// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sha3 // This file implements the core Keccak permutation function necessary for computing SHA3. // This is implemented in a separate file to allow for replacement by an optimized implementation. // Nothing in this package is exported. // For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). // rc stores the round constants for use in the ι step. var rc = [...]uint64{ 0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008, } // ro_xx represent the rotation offsets for use in the χ step. // Defining them as const instead of in an array allows the compiler to insert constant shifts. const ( ro_00 = 0 ro_01 = 36 ro_02 = 3 ro_03 = 41 ro_04 = 18 ro_05 = 1 ro_06 = 44 ro_07 = 10 ro_08 = 45 ro_09 = 2 ro_10 = 62 ro_11 = 6 ro_12 = 43 ro_13 = 15 ro_14 = 61 ro_15 = 28 ro_16 = 55 ro_17 = 25 ro_18 = 21 ro_19 = 56 ro_20 = 27 ro_21 = 20 ro_22 = 39 ro_23 = 8 ro_24 = 14 ) // keccakF computes the complete Keccak-f function consisting of 24 rounds with a different // constant (rc) in each round. This implementation fully unrolls the round function to avoid // inner loops, as well as pre-calculating shift offsets. func (d *digest) keccakF() { for _, roundConstant := range rc { // θ step d.c[0] = d.a[0] ^ d.a[5] ^ d.a[10] ^ d.a[15] ^ d.a[20] d.c[1] = d.a[1] ^ d.a[6] ^ d.a[11] ^ d.a[16] ^ d.a[21] d.c[2] = d.a[2] ^ d.a[7] ^ d.a[12] ^ d.a[17] ^ d.a[22] d.c[3] = d.a[3] ^ d.a[8] ^ d.a[13] ^ d.a[18] ^ d.a[23] d.c[4] = d.a[4] ^ d.a[9] ^ d.a[14] ^ d.a[19] ^ d.a[24] d.d[0] = d.c[4] ^ (d.c[1]<<1 ^ d.c[1]>>63) d.d[1] = d.c[0] ^ (d.c[2]<<1 ^ d.c[2]>>63) d.d[2] = d.c[1] ^ (d.c[3]<<1 ^ d.c[3]>>63) d.d[3] = d.c[2] ^ (d.c[4]<<1 ^ d.c[4]>>63) d.d[4] = d.c[3] ^ (d.c[0]<<1 ^ d.c[0]>>63) d.a[0] ^= d.d[0] d.a[1] ^= d.d[1] d.a[2] ^= d.d[2] d.a[3] ^= d.d[3] d.a[4] ^= d.d[4] d.a[5] ^= d.d[0] d.a[6] ^= d.d[1] d.a[7] ^= d.d[2] d.a[8] ^= d.d[3] d.a[9] ^= d.d[4] d.a[10] ^= d.d[0] d.a[11] ^= d.d[1] d.a[12] ^= d.d[2] d.a[13] ^= d.d[3] d.a[14] ^= d.d[4] d.a[15] ^= d.d[0] d.a[16] ^= d.d[1] d.a[17] ^= d.d[2] d.a[18] ^= d.d[3] d.a[19] ^= d.d[4] d.a[20] ^= d.d[0] d.a[21] ^= d.d[1] d.a[22] ^= d.d[2] d.a[23] ^= d.d[3] d.a[24] ^= d.d[4] // ρ and π steps d.b[0] = d.a[0] d.b[1] = d.a[6]<<ro_06 ^ d.a[6]>>(64-ro_06) d.b[2] = d.a[12]<<ro_12 ^ d.a[12]>>(64-ro_12) d.b[3] = d.a[18]<<ro_18 ^ d.a[18]>>(64-ro_18) d.b[4] = d.a[24]<<ro_24 ^ d.a[24]>>(64-ro_24) d.b[5] = d.a[3]<<ro_15 ^ d.a[3]>>(64-ro_15) d.b[6] = d.a[9]<<ro_21 ^ d.a[9]>>(64-ro_21) d.b[7] = d.a[10]<<ro_02 ^ d.a[10]>>(64-ro_02) d.b[8] = d.a[16]<<ro_08 ^ d.a[16]>>(64-ro_08) d.b[9] = d.a[22]<<ro_14 ^ d.a[22]>>(64-ro_14) d.b[10] = d.a[1]<<ro_05 ^ d.a[1]>>(64-ro_05) d.b[11] = d.a[7]<<ro_11 ^ d.a[7]>>(64-ro_11) d.b[12] = d.a[13]<<ro_17 ^ d.a[13]>>(64-ro_17) d.b[13] = d.a[19]<<ro_23 ^ d.a[19]>>(64-ro_23) d.b[14] = d.a[20]<<ro_04 ^ d.a[20]>>(64-ro_04) d.b[15] = d.a[4]<<ro_20 ^ d.a[4]>>(64-ro_20) d.b[16] = d.a[5]<<ro_01 ^ d.a[5]>>(64-ro_01) d.b[17] = d.a[11]<<ro_07 ^ d.a[11]>>(64-ro_07) d.b[18] = d.a[17]<<ro_13 ^ d.a[17]>>(64-ro_13) d.b[19] = d.a[23]<<ro_19 ^ d.a[23]>>(64-ro_19) d.b[20] = d.a[2]<<ro_10 ^ d.a[2]>>(64-ro_10) d.b[21] = d.a[8]<<ro_16 ^ d.a[8]>>(64-ro_16) d.b[22] = d.a[14]<<ro_22 ^ d.a[14]>>(64-ro_22) d.b[23] = d.a[15]<<ro_03 ^ d.a[15]>>(64-ro_03) d.b[24] = d.a[21]<<ro_09 ^ d.a[21]>>(64-ro_09) // χ step d.a[0] = d.b[0] ^ (^d.b[1] & d.b[2]) d.a[1] = d.b[1] ^ (^d.b[2] & d.b[3]) d.a[2] = d.b[2] ^ (^d.b[3] & d.b[4]) d.a[3] = d.b[3] ^ (^d.b[4] & d.b[0]) d.a[4] = d.b[4] ^ (^d.b[0] & d.b[1]) d.a[5] = d.b[5] ^ (^d.b[6] & d.b[7]) d.a[6] = d.b[6] ^ (^d.b[7] & d.b[8]) d.a[7] = d.b[7] ^ (^d.b[8] & d.b[9]) d.a[8] = d.b[8] ^ (^d.b[9] & d.b[5]) d.a[9] = d.b[9] ^ (^d.b[5] & d.b[6]) d.a[10] = d.b[10] ^ (^d.b[11] & d.b[12]) d.a[11] = d.b[11] ^ (^d.b[12] & d.b[13]) d.a[12] = d.b[12] ^ (^d.b[13] & d.b[14]) d.a[13] = d.b[13] ^ (^d.b[14] & d.b[10]) d.a[14] = d.b[14] ^ (^d.b[10] & d.b[11]) d.a[15] = d.b[15] ^ (^d.b[16] & d.b[17]) d.a[16] = d.b[16] ^ (^d.b[17] & d.b[18]) d.a[17] = d.b[17] ^ (^d.b[18] & d.b[19]) d.a[18] = d.b[18] ^ (^d.b[19] & d.b[15]) d.a[19] = d.b[19] ^ (^d.b[15] & d.b[16]) d.a[20] = d.b[20] ^ (^d.b[21] & d.b[22]) d.a[21] = d.b[21] ^ (^d.b[22] & d.b[23]) d.a[22] = d.b[22] ^ (^d.b[23] & d.b[24]) d.a[23] = d.b[23] ^ (^d.b[24] & d.b[20]) d.a[24] = d.b[24] ^ (^d.b[20] & d.b[21]) // ι step d.a[0] ^= roundConstant } }