// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snapshot import ( "bytes" "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb/memorydb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" ) // trieKV represents a trie key-value pair type trieKV struct { key common.Hash value []byte } type ( // trieGeneratorFn is the interface of trie generation which can // be implemented by different trie algorithm. trieGeneratorFn func(in chan (trieKV), out chan (common.Hash)) // leafCallbackFn is the callback invoked at the leaves of the trie, // returns the subtrie root with the specified subtrie identifier. leafCallbackFn func(hash common.Hash, stat *generateStats) common.Hash ) // GenerateAccountTrieRoot takes an account iterator and reproduces the root hash. func GenerateAccountTrieRoot(it AccountIterator) (common.Hash, error) { return generateTrieRoot(it, common.Hash{}, stdGenerate, nil, &generateStats{start: time.Now()}, true) } // GenerateStorageTrieRoot takes a storage iterator and reproduces the root hash. func GenerateStorageTrieRoot(account common.Hash, it StorageIterator) (common.Hash, error) { return generateTrieRoot(it, account, stdGenerate, nil, &generateStats{start: time.Now()}, true) } // VerifyState takes the whole snapshot tree as the input, traverses all the accounts // as well as the corresponding storages and compares the re-computed hash with the // original one(state root and the storage root). func VerifyState(snaptree *Tree, root common.Hash) error { acctIt, err := snaptree.AccountIterator(root, common.Hash{}) if err != nil { return err } got, err := generateTrieRoot(acctIt, common.Hash{}, stdGenerate, func(account common.Hash, stat *generateStats) common.Hash { storageIt, err := snaptree.StorageIterator(root, account, common.Hash{}) if err != nil { return common.Hash{} } hash, err := generateTrieRoot(storageIt, account, stdGenerate, nil, stat, false) if err != nil { return common.Hash{} } return hash }, &generateStats{start: time.Now()}, true) if err != nil { return err } if got != root { return fmt.Errorf("State root hash mismatch, got %x, want %x", got, root) } return nil } // generateStats is a collection of statistics gathered by the trie generator // for logging purposes. type generateStats struct { accounts uint64 slots uint64 curAccount common.Hash curSlot common.Hash start time.Time lock sync.RWMutex } // progress records the progress trie generator made recently. func (stat *generateStats) progress(accounts, slots uint64, curAccount common.Hash, curSlot common.Hash) { stat.lock.Lock() defer stat.lock.Unlock() stat.accounts += accounts stat.slots += slots if curAccount != (common.Hash{}) { stat.curAccount = curAccount } if curSlot != (common.Hash{}) { stat.curSlot = curSlot } } // report prints the cumulative progress statistic smartly. func (stat *generateStats) report() { stat.lock.RLock() defer stat.lock.RUnlock() var ctx []interface{} if stat.curSlot != (common.Hash{}) { ctx = append(ctx, []interface{}{ "in", stat.curAccount, "at", stat.curSlot, }...) } else { ctx = append(ctx, []interface{}{"at", stat.curAccount}...) } // Add the usual measurements ctx = append(ctx, []interface{}{"accounts", stat.accounts}...) if stat.slots != 0 { ctx = append(ctx, []interface{}{"slots", stat.slots}...) } ctx = append(ctx, []interface{}{"elapsed", common.PrettyDuration(time.Since(stat.start))}...) log.Info("Generating trie hash from snapshot", ctx...) } // reportDone prints the last log when the whole generation is finished. func (stat *generateStats) reportDone() { stat.lock.RLock() defer stat.lock.RUnlock() var ctx []interface{} ctx = append(ctx, []interface{}{"accounts", stat.accounts}...) if stat.slots != 0 { ctx = append(ctx, []interface{}{"slots", stat.slots}...) } ctx = append(ctx, []interface{}{"elapsed", common.PrettyDuration(time.Since(stat.start))}...) log.Info("Generated trie hash from snapshot", ctx...) } // generateTrieRoot generates the trie hash based on the snapshot iterator. // It can be used for generating account trie, storage trie or even the // whole state which connects the accounts and the corresponding storages. func generateTrieRoot(it Iterator, account common.Hash, generatorFn trieGeneratorFn, leafCallback leafCallbackFn, stats *generateStats, report bool) (common.Hash, error) { var ( in = make(chan trieKV) // chan to pass leaves out = make(chan common.Hash, 1) // chan to collect result stoplog = make(chan bool, 1) // 1-size buffer, works when logging is not enabled wg sync.WaitGroup ) // Spin up a go-routine for trie hash re-generation wg.Add(1) go func() { defer wg.Done() generatorFn(in, out) }() // Spin up a go-routine for progress logging if report && stats != nil { wg.Add(1) go func() { defer wg.Done() timer := time.NewTimer(0) defer timer.Stop() for { select { case <-timer.C: stats.report() timer.Reset(time.Second * 8) case success := <-stoplog: if success { stats.reportDone() } return } } }() } // stop is a helper function to shutdown the background threads // and return the re-generated trie hash. stop := func(success bool) common.Hash { close(in) result := <-out stoplog <- success wg.Wait() return result } var ( logged = time.Now() processed = uint64(0) leaf trieKV last common.Hash ) // Start to feed leaves for it.Next() { if account == (common.Hash{}) { var ( err error fullData []byte ) if leafCallback == nil { fullData, err = FullAccountRLP(it.(AccountIterator).Account()) if err != nil { stop(false) return common.Hash{}, err } } else { account, err := FullAccount(it.(AccountIterator).Account()) if err != nil { stop(false) return common.Hash{}, err } // Apply the leaf callback. Normally the callback is used to traverse // the storage trie and re-generate the subtrie root. subroot := leafCallback(it.Hash(), stats) if !bytes.Equal(account.Root, subroot.Bytes()) { stop(false) return common.Hash{}, fmt.Errorf("invalid subroot(%x), want %x, got %x", it.Hash(), account.Root, subroot) } fullData, err = rlp.EncodeToBytes(account) if err != nil { stop(false) return common.Hash{}, err } } leaf = trieKV{it.Hash(), fullData} } else { leaf = trieKV{it.Hash(), common.CopyBytes(it.(StorageIterator).Slot())} } in <- leaf // Accumulate the generaation statistic if it's required. processed++ if time.Since(logged) > 3*time.Second && stats != nil { if account == (common.Hash{}) { stats.progress(processed, 0, it.Hash(), common.Hash{}) } else { stats.progress(0, processed, account, it.Hash()) } logged, processed = time.Now(), 0 } last = it.Hash() } // Commit the last part statistic. if processed > 0 && stats != nil { if account == (common.Hash{}) { stats.progress(processed, 0, last, common.Hash{}) } else { stats.progress(0, processed, account, last) } } result := stop(true) return result, nil } // stdGenerate is a very basic hexary trie builder which uses the same Trie // as the rest of geth, with no enhancements or optimizations func stdGenerate(in chan (trieKV), out chan (common.Hash)) { t, _ := trie.New(common.Hash{}, trie.NewDatabase(memorydb.New())) for leaf := range in { t.TryUpdate(leaf.key[:], leaf.value) } out <- t.Hash() }