// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "errors" "fmt" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" ) var ErrCommitDisabled = errors.New("no database for committing") var stPool = sync.Pool{ New: func() interface{} { return NewStackTrie(nil) }, } func stackTrieFromPool(db ethdb.KeyValueWriter) *StackTrie { st := stPool.Get().(*StackTrie) st.db = db return st } func returnToPool(st *StackTrie) { st.Reset() stPool.Put(st) } // StackTrie is a trie implementation that expects keys to be inserted // in order. Once it determines that a subtree will no longer be inserted // into, it will hash it and free up the memory it uses. type StackTrie struct { nodeType uint8 // node type (as in branch, ext, leaf) val []byte // value contained by this node if it's a leaf key []byte // key chunk covered by this (full|ext) node keyOffset int // offset of the key chunk inside a full key children [16]*StackTrie // list of children (for fullnodes and exts) db ethdb.KeyValueWriter // Pointer to the commit db, can be nil } // NewStackTrie allocates and initializes an empty trie. func NewStackTrie(db ethdb.KeyValueWriter) *StackTrie { return &StackTrie{ nodeType: emptyNode, db: db, } } func newLeaf(ko int, key, val []byte, db ethdb.KeyValueWriter) *StackTrie { st := stackTrieFromPool(db) st.nodeType = leafNode st.keyOffset = ko st.key = append(st.key, key[ko:]...) st.val = val return st } func newExt(ko int, key []byte, child *StackTrie, db ethdb.KeyValueWriter) *StackTrie { st := stackTrieFromPool(db) st.nodeType = extNode st.keyOffset = ko st.key = append(st.key, key[ko:]...) st.children[0] = child return st } // List all values that StackTrie#nodeType can hold const ( emptyNode = iota branchNode extNode leafNode hashedNode ) // TryUpdate inserts a (key, value) pair into the stack trie func (st *StackTrie) TryUpdate(key, value []byte) error { k := keybytesToHex(key) if len(value) == 0 { panic("deletion not supported") } st.insert(k[:len(k)-1], value) return nil } func (st *StackTrie) Update(key, value []byte) { if err := st.TryUpdate(key, value); err != nil { log.Error(fmt.Sprintf("Unhandled trie error: %v", err)) } } func (st *StackTrie) Reset() { st.db = nil st.key = st.key[:0] st.val = nil for i := range st.children { st.children[i] = nil } st.nodeType = emptyNode st.keyOffset = 0 } // Helper function that, given a full key, determines the index // at which the chunk pointed by st.keyOffset is different from // the same chunk in the full key. func (st *StackTrie) getDiffIndex(key []byte) int { diffindex := 0 for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ { } return diffindex } // Helper function to that inserts a (key, value) pair into // the trie. func (st *StackTrie) insert(key, value []byte) { switch st.nodeType { case branchNode: /* Branch */ idx := int(key[st.keyOffset]) // Unresolve elder siblings for i := idx - 1; i >= 0; i-- { if st.children[i] != nil { if st.children[i].nodeType != hashedNode { st.children[i].hash() } break } } // Add new child if st.children[idx] == nil { st.children[idx] = stackTrieFromPool(st.db) st.children[idx].keyOffset = st.keyOffset + 1 } st.children[idx].insert(key, value) case extNode: /* Ext */ // Compare both key chunks and see where they differ diffidx := st.getDiffIndex(key) // Check if chunks are identical. If so, recurse into // the child node. Otherwise, the key has to be split // into 1) an optional common prefix, 2) the fullnode // representing the two differing path, and 3) a leaf // for each of the differentiated subtrees. if diffidx == len(st.key) { // Ext key and key segment are identical, recurse into // the child node. st.children[0].insert(key, value) return } // Save the original part. Depending if the break is // at the extension's last byte or not, create an // intermediate extension or use the extension's child // node directly. var n *StackTrie if diffidx < len(st.key)-1 { n = newExt(diffidx+1, st.key, st.children[0], st.db) } else { // Break on the last byte, no need to insert // an extension node: reuse the current node n = st.children[0] } // Convert to hash n.hash() var p *StackTrie if diffidx == 0 { // the break is on the first byte, so // the current node is converted into // a branch node. st.children[0] = nil p = st st.nodeType = branchNode } else { // the common prefix is at least one byte // long, insert a new intermediate branch // node. st.children[0] = stackTrieFromPool(st.db) st.children[0].nodeType = branchNode st.children[0].keyOffset = st.keyOffset + diffidx p = st.children[0] } // Create a leaf for the inserted part o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db) // Insert both child leaves where they belong: origIdx := st.key[diffidx] newIdx := key[diffidx+st.keyOffset] p.children[origIdx] = n p.children[newIdx] = o st.key = st.key[:diffidx] case leafNode: /* Leaf */ // Compare both key chunks and see where they differ diffidx := st.getDiffIndex(key) // Overwriting a key isn't supported, which means that // the current leaf is expected to be split into 1) an // optional extension for the common prefix of these 2 // keys, 2) a fullnode selecting the path on which the // keys differ, and 3) one leaf for the differentiated // component of each key. if diffidx >= len(st.key) { panic("Trying to insert into existing key") } // Check if the split occurs at the first nibble of the // chunk. In that case, no prefix extnode is necessary. // Otherwise, create that var p *StackTrie if diffidx == 0 { // Convert current leaf into a branch st.nodeType = branchNode p = st st.children[0] = nil } else { // Convert current node into an ext, // and insert a child branch node. st.nodeType = extNode st.children[0] = NewStackTrie(st.db) st.children[0].nodeType = branchNode st.children[0].keyOffset = st.keyOffset + diffidx p = st.children[0] } // Create the two child leaves: the one containing the // original value and the one containing the new value // The child leave will be hashed directly in order to // free up some memory. origIdx := st.key[diffidx] p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db) p.children[origIdx].hash() newIdx := key[diffidx+st.keyOffset] p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db) // Finally, cut off the key part that has been passed // over to the children. st.key = st.key[:diffidx] st.val = nil case emptyNode: /* Empty */ st.nodeType = leafNode st.key = key[st.keyOffset:] st.val = value case hashedNode: panic("trying to insert into hash") default: panic("invalid type") } } // hash() hashes the node 'st' and converts it into 'hashedNode', if possible. // Possible outcomes: // 1. The rlp-encoded value was >= 32 bytes: // - Then the 32-byte `hash` will be accessible in `st.val`. // - And the 'st.type' will be 'hashedNode' // 2. The rlp-encoded value was < 32 bytes // - Then the <32 byte rlp-encoded value will be accessible in 'st.val'. // - And the 'st.type' will be 'hashedNode' AGAIN // // This method will also: // set 'st.type' to hashedNode // clear 'st.key' func (st *StackTrie) hash() { /* Shortcut if node is already hashed */ if st.nodeType == hashedNode { return } // The 'hasher' is taken from a pool, but we don't actually // claim an instance until all children are done with their hashing, // and we actually need one var h *hasher switch st.nodeType { case branchNode: var nodes [17]node for i, child := range st.children { if child == nil { nodes[i] = nilValueNode continue } child.hash() if len(child.val) < 32 { nodes[i] = rawNode(child.val) } else { nodes[i] = hashNode(child.val) } st.children[i] = nil // Reclaim mem from subtree returnToPool(child) } nodes[16] = nilValueNode h = newHasher(false) defer returnHasherToPool(h) h.tmp.Reset() if err := rlp.Encode(&h.tmp, nodes); err != nil { panic(err) } case extNode: st.children[0].hash() h = newHasher(false) defer returnHasherToPool(h) h.tmp.Reset() var valuenode node if len(st.children[0].val) < 32 { valuenode = rawNode(st.children[0].val) } else { valuenode = hashNode(st.children[0].val) } n := struct { Key []byte Val node }{ Key: hexToCompact(st.key), Val: valuenode, } if err := rlp.Encode(&h.tmp, n); err != nil { panic(err) } returnToPool(st.children[0]) st.children[0] = nil // Reclaim mem from subtree case leafNode: h = newHasher(false) defer returnHasherToPool(h) h.tmp.Reset() st.key = append(st.key, byte(16)) sz := hexToCompactInPlace(st.key) n := [][]byte{st.key[:sz], st.val} if err := rlp.Encode(&h.tmp, n); err != nil { panic(err) } case emptyNode: st.val = st.val[:0] st.val = append(st.val, emptyRoot[:]...) st.key = st.key[:0] st.nodeType = hashedNode return default: panic("Invalid node type") } st.key = st.key[:0] st.nodeType = hashedNode if len(h.tmp) < 32 { st.val = st.val[:0] st.val = append(st.val, h.tmp...) return } // Going to write the hash to the 'val'. Need to ensure it's properly sized first // Typically, 'branchNode's will have no 'val', and require this allocation if required := 32 - len(st.val); required > 0 { buf := make([]byte, required) st.val = append(st.val, buf...) } st.val = st.val[:32] h.sha.Reset() h.sha.Write(h.tmp) h.sha.Read(st.val) if st.db != nil { // TODO! Is it safe to Put the slice here? // Do all db implementations copy the value provided? st.db.Put(st.val, h.tmp) } } // Hash returns the hash of the current node func (st *StackTrie) Hash() (h common.Hash) { st.hash() if len(st.val) != 32 { // If the node's RLP isn't 32 bytes long, the node will not // be hashed, and instead contain the rlp-encoding of the // node. For the top level node, we need to force the hashing. ret := make([]byte, 32) h := newHasher(false) defer returnHasherToPool(h) h.sha.Reset() h.sha.Write(st.val) h.sha.Read(ret) return common.BytesToHash(ret) } return common.BytesToHash(st.val) } // Commit will firstly hash the entrie trie if it's still not hashed // and then commit all nodes to the associated database. Actually most // of the trie nodes MAY have been committed already. The main purpose // here is to commit the root node. // // The associated database is expected, otherwise the whole commit // functionality should be disabled. func (st *StackTrie) Commit() (common.Hash, error) { if st.db == nil { return common.Hash{}, ErrCommitDisabled } st.hash() if len(st.val) != 32 { // If the node's RLP isn't 32 bytes long, the node will not // be hashed (and committed), and instead contain the rlp-encoding of the // node. For the top level node, we need to force the hashing+commit. ret := make([]byte, 32) h := newHasher(false) defer returnHasherToPool(h) h.sha.Reset() h.sha.Write(st.val) h.sha.Read(ret) st.db.Put(ret, st.val) return common.BytesToHash(ret), nil } return common.BytesToHash(st.val), nil }