clogger.Debugf("initiator handshake: %v", hexkey(auth)) response := make([]byte, rHSLen) if _, err = io.ReadFull(conn, response); err != nil { return nil, err } recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey) if err != nil { return nil, err } clogger.Debugf("receiver-nonce: %v", hexkey(recNonce)) remoteRandomPubKeyS, _ := exportPublicKey(remoteRandomPubKey) clogger.Debugf("receiver-random-public-key: %v", hexkey(remoteRandomPubKeyS)) return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey) } // authMsg creates the initiator handshake. func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) ( auth, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, err error, ) { // session init, common to both parties remotePubKey, err := importPublicKey(remotePubKeyS) if err != nil { return } var tokenFlag byte // = 0x00 if sessionToken == nil { // no session token found means we need to generate shared secret. // ecies shared secret is used as initial session token for new peers // generate shared key from prv and remote pubkey if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil { return } // tokenFlag = 0x00 // redundant } else { // for known peers, we use stored token from the previous session tokenFlag = 0x01 } //E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0) // E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1) // allocate msgLen long message, var msg []byte = make([]byte, authMsgLen) initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1] if _, err = rand.Read(initNonce); err != nil { return } // create known message // ecdh-shared-secret^nonce for new peers // token^nonce for old peers var sharedSecret = xor(sessionToken, initNonce) // generate random keypair to use for signing if randomPrvKey, err = crypto.GenerateKey(); err != nil { return } // sign shared secret (message known to both parties): shared-secret var signature []byte // signature = sign(ecdhe-random, shared-secret) // uses secp256k1.Sign if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil { return } // message // signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0 copy(msg, signature) // copy signed-shared-secret // H(ecdhe-random-pubk) var randomPubKey64 []byte if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil { return } var pubKey64 []byte if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil { return } copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64)) // pubkey copied to the correct segment. copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64) // nonce is already in the slice // stick tokenFlag byte to the end msg[authMsgLen-1] = tokenFlag // encrypt using remote-pubk // auth = eciesEncrypt(remote-pubk, msg) if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil { return } return } // completeHandshake is called when the initiator receives an // authentication response (aka receiver handshake). It completes the // handshake by reading off parameters the remote peer provides needed // to set up the secure session. func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) ( respNonce []byte, remoteRandomPubKey *ecdsa.PublicKey, tokenFlag bool, err error, ) { var msg []byte // they prove that msg is meant for me, // I prove I possess private key if i can read it if msg, err = crypto.Decrypt(prvKey, auth); err != nil { return } respNonce = msg[pubLen : pubLen+shaLen] var remoteRandomPubKeyS = msg[:pubLen] if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil { return } if msg[authRespLen-1] == 0x01 { tokenFlag = true } return } // inboundEncHandshake negotiates a session token on conn. // it should be called on the listening side of the connection. // // privateKey is the local client's private key // sessionToken is the token from a previous session with this node. func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) ( token, remotePubKey []byte, err error, ) { // we are listening connection. we are responders in the // handshake. Extract info from the authentication. The initiator // starts by sending us a handshake that we need to respond to. so // we read auth message first, then respond. auth := make([]byte, iHSLen) if _, err := io.ReadFull(conn, auth); err != nil { return nil, nil, err } response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey) if err != nil { return nil, nil, err } clogger.Debugf("receiver-nonce: %v", hexkey(recNonce)) clogger.Debugf("receiver-random-priv-key: %v", hexkey(crypto.FromECDSA(randomPrivKey))) if _, err = conn.Write(response); err != nil { return nil, nil, err } clogger.Debugf("receiver handshake:\n%v", hexkey(response)) token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey) return token, remotePubKey, err } // authResp is called by peer if it accepted (but not // initiated) the connection from the remote. It is passed the initiator // handshake received and the session token belonging to the // remote initiator. // // The first return value is the authentication response (aka receiver // handshake) that is to be sent to the remote initiator. func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) ( authResp, respNonce, initNonce, remotePubKeyS []byte, randomPrivKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey, err error, ) { // they prove that msg is meant for me, // I prove I possess private key if i can read it msg, err := crypto.Decrypt(prvKey, auth) if err != nil { return } remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen] remotePubKey, _ := importPublicKey(remotePubKeyS) var tokenFlag byte if sessionToken == nil { // no session token found means we need to generate shared secret. // ecies shared secret is used as initial session token for new peers // generate shared key from prv and remote pubkey if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil { return } // tokenFlag = 0x00 // redundant } else { // for known peers, we use stored token from the previous session tokenFlag = 0x01 } // the initiator nonce is read off the end of the message initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1] // I prove that i own prv key (to derive shared secret, and read // nonce off encrypted msg) and that I own shared secret they // prove they own the private key belonging to ecdhe-random-pubk // we can now reconstruct the signed message and recover the peers // pubkey var signedMsg = xor(sessionToken, initNonce) var remoteRandomPubKeyS []byte if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil { return } // convert to ECDSA standard if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil { return } // now we find ourselves a long task too, fill it random var resp = make([]byte, authRespLen) // generate shaLen long nonce respNonce = resp[pubLen : pubLen+shaLen] if _, err = rand.Read(respNonce); err != nil { return } // generate random keypair for session if randomPrivKey, err = crypto.GenerateKey(); err != nil { return } // responder auth message // E(remote-pubk, ecdhe-random-pubk || nonce || 0x0) var randomPubKeyS []byte if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil { return } copy(resp[:pubLen], randomPubKeyS) // nonce is already in the slice resp[authRespLen-1] = tokenFlag // encrypt using remote-pubk // auth = eciesEncrypt(remote-pubk, msg) // why not encrypt with ecdhe-random-remote if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil { return } return } // newSession is called after the handshake is completed. The // arguments are values negotiated in the handshake. The return value // is a new session Token to be remembered for the next time we // connect with this peer. func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) { // 3) Now we can trust ecdhe-random-pubk to derive new keys //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk) pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey) dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen) if err != nil { return nil, err } sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce)) sessionToken := crypto.Sha3(sharedSecret) return sessionToken, nil } // importPublicKey unmarshals 512 bit public keys. func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) { var pubKey65 []byte switch len(pubKey) { case 64: // add 'uncompressed key' flag pubKey65 = append([]byte{0x04}, pubKey...) case 65: pubKey65 = pubKey default: return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) } return crypto.ToECDSAPub(pubKey65), nil } func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) { if pubKeyEC == nil { return nil, fmt.Errorf("no ECDSA public key given") } return crypto.FromECDSAPub(pubKeyEC)[1:], nil } func xor(one, other []byte) (xor []byte) { xor = make([]byte, len(one)) for i := 0; i < len(one); i++ { xor[i] = one[i] ^ other[i] } return xor }