package eth import ( "bytes" "fmt" "math" "math/big" "sync" "time" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/ethutil" "github.com/ethereum/go-ethereum/event" ethlogger "github.com/ethereum/go-ethereum/logger" ) var poolLogger = ethlogger.NewLogger("Blockpool") const ( blockHashesBatchSize = 256 blockBatchSize = 64 blockRequestInterval = 10 // seconds blockRequestRepetition = 1 cacheTimeout = 3 // minutes blockTimeout = 5 // minutes ) type poolNode struct { hash []byte block *types.Block child *poolNode parent *poolNode root *nodePointer knownParent bool suicide chan bool peer string source string blockRequestRoot bool blockRequestControl *bool blockRequestQuit *(chan bool) } // the minimal interface for chain manager type chainManager interface { KnownBlock(hash []byte) bool AddBlock(*types.Block) error CheckPoW(*types.Block) bool } type BlockPool struct { chainManager chainManager eventer event.TypeMux // pool Pool lock sync.Mutex pool map[string]*poolNode peersLock sync.Mutex peers map[string]*peerInfo peer *peerInfo quit chan bool wg sync.WaitGroup running bool } type peerInfo struct { td *big.Int currentBlock []byte id string requestBlockHashes func([]byte) error requestBlocks func([][]byte) error invalidBlock func(error) } type nodePointer struct { hash []byte } type peerChangeEvent struct { *peerInfo } func NewBlockPool(chMgr chainManager) *BlockPool { return &BlockPool{ chainManager: chMgr, pool: make(map[string]*poolNode), peers: make(map[string]*peerInfo), quit: make(chan bool), running: true, } } func (self *BlockPool) Stop() { self.lock.Lock() if !self.running { self.lock.Unlock() return } self.running = false self.lock.Unlock() poolLogger.Infoln("Stopping") close(self.quit) self.wg.Wait() poolLogger.Infoln("Stopped") } // Entry point for eth protocol to add block hashes received via BlockHashesMsg // only hashes from the best peer is handled // this method is always responsible to initiate further hash requests until // a known parent is reached unless cancelled by a peerChange event func (self *BlockPool) AddBlockHashes(next func() ([]byte, bool), peerId string) { // subscribe to peerChangeEvent before we check for best peer peerChange := self.eventer.Subscribe(peerChangeEvent{}) defer peerChange.Unsubscribe() // check if this peer is the best peer, best := self.getPeer(peerId) if !best { return } root := &nodePointer{} // peer is still the best hashes := make(chan []byte) var lastPoolNode *poolNode // using a for select loop so that peer change (new best peer) can abort the parallel thread that processes hashes of the earlier best peer for { hash, ok := next() if ok { hashes <- hash } else { break } select { case <-self.quit: return case <-peerChange.Chan(): // remember where we left off with this peer if lastPoolNode != nil { root.hash = lastPoolNode.hash go self.killChain(lastPoolNode) } case hash := <-hashes: self.lock.Lock() defer self.lock.Unlock() // check if known block connecting the downloaded chain to our blockchain if self.chainManager.KnownBlock(hash) { poolLogger.Infof("known block (%x...)\n", hash[0:4]) if lastPoolNode != nil { lastPoolNode.knownParent = true go self.requestBlocksLoop(lastPoolNode) } else { // all hashes known if topmost one is in blockchain } return } // var currentPoolNode *poolNode // check if lastPoolNode has the correct parent node (hash matching), // then just assign to currentPoolNode if lastPoolNode != nil && lastPoolNode.parent != nil && bytes.Compare(lastPoolNode.parent.hash, hash) == 0 { currentPoolNode = lastPoolNode.parent } else { // otherwise look up in pool currentPoolNode = self.pool[string(hash)] // if node does not exist, create it and index in the pool if currentPoolNode == nil { currentPoolNode = &poolNode{ hash: hash, } self.pool[string(hash)] = currentPoolNode } } // set up parent-child nodes (doubly linked list) self.link(currentPoolNode, lastPoolNode) // ! we trust the node iff // (1) node marked as by the same peer or // (2) it has a PoW valid block retrieved if currentPoolNode.peer == peer.id || currentPoolNode.block != nil { // the trusted checkpoint from which we request hashes down to known head lastPoolNode = self.pool[string(currentPoolNode.root.hash)] break } currentPoolNode.peer = peer.id currentPoolNode.root = root lastPoolNode = currentPoolNode } } // lastPoolNode is nil if and only if the node with stored root hash is already cleaned up // after valid block insertion, therefore in this case the blockpool active chain is connected to the blockchain, so no need to request further hashes or request blocks if lastPoolNode != nil { root.hash = lastPoolNode.hash peer.requestBlockHashes(lastPoolNode.hash) go self.requestBlocksLoop(lastPoolNode) } return } func (self *BlockPool) requestBlocksLoop(node *poolNode) { suicide := time.After(blockTimeout * time.Minute) requestTimer := time.After(0) var controlChan chan bool closedChan := make(chan bool) quit := make(chan bool) close(closedChan) requestBlocks := true origNode := node self.lock.Lock() node.blockRequestRoot = true b := false control := &b node.blockRequestControl = control node.blockRequestQuit = &quit self.lock.Unlock() blocks := 0 self.wg.Add(1) loop: for { if requestBlocks { controlChan = closedChan } else { self.lock.Lock() if *node.blockRequestControl { controlChan = closedChan *node.blockRequestControl = false } self.lock.Unlock() } select { case <-quit: break loop case <-suicide: go self.killChain(origNode) break loop case <-requestTimer: requestBlocks = true case <-controlChan: controlChan = nil // this iteration takes care of requesting blocks only starting from the first node with a missing block (moving target), // max up to the next checkpoint (n.blockRequestRoot true) nodes := []*poolNode{} n := node next := node self.lock.Lock() for n != nil && (n == node || !n.blockRequestRoot) && (requestBlocks || n.block != nil) { if n.block != nil { if len(nodes) == 0 { // nil control indicates that node is not needed anymore // block can be inserted to blockchain and deleted if knownParent n.blockRequestControl = nil blocks++ next = next.child } else { // this is needed to indicate that when a new chain forks from an existing one // triggering a reorg will ? renew the blockTimeout period ??? // if there is a block but control == nil should start fetching blocks, see link function n.blockRequestControl = control } } else { nodes = append(nodes, n) n.blockRequestControl = control } n = n.child } // if node is connected to the blockchain, we can immediately start inserting // blocks to the blockchain and delete nodes if node.knownParent { go self.insertChainFrom(node) } if next.blockRequestRoot && next != node { // no more missing blocks till the checkpoint, quitting poolLogger.Debugf("fetched %v blocks on active chain, batch %v-%v", blocks, origNode, n) break loop } self.lock.Unlock() // reset starting node to the first descendant node with missing block node = next if !requestBlocks { continue } go self.requestBlocks(nodes) requestTimer = time.After(blockRequestInterval * time.Second) } } self.wg.Done() return } func (self *BlockPool) requestBlocks(nodes []*poolNode) { // distribute block request among known peers self.peersLock.Lock() peerCount := len(self.peers) poolLogger.Debugf("requesting %v missing blocks from %v peers", len(nodes), peerCount) blockHashes := make([][][]byte, peerCount) repetitions := int(math.Max(float64(peerCount)/2.0, float64(blockRequestRepetition))) for n, node := range nodes { for i := 0; i < repetitions; i++ { blockHashes[n%peerCount] = append(blockHashes[n%peerCount], node.hash) n++ } } i := 0 for _, peer := range self.peers { peer.requestBlocks(blockHashes[i]) i++ } self.peersLock.Unlock() } func (self *BlockPool) insertChainFrom(node *poolNode) { self.lock.Lock() defer self.lock.Unlock() for node != nil && node.blockRequestControl == nil { err := self.chainManager.AddBlock(node.block) if err != nil { poolLogger.Debugf("invalid block %v", node.hash) poolLogger.Debugf("penalise peers %v (hash), %v (block)", node.peer, node.source) // penalise peer in node.source go self.killChain(node) return } poolLogger.Debugf("insert block %v into blockchain", node.hash) node = node.child } // if block insertion succeeds, mark the child as knownParent // trigger request blocks reorg if node != nil { node.knownParent = true *(node.blockRequestControl) = true } } // AddPeer is called by the eth protocol instance running on the peer after // the status message has been received with total difficulty and current block hash // AddPeer can only be used once, RemovePeer needs to be called when the peer disconnects func (self *BlockPool) AddPeer(td *big.Int, currentBlock []byte, peerId string, requestBlockHashes func([]byte) error, requestBlocks func([][]byte) error, invalidBlock func(error)) bool { self.peersLock.Lock() defer self.peersLock.Unlock() if self.peers[peerId] != nil { panic("peer already added") } info := &peerInfo{ td: td, currentBlock: currentBlock, id: peerId, //peer.Identity().Pubkey() requestBlockHashes: requestBlockHashes, requestBlocks: requestBlocks, invalidBlock: invalidBlock, } self.peers[peerId] = info poolLogger.Debugf("add new peer %v with td %v", peerId, td) currentTD := ethutil.Big0 if self.peer != nil { currentTD = self.peer.td } if td.Cmp(currentTD) > 0 { self.peer = info self.eventer.Post(peerChangeEvent{info}) poolLogger.Debugf("peer %v promoted to best peer", peerId) requestBlockHashes(currentBlock) return true } return false } // RemovePeer is called by the eth protocol when the peer disconnects func (self *BlockPool) RemovePeer(peerId string) { self.peersLock.Lock() defer self.peersLock.Unlock() if self.peers[peerId] != nil { panic("peer already removed") } self.peers[peerId] = nil poolLogger.Debugf("remove peer %v", peerId[0:4]) // if current best peer is removed, need find a better one if peerId == self.peer.id { var newPeer *peerInfo max := ethutil.Big0 // peer with the highest self-acclaimed TD is chosen for _, info := range self.peers { if info.td.Cmp(max) > 0 { max = info.td newPeer = info } } self.peer = newPeer self.eventer.Post(peerChangeEvent{newPeer}) if newPeer != nil { poolLogger.Debugf("peer %v with td %v spromoted to best peer", newPeer.id[0:4], newPeer.td) newPeer.requestBlockHashes(newPeer.currentBlock) } else { poolLogger.Warnln("no peers left") } } } func (self *BlockPool) getPeer(peerId string) (*peerInfo, bool) { self.peersLock.Lock() defer self.peersLock.Unlock() if self.peer.id == peerId { return self.peer, true } info, ok := self.peers[peerId] if !ok { panic("unknown peer") } return info, false } // if same peer gave different chain before, this will overwrite it // if currentPoolNode existed as a non-leaf node the earlier fork is delinked // if same parent hash is found, we can abort, we do not allow the same peer to change minds about parent of same hash, if errored first time round, will get penalized. // if lastPoolNode had a different parent the earlier parent (with entire subtree) is delinked, this situation cannot normally arise though // just in case reset lastPoolNode as non-root (unlikely) func (self *BlockPool) link(parent, child *poolNode) { // reactivate node scheduled for suicide if parent.suicide != nil { close(parent.suicide) parent.suicide = nil } if parent.child != child { orphan := parent.child orphan.parent = nil go self.killChain(orphan) parent.child = child } if child != nil { if child.parent != parent { orphan := child.parent orphan.child = nil go func() { // if it is a aberrant reverse fork, zip down to bottom for orphan.parent != nil { orphan = orphan.parent } self.killChain(orphan) }() child.parent = parent } child.knownParent = false } } func (self *BlockPool) killChain(node *poolNode) { if node == nil { return } poolLogger.Debugf("suicide scheduled on node %v", node) suicide := make(chan bool) self.lock.Lock() node.suicide = suicide self.lock.Unlock() timer := time.After(cacheTimeout * time.Minute) self.wg.Add(1) select { case <-self.quit: case <-suicide: // cancel suicide = close node.suicide to reactivate node case <-timer: poolLogger.Debugf("suicide on node %v", node) self.lock.Lock() defer self.lock.Unlock() // proceed up via child links until another suicide root found or chain ends // abort request blocks loops that start above // and delete nodes from pool then quit the suicide process okToAbort := node.blockRequestRoot for node != nil && (node.suicide == suicide || node.suicide == nil) { self.pool[string(node.hash)] = nil if okToAbort && node.blockRequestQuit != nil { quit := *(node.blockRequestQuit) if quit != nil { // not yet closed *(node.blockRequestQuit) = nil close(quit) } } else { okToAbort = true } node = node.child } } self.wg.Done() } // AddBlock is the entry point for the eth protocol when blockmsg is received upon requests // It has a strict interpretation of the protocol in that if the block received has not been requested, it results in an error (which can be ignored) // block is checked for PoW // only the first PoW-valid block for a hash is considered legit func (self *BlockPool) AddBlock(block *types.Block, peerId string) (err error) { hash := block.Hash() self.lock.Lock() defer self.lock.Unlock() node, ok := self.pool[string(hash)] if !ok && !self.chainManager.KnownBlock(hash) { return fmt.Errorf("unrequested block %x", hash) } if node.block != nil { return } // validate block for PoW if !self.chainManager.CheckPoW(block) { return fmt.Errorf("invalid pow on block %x", hash) } node.block = block node.source = peerId return nil }