// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package rawdb import ( "bytes" "encoding/hex" "fmt" "math/big" "math/rand" "os" "reflect" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "golang.org/x/crypto/sha3" ) // Tests block header storage and retrieval operations. func TestHeaderStorage(t *testing.T) { db := NewMemoryDatabase() // Create a test header to move around the database and make sure it's really new header := &types.Header{Number: big.NewInt(42), Extra: []byte("test header")} if entry := ReadHeader(db, header.Hash(), header.Number.Uint64()); entry != nil { t.Fatalf("Non existent header returned: %v", entry) } // Write and verify the header in the database WriteHeader(db, header) if entry := ReadHeader(db, header.Hash(), header.Number.Uint64()); entry == nil { t.Fatalf("Stored header not found") } else if entry.Hash() != header.Hash() { t.Fatalf("Retrieved header mismatch: have %v, want %v", entry, header) } if entry := ReadHeaderRLP(db, header.Hash(), header.Number.Uint64()); entry == nil { t.Fatalf("Stored header RLP not found") } else { hasher := sha3.NewLegacyKeccak256() hasher.Write(entry) if hash := common.BytesToHash(hasher.Sum(nil)); hash != header.Hash() { t.Fatalf("Retrieved RLP header mismatch: have %v, want %v", entry, header) } } // Delete the header and verify the execution DeleteHeader(db, header.Hash(), header.Number.Uint64()) if entry := ReadHeader(db, header.Hash(), header.Number.Uint64()); entry != nil { t.Fatalf("Deleted header returned: %v", entry) } } // Tests block body storage and retrieval operations. func TestBodyStorage(t *testing.T) { db := NewMemoryDatabase() // Create a test body to move around the database and make sure it's really new body := &types.Body{Uncles: []*types.Header{{Extra: []byte("test header")}}} hasher := sha3.NewLegacyKeccak256() rlp.Encode(hasher, body) hash := common.BytesToHash(hasher.Sum(nil)) if entry := ReadBody(db, hash, 0); entry != nil { t.Fatalf("Non existent body returned: %v", entry) } // Write and verify the body in the database WriteBody(db, hash, 0, body) if entry := ReadBody(db, hash, 0); entry == nil { t.Fatalf("Stored body not found") } else if types.DeriveSha(types.Transactions(entry.Transactions), newHasher()) != types.DeriveSha(types.Transactions(body.Transactions), newHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(body.Uncles) { t.Fatalf("Retrieved body mismatch: have %v, want %v", entry, body) } if entry := ReadBodyRLP(db, hash, 0); entry == nil { t.Fatalf("Stored body RLP not found") } else { hasher := sha3.NewLegacyKeccak256() hasher.Write(entry) if calc := common.BytesToHash(hasher.Sum(nil)); calc != hash { t.Fatalf("Retrieved RLP body mismatch: have %v, want %v", entry, body) } } // Delete the body and verify the execution DeleteBody(db, hash, 0) if entry := ReadBody(db, hash, 0); entry != nil { t.Fatalf("Deleted body returned: %v", entry) } } // Tests block storage and retrieval operations. func TestBlockStorage(t *testing.T) { db := NewMemoryDatabase() // Create a test block to move around the database and make sure it's really new block := types.NewBlockWithHeader(&types.Header{ Extra: []byte("test block"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, }) if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Non existent block returned: %v", entry) } if entry := ReadHeader(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Non existent header returned: %v", entry) } if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Non existent body returned: %v", entry) } // Write and verify the block in the database WriteBlock(db, block) if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry == nil { t.Fatalf("Stored block not found") } else if entry.Hash() != block.Hash() { t.Fatalf("Retrieved block mismatch: have %v, want %v", entry, block) } if entry := ReadHeader(db, block.Hash(), block.NumberU64()); entry == nil { t.Fatalf("Stored header not found") } else if entry.Hash() != block.Header().Hash() { t.Fatalf("Retrieved header mismatch: have %v, want %v", entry, block.Header()) } if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry == nil { t.Fatalf("Stored body not found") } else if types.DeriveSha(types.Transactions(entry.Transactions), newHasher()) != types.DeriveSha(block.Transactions(), newHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(block.Uncles()) { t.Fatalf("Retrieved body mismatch: have %v, want %v", entry, block.Body()) } // Delete the block and verify the execution DeleteBlock(db, block.Hash(), block.NumberU64()) if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Deleted block returned: %v", entry) } if entry := ReadHeader(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Deleted header returned: %v", entry) } if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Deleted body returned: %v", entry) } } // Tests that partial block contents don't get reassembled into full blocks. func TestPartialBlockStorage(t *testing.T) { db := NewMemoryDatabase() block := types.NewBlockWithHeader(&types.Header{ Extra: []byte("test block"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, }) // Store a header and check that it's not recognized as a block WriteHeader(db, block.Header()) if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Non existent block returned: %v", entry) } DeleteHeader(db, block.Hash(), block.NumberU64()) // Store a body and check that it's not recognized as a block WriteBody(db, block.Hash(), block.NumberU64(), block.Body()) if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil { t.Fatalf("Non existent block returned: %v", entry) } DeleteBody(db, block.Hash(), block.NumberU64()) // Store a header and a body separately and check reassembly WriteHeader(db, block.Header()) WriteBody(db, block.Hash(), block.NumberU64(), block.Body()) if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry == nil { t.Fatalf("Stored block not found") } else if entry.Hash() != block.Hash() { t.Fatalf("Retrieved block mismatch: have %v, want %v", entry, block) } } // Tests block storage and retrieval operations. func TestBadBlockStorage(t *testing.T) { db := NewMemoryDatabase() // Create a test block to move around the database and make sure it's really new block := types.NewBlockWithHeader(&types.Header{ Number: big.NewInt(1), Extra: []byte("bad block"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, }) if entry := ReadBadBlock(db, block.Hash()); entry != nil { t.Fatalf("Non existent block returned: %v", entry) } // Write and verify the block in the database WriteBadBlock(db, block) if entry := ReadBadBlock(db, block.Hash()); entry == nil { t.Fatalf("Stored block not found") } else if entry.Hash() != block.Hash() { t.Fatalf("Retrieved block mismatch: have %v, want %v", entry, block) } // Write one more bad block blockTwo := types.NewBlockWithHeader(&types.Header{ Number: big.NewInt(2), Extra: []byte("bad block two"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, }) WriteBadBlock(db, blockTwo) // Write the block one again, should be filtered out. WriteBadBlock(db, block) badBlocks := ReadAllBadBlocks(db) if len(badBlocks) != 2 { t.Fatalf("Failed to load all bad blocks") } // Write a bunch of bad blocks, all the blocks are should sorted // in reverse order. The extra blocks should be truncated. for _, n := range rand.Perm(100) { block := types.NewBlockWithHeader(&types.Header{ Number: big.NewInt(int64(n)), Extra: []byte("bad block"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, }) WriteBadBlock(db, block) } badBlocks = ReadAllBadBlocks(db) if len(badBlocks) != badBlockToKeep { t.Fatalf("The number of persised bad blocks in incorrect %d", len(badBlocks)) } for i := 0; i < len(badBlocks)-1; i++ { if badBlocks[i].NumberU64() < badBlocks[i+1].NumberU64() { t.Fatalf("The bad blocks are not sorted #[%d](%d) < #[%d](%d)", i, i+1, badBlocks[i].NumberU64(), badBlocks[i+1].NumberU64()) } } // Delete all bad blocks DeleteBadBlocks(db) badBlocks = ReadAllBadBlocks(db) if len(badBlocks) != 0 { t.Fatalf("Failed to delete bad blocks") } } // Tests block total difficulty storage and retrieval operations. func TestTdStorage(t *testing.T) { db := NewMemoryDatabase() // Create a test TD to move around the database and make sure it's really new hash, td := common.Hash{}, big.NewInt(314) if entry := ReadTd(db, hash, 0); entry != nil { t.Fatalf("Non existent TD returned: %v", entry) } // Write and verify the TD in the database WriteTd(db, hash, 0, td) if entry := ReadTd(db, hash, 0); entry == nil { t.Fatalf("Stored TD not found") } else if entry.Cmp(td) != 0 { t.Fatalf("Retrieved TD mismatch: have %v, want %v", entry, td) } // Delete the TD and verify the execution DeleteTd(db, hash, 0) if entry := ReadTd(db, hash, 0); entry != nil { t.Fatalf("Deleted TD returned: %v", entry) } } // Tests that canonical numbers can be mapped to hashes and retrieved. func TestCanonicalMappingStorage(t *testing.T) { db := NewMemoryDatabase() // Create a test canonical number and assigned hash to move around hash, number := common.Hash{0: 0xff}, uint64(314) if entry := ReadCanonicalHash(db, number); entry != (common.Hash{}) { t.Fatalf("Non existent canonical mapping returned: %v", entry) } // Write and verify the TD in the database WriteCanonicalHash(db, hash, number) if entry := ReadCanonicalHash(db, number); entry == (common.Hash{}) { t.Fatalf("Stored canonical mapping not found") } else if entry != hash { t.Fatalf("Retrieved canonical mapping mismatch: have %v, want %v", entry, hash) } // Delete the TD and verify the execution DeleteCanonicalHash(db, number) if entry := ReadCanonicalHash(db, number); entry != (common.Hash{}) { t.Fatalf("Deleted canonical mapping returned: %v", entry) } } // Tests that head headers and head blocks can be assigned, individually. func TestHeadStorage(t *testing.T) { db := NewMemoryDatabase() blockHead := types.NewBlockWithHeader(&types.Header{Extra: []byte("test block header")}) blockFull := types.NewBlockWithHeader(&types.Header{Extra: []byte("test block full")}) blockFast := types.NewBlockWithHeader(&types.Header{Extra: []byte("test block fast")}) // Check that no head entries are in a pristine database if entry := ReadHeadHeaderHash(db); entry != (common.Hash{}) { t.Fatalf("Non head header entry returned: %v", entry) } if entry := ReadHeadBlockHash(db); entry != (common.Hash{}) { t.Fatalf("Non head block entry returned: %v", entry) } if entry := ReadHeadFastBlockHash(db); entry != (common.Hash{}) { t.Fatalf("Non fast head block entry returned: %v", entry) } // Assign separate entries for the head header and block WriteHeadHeaderHash(db, blockHead.Hash()) WriteHeadBlockHash(db, blockFull.Hash()) WriteHeadFastBlockHash(db, blockFast.Hash()) // Check that both heads are present, and different (i.e. two heads maintained) if entry := ReadHeadHeaderHash(db); entry != blockHead.Hash() { t.Fatalf("Head header hash mismatch: have %v, want %v", entry, blockHead.Hash()) } if entry := ReadHeadBlockHash(db); entry != blockFull.Hash() { t.Fatalf("Head block hash mismatch: have %v, want %v", entry, blockFull.Hash()) } if entry := ReadHeadFastBlockHash(db); entry != blockFast.Hash() { t.Fatalf("Fast head block hash mismatch: have %v, want %v", entry, blockFast.Hash()) } } // Tests that receipts associated with a single block can be stored and retrieved. func TestBlockReceiptStorage(t *testing.T) { db := NewMemoryDatabase() // Create a live block since we need metadata to reconstruct the receipt tx1 := types.NewTransaction(1, common.HexToAddress("0x1"), big.NewInt(1), 1, big.NewInt(1), nil) tx2 := types.NewTransaction(2, common.HexToAddress("0x2"), big.NewInt(2), 2, big.NewInt(2), nil) body := &types.Body{Transactions: types.Transactions{tx1, tx2}} // Create the two receipts to manage afterwards receipt1 := &types.Receipt{ Status: types.ReceiptStatusFailed, CumulativeGasUsed: 1, Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x11})}, {Address: common.BytesToAddress([]byte{0x01, 0x11})}, }, TxHash: tx1.Hash(), ContractAddress: common.BytesToAddress([]byte{0x01, 0x11, 0x11}), GasUsed: 111111, } receipt1.Bloom = types.CreateBloom(types.Receipts{receipt1}) receipt2 := &types.Receipt{ PostState: common.Hash{2}.Bytes(), CumulativeGasUsed: 2, Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x22})}, {Address: common.BytesToAddress([]byte{0x02, 0x22})}, }, TxHash: tx2.Hash(), ContractAddress: common.BytesToAddress([]byte{0x02, 0x22, 0x22}), GasUsed: 222222, } receipt2.Bloom = types.CreateBloom(types.Receipts{receipt2}) receipts := []*types.Receipt{receipt1, receipt2} // Check that no receipt entries are in a pristine database hash := common.BytesToHash([]byte{0x03, 0x14}) if rs := ReadReceipts(db, hash, 0, params.TestChainConfig); len(rs) != 0 { t.Fatalf("non existent receipts returned: %v", rs) } // Insert the body that corresponds to the receipts WriteBody(db, hash, 0, body) // Insert the receipt slice into the database and check presence WriteReceipts(db, hash, 0, receipts) if rs := ReadReceipts(db, hash, 0, params.TestChainConfig); len(rs) == 0 { t.Fatalf("no receipts returned") } else { if err := checkReceiptsRLP(rs, receipts); err != nil { t.Fatalf(err.Error()) } } // Delete the body and ensure that the receipts are no longer returned (metadata can't be recomputed) DeleteBody(db, hash, 0) if rs := ReadReceipts(db, hash, 0, params.TestChainConfig); rs != nil { t.Fatalf("receipts returned when body was deleted: %v", rs) } // Ensure that receipts without metadata can be returned without the block body too if err := checkReceiptsRLP(ReadRawReceipts(db, hash, 0), receipts); err != nil { t.Fatalf(err.Error()) } // Sanity check that body alone without the receipt is a full purge WriteBody(db, hash, 0, body) DeleteReceipts(db, hash, 0) if rs := ReadReceipts(db, hash, 0, params.TestChainConfig); len(rs) != 0 { t.Fatalf("deleted receipts returned: %v", rs) } } func checkReceiptsRLP(have, want types.Receipts) error { if len(have) != len(want) { return fmt.Errorf("receipts sizes mismatch: have %d, want %d", len(have), len(want)) } for i := 0; i < len(want); i++ { rlpHave, err := rlp.EncodeToBytes(have[i]) if err != nil { return err } rlpWant, err := rlp.EncodeToBytes(want[i]) if err != nil { return err } if !bytes.Equal(rlpHave, rlpWant) { return fmt.Errorf("receipt #%d: receipt mismatch: have %s, want %s", i, hex.EncodeToString(rlpHave), hex.EncodeToString(rlpWant)) } } return nil } func TestAncientStorage(t *testing.T) { // Freezer style fast import the chain. frdir := t.TempDir() db, err := NewDatabaseWithFreezer(NewMemoryDatabase(), frdir, "", false) if err != nil { t.Fatalf("failed to create database with ancient backend") } defer db.Close() // Create a test block block := types.NewBlockWithHeader(&types.Header{ Number: big.NewInt(0), Extra: []byte("test block"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, }) // Ensure nothing non-existent will be read hash, number := block.Hash(), block.NumberU64() if blob := ReadHeaderRLP(db, hash, number); len(blob) > 0 { t.Fatalf("non existent header returned") } if blob := ReadBodyRLP(db, hash, number); len(blob) > 0 { t.Fatalf("non existent body returned") } if blob := ReadReceiptsRLP(db, hash, number); len(blob) > 0 { t.Fatalf("non existent receipts returned") } if blob := ReadTdRLP(db, hash, number); len(blob) > 0 { t.Fatalf("non existent td returned") } // Write and verify the header in the database WriteAncientBlocks(db, []*types.Block{block}, []types.Receipts{nil}, big.NewInt(100)) if blob := ReadHeaderRLP(db, hash, number); len(blob) == 0 { t.Fatalf("no header returned") } if blob := ReadBodyRLP(db, hash, number); len(blob) == 0 { t.Fatalf("no body returned") } if blob := ReadReceiptsRLP(db, hash, number); len(blob) == 0 { t.Fatalf("no receipts returned") } if blob := ReadTdRLP(db, hash, number); len(blob) == 0 { t.Fatalf("no td returned") } // Use a fake hash for data retrieval, nothing should be returned. fakeHash := common.BytesToHash([]byte{0x01, 0x02, 0x03}) if blob := ReadHeaderRLP(db, fakeHash, number); len(blob) != 0 { t.Fatalf("invalid header returned") } if blob := ReadBodyRLP(db, fakeHash, number); len(blob) != 0 { t.Fatalf("invalid body returned") } if blob := ReadReceiptsRLP(db, fakeHash, number); len(blob) != 0 { t.Fatalf("invalid receipts returned") } if blob := ReadTdRLP(db, fakeHash, number); len(blob) != 0 { t.Fatalf("invalid td returned") } } func TestCanonicalHashIteration(t *testing.T) { var cases = []struct { from, to uint64 limit int expect []uint64 }{ {1, 8, 0, nil}, {1, 8, 1, []uint64{1}}, {1, 8, 10, []uint64{1, 2, 3, 4, 5, 6, 7}}, {1, 9, 10, []uint64{1, 2, 3, 4, 5, 6, 7, 8}}, {2, 9, 10, []uint64{2, 3, 4, 5, 6, 7, 8}}, {9, 10, 10, nil}, } // Test empty db iteration db := NewMemoryDatabase() numbers, _ := ReadAllCanonicalHashes(db, 0, 10, 10) if len(numbers) != 0 { t.Fatalf("No entry should be returned to iterate an empty db") } // Fill database with testing data. for i := uint64(1); i <= 8; i++ { WriteCanonicalHash(db, common.Hash{}, i) WriteTd(db, common.Hash{}, i, big.NewInt(10)) // Write some interferential data } for i, c := range cases { numbers, _ := ReadAllCanonicalHashes(db, c.from, c.to, c.limit) if !reflect.DeepEqual(numbers, c.expect) { t.Fatalf("Case %d failed, want %v, got %v", i, c.expect, numbers) } } } func TestHashesInRange(t *testing.T) { mkHeader := func(number, seq int) *types.Header { h := types.Header{ Difficulty: new(big.Int), Number: big.NewInt(int64(number)), GasLimit: uint64(seq), } return &h } db := NewMemoryDatabase() // For each number, write N versions of that particular number total := 0 for i := 0; i < 15; i++ { for ii := 0; ii < i; ii++ { WriteHeader(db, mkHeader(i, ii)) total++ } } if have, want := len(ReadAllHashesInRange(db, 10, 10)), 10; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } if have, want := len(ReadAllHashesInRange(db, 10, 9)), 0; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } if have, want := len(ReadAllHashesInRange(db, 0, 100)), total; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } if have, want := len(ReadAllHashesInRange(db, 9, 10)), 9+10; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } if have, want := len(ReadAllHashes(db, 10)), 10; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } if have, want := len(ReadAllHashes(db, 16)), 0; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } if have, want := len(ReadAllHashes(db, 1)), 1; have != want { t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have) } } // This measures the write speed of the WriteAncientBlocks operation. func BenchmarkWriteAncientBlocks(b *testing.B) { // Open freezer database. frdir := b.TempDir() db, err := NewDatabaseWithFreezer(NewMemoryDatabase(), frdir, "", false) if err != nil { b.Fatalf("failed to create database with ancient backend") } defer db.Close() // Create the data to insert. The blocks must have consecutive numbers, so we create // all of them ahead of time. However, there is no need to create receipts // individually for each block, just make one batch here and reuse it for all writes. const batchSize = 128 const blockTxs = 20 allBlocks := makeTestBlocks(b.N, blockTxs) batchReceipts := makeTestReceipts(batchSize, blockTxs) b.ResetTimer() // The benchmark loop writes batches of blocks, but note that the total block count is // b.N. This means the resulting ns/op measurement is the time it takes to write a // single block and its associated data. var td = big.NewInt(55) var totalSize int64 for i := 0; i < b.N; i += batchSize { length := batchSize if i+batchSize > b.N { length = b.N - i } blocks := allBlocks[i : i+length] receipts := batchReceipts[:length] writeSize, err := WriteAncientBlocks(db, blocks, receipts, td) if err != nil { b.Fatal(err) } totalSize += writeSize } // Enable MB/s reporting. b.SetBytes(totalSize / int64(b.N)) } // makeTestBlocks creates fake blocks for the ancient write benchmark. func makeTestBlocks(nblock int, txsPerBlock int) []*types.Block { key, _ := crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") signer := types.LatestSignerForChainID(big.NewInt(8)) // Create transactions. txs := make([]*types.Transaction, txsPerBlock) for i := 0; i < len(txs); i++ { var err error to := common.Address{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} txs[i], err = types.SignNewTx(key, signer, &types.LegacyTx{ Nonce: 2, GasPrice: big.NewInt(30000), Gas: 0x45454545, To: &to, }) if err != nil { panic(err) } } // Create the blocks. blocks := make([]*types.Block, nblock) for i := 0; i < nblock; i++ { header := &types.Header{ Number: big.NewInt(int64(i)), Extra: []byte("test block"), } blocks[i] = types.NewBlockWithHeader(header).WithBody(txs, nil) blocks[i].Hash() // pre-cache the block hash } return blocks } // makeTestReceipts creates fake receipts for the ancient write benchmark. func makeTestReceipts(n int, nPerBlock int) []types.Receipts { receipts := make([]*types.Receipt, nPerBlock) for i := 0; i < len(receipts); i++ { receipts[i] = &types.Receipt{ Status: types.ReceiptStatusSuccessful, CumulativeGasUsed: 0x888888888, Logs: make([]*types.Log, 5), } } allReceipts := make([]types.Receipts, n) for i := 0; i < n; i++ { allReceipts[i] = receipts } return allReceipts } type fullLogRLP struct { Address common.Address Topics []common.Hash Data []byte BlockNumber uint64 TxHash common.Hash TxIndex uint BlockHash common.Hash Index uint } func newFullLogRLP(l *types.Log) *fullLogRLP { return &fullLogRLP{ Address: l.Address, Topics: l.Topics, Data: l.Data, BlockNumber: l.BlockNumber, TxHash: l.TxHash, TxIndex: l.TxIndex, BlockHash: l.BlockHash, Index: l.Index, } } // Tests that logs associated with a single block can be retrieved. func TestReadLogs(t *testing.T) { db := NewMemoryDatabase() // Create a live block since we need metadata to reconstruct the receipt tx1 := types.NewTransaction(1, common.HexToAddress("0x1"), big.NewInt(1), 1, big.NewInt(1), nil) tx2 := types.NewTransaction(2, common.HexToAddress("0x2"), big.NewInt(2), 2, big.NewInt(2), nil) body := &types.Body{Transactions: types.Transactions{tx1, tx2}} // Create the two receipts to manage afterwards receipt1 := &types.Receipt{ Status: types.ReceiptStatusFailed, CumulativeGasUsed: 1, Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x11})}, {Address: common.BytesToAddress([]byte{0x01, 0x11})}, }, TxHash: tx1.Hash(), ContractAddress: common.BytesToAddress([]byte{0x01, 0x11, 0x11}), GasUsed: 111111, } receipt1.Bloom = types.CreateBloom(types.Receipts{receipt1}) receipt2 := &types.Receipt{ PostState: common.Hash{2}.Bytes(), CumulativeGasUsed: 2, Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x22})}, {Address: common.BytesToAddress([]byte{0x02, 0x22})}, }, TxHash: tx2.Hash(), ContractAddress: common.BytesToAddress([]byte{0x02, 0x22, 0x22}), GasUsed: 222222, } receipt2.Bloom = types.CreateBloom(types.Receipts{receipt2}) receipts := []*types.Receipt{receipt1, receipt2} hash := common.BytesToHash([]byte{0x03, 0x14}) // Check that no receipt entries are in a pristine database if rs := ReadReceipts(db, hash, 0, params.TestChainConfig); len(rs) != 0 { t.Fatalf("non existent receipts returned: %v", rs) } // Insert the body that corresponds to the receipts WriteBody(db, hash, 0, body) // Insert the receipt slice into the database and check presence WriteReceipts(db, hash, 0, receipts) logs := ReadLogs(db, hash, 0, params.TestChainConfig) if len(logs) == 0 { t.Fatalf("no logs returned") } if have, want := len(logs), 2; have != want { t.Fatalf("unexpected number of logs returned, have %d want %d", have, want) } if have, want := len(logs[0]), 2; have != want { t.Fatalf("unexpected number of logs[0] returned, have %d want %d", have, want) } if have, want := len(logs[1]), 2; have != want { t.Fatalf("unexpected number of logs[1] returned, have %d want %d", have, want) } for i, pr := range receipts { for j, pl := range pr.Logs { rlpHave, err := rlp.EncodeToBytes(newFullLogRLP(logs[i][j])) if err != nil { t.Fatal(err) } rlpWant, err := rlp.EncodeToBytes(newFullLogRLP(pl)) if err != nil { t.Fatal(err) } if !bytes.Equal(rlpHave, rlpWant) { t.Fatalf("receipt #%d: receipt mismatch: have %s, want %s", i, hex.EncodeToString(rlpHave), hex.EncodeToString(rlpWant)) } } } } func TestDeriveLogFields(t *testing.T) { // Create a few transactions to have receipts for to2 := common.HexToAddress("0x2") to3 := common.HexToAddress("0x3") txs := types.Transactions{ types.NewTx(&types.LegacyTx{ Nonce: 1, Value: big.NewInt(1), Gas: 1, GasPrice: big.NewInt(1), }), types.NewTx(&types.LegacyTx{ To: &to2, Nonce: 2, Value: big.NewInt(2), Gas: 2, GasPrice: big.NewInt(2), }), types.NewTx(&types.AccessListTx{ To: &to3, Nonce: 3, Value: big.NewInt(3), Gas: 3, GasPrice: big.NewInt(3), }), } // Create the corresponding receipts receipts := []*receiptLogs{ { Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x11})}, {Address: common.BytesToAddress([]byte{0x01, 0x11})}, }, }, { Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x22})}, {Address: common.BytesToAddress([]byte{0x02, 0x22})}, }, }, { Logs: []*types.Log{ {Address: common.BytesToAddress([]byte{0x33})}, {Address: common.BytesToAddress([]byte{0x03, 0x33})}, }, }, } // Derive log metadata fields number := big.NewInt(1) hash := common.BytesToHash([]byte{0x03, 0x14}) if err := deriveLogFields(receipts, hash, number.Uint64(), txs); err != nil { t.Fatal(err) } // Iterate over all the computed fields and check that they're correct logIndex := uint(0) for i := range receipts { for j := range receipts[i].Logs { if receipts[i].Logs[j].BlockNumber != number.Uint64() { t.Errorf("receipts[%d].Logs[%d].BlockNumber = %d, want %d", i, j, receipts[i].Logs[j].BlockNumber, number.Uint64()) } if receipts[i].Logs[j].BlockHash != hash { t.Errorf("receipts[%d].Logs[%d].BlockHash = %s, want %s", i, j, receipts[i].Logs[j].BlockHash.String(), hash.String()) } if receipts[i].Logs[j].TxHash != txs[i].Hash() { t.Errorf("receipts[%d].Logs[%d].TxHash = %s, want %s", i, j, receipts[i].Logs[j].TxHash.String(), txs[i].Hash().String()) } if receipts[i].Logs[j].TxIndex != uint(i) { t.Errorf("receipts[%d].Logs[%d].TransactionIndex = %d, want %d", i, j, receipts[i].Logs[j].TxIndex, i) } if receipts[i].Logs[j].Index != logIndex { t.Errorf("receipts[%d].Logs[%d].Index = %d, want %d", i, j, receipts[i].Logs[j].Index, logIndex) } logIndex++ } } } func BenchmarkDecodeRLPLogs(b *testing.B) { // Encoded receipts from block 0x14ee094309fbe8f70b65f45ebcc08fb33f126942d97464aad5eb91cfd1e2d269 buf, err := os.ReadFile("testdata/stored_receipts.bin") if err != nil { b.Fatal(err) } b.Run("ReceiptForStorage", func(b *testing.B) { b.ReportAllocs() var r []*types.ReceiptForStorage for i := 0; i < b.N; i++ { if err := rlp.DecodeBytes(buf, &r); err != nil { b.Fatal(err) } } }) b.Run("rlpLogs", func(b *testing.B) { b.ReportAllocs() var r []*receiptLogs for i := 0; i < b.N; i++ { if err := rlp.DecodeBytes(buf, &r); err != nil { b.Fatal(err) } } }) } func TestHeadersRLPStorage(t *testing.T) { // Have N headers in the freezer frdir := t.TempDir() db, err := NewDatabaseWithFreezer(NewMemoryDatabase(), frdir, "", false) if err != nil { t.Fatalf("failed to create database with ancient backend") } defer db.Close() // Create blocks var chain []*types.Block var pHash common.Hash for i := 0; i < 100; i++ { block := types.NewBlockWithHeader(&types.Header{ Number: big.NewInt(int64(i)), Extra: []byte("test block"), UncleHash: types.EmptyUncleHash, TxHash: types.EmptyRootHash, ReceiptHash: types.EmptyRootHash, ParentHash: pHash, }) chain = append(chain, block) pHash = block.Hash() } var receipts []types.Receipts = make([]types.Receipts, 100) // Write first half to ancients WriteAncientBlocks(db, chain[:50], receipts[:50], big.NewInt(100)) // Write second half to db for i := 50; i < 100; i++ { WriteCanonicalHash(db, chain[i].Hash(), chain[i].NumberU64()) WriteBlock(db, chain[i]) } checkSequence := func(from, amount int) { headersRlp := ReadHeaderRange(db, uint64(from), uint64(amount)) if have, want := len(headersRlp), amount; have != want { t.Fatalf("have %d headers, want %d", have, want) } for i, headerRlp := range headersRlp { var header types.Header if err := rlp.DecodeBytes(headerRlp, &header); err != nil { t.Fatal(err) } if have, want := header.Number.Uint64(), uint64(from-i); have != want { t.Fatalf("wrong number, have %d want %d", have, want) } } } checkSequence(99, 20) // Latest block and 19 parents checkSequence(99, 50) // Latest block -> all db blocks checkSequence(99, 51) // Latest block -> one from ancients checkSequence(99, 52) // Latest blocks -> two from ancients checkSequence(50, 2) // One from db, one from ancients checkSequence(49, 1) // One from ancients checkSequence(49, 50) // All ancient ones checkSequence(99, 100) // All blocks checkSequence(0, 1) // Only genesis checkSequence(1, 1) // Only block 1 checkSequence(1, 2) // Genesis + block 1 }