// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package bn256 implements a particular bilinear group. // // Bilinear groups are the basis of many of the new cryptographic protocols // that have been proposed over the past decade. They consist of a triplet of // groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ // (where gₓ is a generator of the respective group). That function is called // a pairing function. // // This package specifically implements the Optimal Ate pairing over a 256-bit // Barreto-Naehrig curve as described in // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is not // compatible with the implementation described in that paper, as different // parameters are chosen. // // (This package previously claimed to operate at a 128-bit security level. // However, recent improvements in attacks mean that is no longer true. See // https://moderncrypto.org/mail-archive/curves/2016/000740.html.) package bn256 import ( "crypto/rand" "errors" "io" "math/big" ) // BUG(agl): this implementation is not constant time. // TODO(agl): keep GF(p²) elements in Mongomery form. // G1 is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type G1 struct { p *curvePoint } // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. func RandomG1(r io.Reader) (*big.Int, *G1, error) { var k *big.Int var err error for { k, err = rand.Int(r, Order) if err != nil { return nil, nil, err } if k.Sign() > 0 { break } } return k, new(G1).ScalarBaseMult(k), nil } func (e *G1) String() string { return "bn256.G1" + e.p.String() } // CurvePoints returns p's curve points in big integer func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) { return e.p.x, e.p.y, e.p.z, e.p.t } // ScalarBaseMult sets e to g*k where g is the generator of the group and // then returns e. func (e *G1) ScalarBaseMult(k *big.Int) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Mul(curveGen, k, new(bnPool)) return e } // ScalarMult sets e to a*k and then returns e. func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Mul(a.p, k, new(bnPool)) return e } // Add sets e to a+b and then returns e. // BUG(agl): this function is not complete: a==b fails. func (e *G1) Add(a, b *G1) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Add(a.p, b.p, new(bnPool)) return e } // Neg sets e to -a and then returns e. func (e *G1) Neg(a *G1) *G1 { if e.p == nil { e.p = newCurvePoint(nil) } e.p.Negative(a.p) return e } // Marshal converts n to a byte slice. func (e *G1) Marshal() []byte { // Each value is a 256-bit number. const numBytes = 256 / 8 if e.p.IsInfinity() { return make([]byte, numBytes*2) } e.p.MakeAffine(nil) xBytes := new(big.Int).Mod(e.p.x, P).Bytes() yBytes := new(big.Int).Mod(e.p.y, P).Bytes() ret := make([]byte, numBytes*2) copy(ret[1*numBytes-len(xBytes):], xBytes) copy(ret[2*numBytes-len(yBytes):], yBytes) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *G1) Unmarshal(m []byte) ([]byte, error) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) != 2*numBytes { return nil, errors.New("bn256: not enough data") } // Unmarshal the points and check their caps if e.p == nil { e.p = newCurvePoint(nil) } e.p.x.SetBytes(m[0*numBytes : 1*numBytes]) if e.p.x.Cmp(P) >= 0 { return nil, errors.New("bn256: coordinate exceeds modulus") } e.p.y.SetBytes(m[1*numBytes : 2*numBytes]) if e.p.y.Cmp(P) >= 0 { return nil, errors.New("bn256: coordinate exceeds modulus") } // Ensure the point is on the curve if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 { // This is the point at infinity. e.p.y.SetInt64(1) e.p.z.SetInt64(0) e.p.t.SetInt64(0) } else { e.p.z.SetInt64(1) e.p.t.SetInt64(1) if !e.p.IsOnCurve() { return nil, errors.New("bn256: malformed point") } } return m[2*numBytes:], nil } // G2 is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type G2 struct { p *twistPoint } // RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r. func RandomG2(r io.Reader) (*big.Int, *G2, error) { var k *big.Int var err error for { k, err = rand.Int(r, Order) if err != nil { return nil, nil, err } if k.Sign() > 0 { break } } return k, new(G2).ScalarBaseMult(k), nil } func (e *G2) String() string { return "bn256.G2" + e.p.String() } // CurvePoints returns the curve points of p which includes the real // and imaginary parts of the curve point. func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) { return e.p.x, e.p.y, e.p.z, e.p.t } // ScalarBaseMult sets e to g*k where g is the generator of the group and // then returns out. func (e *G2) ScalarBaseMult(k *big.Int) *G2 { if e.p == nil { e.p = newTwistPoint(nil) } e.p.Mul(twistGen, k, new(bnPool)) return e } // ScalarMult sets e to a*k and then returns e. func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { if e.p == nil { e.p = newTwistPoint(nil) } e.p.Mul(a.p, k, new(bnPool)) return e } // Add sets e to a+b and then returns e. // BUG(agl): this function is not complete: a==b fails. func (e *G2) Add(a, b *G2) *G2 { if e.p == nil { e.p = newTwistPoint(nil) } e.p.Add(a.p, b.p, new(bnPool)) return e } // Marshal converts n into a byte slice. func (n *G2) Marshal() []byte { // Each value is a 256-bit number. const numBytes = 256 / 8 if n.p.IsInfinity() { return make([]byte, numBytes*4) } n.p.MakeAffine(nil) xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes() xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes() yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes() yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes() ret := make([]byte, numBytes*4) copy(ret[1*numBytes-len(xxBytes):], xxBytes) copy(ret[2*numBytes-len(xyBytes):], xyBytes) copy(ret[3*numBytes-len(yxBytes):], yxBytes) copy(ret[4*numBytes-len(yyBytes):], yyBytes) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *G2) Unmarshal(m []byte) ([]byte, error) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) != 4*numBytes { return nil, errors.New("bn256: not enough data") } // Unmarshal the points and check their caps if e.p == nil { e.p = newTwistPoint(nil) } e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes]) if e.p.x.x.Cmp(P) >= 0 { return nil, errors.New("bn256: coordinate exceeds modulus") } e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes]) if e.p.x.y.Cmp(P) >= 0 { return nil, errors.New("bn256: coordinate exceeds modulus") } e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes]) if e.p.y.x.Cmp(P) >= 0 { return nil, errors.New("bn256: coordinate exceeds modulus") } e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes]) if e.p.y.y.Cmp(P) >= 0 { return nil, errors.New("bn256: coordinate exceeds modulus") } // Ensure the point is on the curve if e.p.x.x.Sign() == 0 && e.p.x.y.Sign() == 0 && e.p.y.x.Sign() == 0 && e.p.y.y.Sign() == 0 { // This is the point at infinity. e.p.y.SetOne() e.p.z.SetZero() e.p.t.SetZero() } else { e.p.z.SetOne() e.p.t.SetOne() if !e.p.IsOnCurve() { return nil, errors.New("bn256: malformed point") } } return m[4*numBytes:], nil } // GT is an abstract cyclic group. The zero value is suitable for use as the // output of an operation, but cannot be used as an input. type GT struct { p *gfP12 } func (g *GT) String() string { return "bn256.GT" + g.p.String() } // ScalarMult sets e to a*k and then returns e. func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { if e.p == nil { e.p = newGFp12(nil) } e.p.Exp(a.p, k, new(bnPool)) return e } // Add sets e to a+b and then returns e. func (e *GT) Add(a, b *GT) *GT { if e.p == nil { e.p = newGFp12(nil) } e.p.Mul(a.p, b.p, new(bnPool)) return e } // Neg sets e to -a and then returns e. func (e *GT) Neg(a *GT) *GT { if e.p == nil { e.p = newGFp12(nil) } e.p.Invert(a.p, new(bnPool)) return e } // Marshal converts n into a byte slice. func (n *GT) Marshal() []byte { n.p.Minimal() xxxBytes := n.p.x.x.x.Bytes() xxyBytes := n.p.x.x.y.Bytes() xyxBytes := n.p.x.y.x.Bytes() xyyBytes := n.p.x.y.y.Bytes() xzxBytes := n.p.x.z.x.Bytes() xzyBytes := n.p.x.z.y.Bytes() yxxBytes := n.p.y.x.x.Bytes() yxyBytes := n.p.y.x.y.Bytes() yyxBytes := n.p.y.y.x.Bytes() yyyBytes := n.p.y.y.y.Bytes() yzxBytes := n.p.y.z.x.Bytes() yzyBytes := n.p.y.z.y.Bytes() // Each value is a 256-bit number. const numBytes = 256 / 8 ret := make([]byte, numBytes*12) copy(ret[1*numBytes-len(xxxBytes):], xxxBytes) copy(ret[2*numBytes-len(xxyBytes):], xxyBytes) copy(ret[3*numBytes-len(xyxBytes):], xyxBytes) copy(ret[4*numBytes-len(xyyBytes):], xyyBytes) copy(ret[5*numBytes-len(xzxBytes):], xzxBytes) copy(ret[6*numBytes-len(xzyBytes):], xzyBytes) copy(ret[7*numBytes-len(yxxBytes):], yxxBytes) copy(ret[8*numBytes-len(yxyBytes):], yxyBytes) copy(ret[9*numBytes-len(yyxBytes):], yyxBytes) copy(ret[10*numBytes-len(yyyBytes):], yyyBytes) copy(ret[11*numBytes-len(yzxBytes):], yzxBytes) copy(ret[12*numBytes-len(yzyBytes):], yzyBytes) return ret } // Unmarshal sets e to the result of converting the output of Marshal back into // a group element and then returns e. func (e *GT) Unmarshal(m []byte) (*GT, bool) { // Each value is a 256-bit number. const numBytes = 256 / 8 if len(m) != 12*numBytes { return nil, false } if e.p == nil { e.p = newGFp12(nil) } e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes]) e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes]) e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes]) e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes]) e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes]) e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes]) e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes]) e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes]) e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes]) e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes]) e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes]) e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes]) return e, true } // Pair calculates an Optimal Ate pairing. func Pair(g1 *G1, g2 *G2) *GT { return >{optimalAte(g2.p, g1.p, new(bnPool))} } // PairingCheck calculates the Optimal Ate pairing for a set of points. func PairingCheck(a []*G1, b []*G2) bool { pool := new(bnPool) acc := newGFp12(pool) acc.SetOne() for i := 0; i < len(a); i++ { if a[i].p.IsInfinity() || b[i].p.IsInfinity() { continue } acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool) } ret := finalExponentiation(acc, pool) acc.Put(pool) return ret.IsOne() } // bnPool implements a tiny cache of *big.Int objects that's used to reduce the // number of allocations made during processing. type bnPool struct { bns []*big.Int count int } func (pool *bnPool) Get() *big.Int { if pool == nil { return new(big.Int) } pool.count++ l := len(pool.bns) if l == 0 { return new(big.Int) } bn := pool.bns[l-1] pool.bns = pool.bns[:l-1] return bn } func (pool *bnPool) Put(bn *big.Int) { if pool == nil { return } pool.bns = append(pool.bns, bn) pool.count-- } func (pool *bnPool) Count() int { return pool.count }