// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package vm import ( "fmt" "math/big" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/params" ) // Config are the configuration options for the Interpreter type Config struct { // Debug enabled debugging Interpreter options Debug bool // EnableJit enabled the JIT VM EnableJit bool // ForceJit forces the JIT VM ForceJit bool // Tracer is the op code logger Tracer Tracer // NoRecursion disabled Interpreter call, callcode, // delegate call and create. NoRecursion bool // Disable gas metering DisableGasMetering bool // JumpTable contains the EVM instruction table. This // may me left uninitialised and will be set the default // table. JumpTable [256]operation } // Interpreter is used to run Ethereum based contracts and will utilise the // passed environment to query external sources for state information. // The Interpreter will run the byte code VM or JIT VM based on the passed // configuration. type Interpreter struct { env *EVM cfg Config gasTable params.GasTable } // NewInterpreter returns a new instance of the Interpreter. func NewInterpreter(env *EVM, cfg Config) *Interpreter { // We use the STOP instruction whether to see // the jump table was initialised. If it was not // we'll set the default jump table. if !cfg.JumpTable[STOP].valid { cfg.JumpTable = defaultJumpTable } return &Interpreter{ env: env, cfg: cfg, gasTable: env.ChainConfig().GasTable(env.BlockNumber), } } // Run loops and evaluates the contract's code with the given input data func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err error) { evm.env.depth++ defer func() { evm.env.depth-- }() if contract.CodeAddr != nil { if p := PrecompiledContracts[*contract.CodeAddr]; p != nil { return RunPrecompiledContract(p, input, contract) } } // Don't bother with the execution if there's no code. if len(contract.Code) == 0 { return nil, nil } codehash := contract.CodeHash // codehash is used when doing jump dest caching if codehash == (common.Hash{}) { codehash = crypto.Keccak256Hash(contract.Code) } var ( op OpCode // current opcode mem = NewMemory() // bound memory stack = newstack() // local stack // For optimisation reason we're using uint64 as the program counter. // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Practically much less so feasible. pc = uint64(0) // program counter cost *big.Int ) contract.Input = input // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil && evm.cfg.Debug { evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.depth, err) } }() if glog.V(logger.Debug) { glog.Infof("evm running: %x\n", codehash[:4]) tstart := time.Now() defer func() { glog.Infof("evm done: %x. time: %v\n", codehash[:4], time.Since(tstart)) }() } // The Interpreter main run loop (contextual). This loop runs until either an // explicit STOP, RETURN or SUICIDE is executed, an error accured during // the execution of one of the operations or until the evm.done is set by // the parent context.Context. for atomic.LoadInt32(&evm.env.abort) == 0 { // Get the memory location of pc op = contract.GetOp(pc) // get the operation from the jump table matching the opcode operation := evm.cfg.JumpTable[op] // if the op is invalid abort the process and return an error if !operation.valid { return nil, fmt.Errorf("invalid opcode %x", op) } // validate the stack and make sure there enough stack items available // to perform the operation if err := operation.validateStack(stack); err != nil { return nil, err } var memorySize *big.Int // calculate the new memory size and expand the memory to fit // the operation if operation.memorySize != nil { memorySize = operation.memorySize(stack) // memory is expanded in words of 32 bytes. Gas // is also calculated in words. memorySize.Mul(toWordSize(memorySize), big.NewInt(32)) } if !evm.cfg.DisableGasMetering { // consume the gas and return an error if not enough gas is available. // cost is explicitly set so that the capture state defer method cas get the proper cost cost = operation.gasCost(evm.gasTable, evm.env, contract, stack, mem, memorySize) if !contract.UseGas(cost) { return nil, ErrOutOfGas } } if memorySize != nil { mem.Resize(memorySize.Uint64()) } if evm.cfg.Debug { evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.depth, err) } // execute the operation res, err := operation.execute(&pc, evm.env, contract, mem, stack) switch { case err != nil: return nil, err case operation.halts: return res, nil case !operation.jumps: pc++ } } return nil, nil }