// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // +build nacl js !cgo package crypto import ( "crypto/ecdsa" "crypto/elliptic" "errors" "fmt" "math/big" "github.com/btcsuite/btcd/btcec" ) // Ecrecover returns the uncompressed public key that created the given signature. func Ecrecover(hash, sig []byte) ([]byte, error) { pub, err := SigToPub(hash, sig) if err != nil { return nil, err } bytes := (*btcec.PublicKey)(pub).SerializeUncompressed() return bytes, err } // SigToPub returns the public key that created the given signature. func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { // Convert to btcec input format with 'recovery id' v at the beginning. btcsig := make([]byte, 65) btcsig[0] = sig[64] + 27 copy(btcsig[1:], sig) pub, _, err := btcec.RecoverCompact(btcec.S256(), btcsig, hash) return (*ecdsa.PublicKey)(pub), err } // Sign calculates an ECDSA signature. // // This function is susceptible to chosen plaintext attacks that can leak // information about the private key that is used for signing. Callers must // be aware that the given hash cannot be chosen by an adversery. Common // solution is to hash any input before calculating the signature. // // The produced signature is in the [R || S || V] format where V is 0 or 1. func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) { if len(hash) != 32 { return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) } if prv.Curve != btcec.S256() { return nil, fmt.Errorf("private key curve is not secp256k1") } sig, err := btcec.SignCompact(btcec.S256(), (*btcec.PrivateKey)(prv), hash, false) if err != nil { return nil, err } // Convert to Ethereum signature format with 'recovery id' v at the end. v := sig[0] - 27 copy(sig, sig[1:]) sig[64] = v return sig, nil } // VerifySignature checks that the given public key created signature over hash. // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. // The signature should have the 64 byte [R || S] format. func VerifySignature(pubkey, hash, signature []byte) bool { if len(signature) != 64 { return false } sig := &btcec.Signature{R: new(big.Int).SetBytes(signature[:32]), S: new(big.Int).SetBytes(signature[32:])} key, err := btcec.ParsePubKey(pubkey, btcec.S256()) if err != nil { return false } // Reject malleable signatures. libsecp256k1 does this check but btcec doesn't. if sig.S.Cmp(secp256k1halfN) > 0 { return false } return sig.Verify(hash, key) } // DecompressPubkey parses a public key in the 33-byte compressed format. func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { if len(pubkey) != 33 { return nil, errors.New("invalid compressed public key length") } key, err := btcec.ParsePubKey(pubkey, btcec.S256()) if err != nil { return nil, err } return key.ToECDSA(), nil } // CompressPubkey encodes a public key to the 33-byte compressed format. func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { return (*btcec.PublicKey)(pubkey).SerializeCompressed() } // S256 returns an instance of the secp256k1 curve. func S256() elliptic.Curve { return btcec.S256() }