// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package p2p import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/elliptic" "crypto/hmac" "crypto/rand" "encoding/binary" "errors" "fmt" "hash" "io" "io/ioutil" mrand "math/rand" "net" "sync" "time" "github.com/ethereum/go-ethereum/common/bitutil" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/ecies" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/rlp" "github.com/golang/snappy" "golang.org/x/crypto/sha3" ) const ( maxUint24 = ^uint32(0) >> 8 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 sigLen = crypto.SignatureLength // elliptic S256 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte shaLen = 32 // hash length (for nonce etc) authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 authRespLen = pubLen + shaLen + 1 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply // total timeout for encryption handshake and protocol // handshake in both directions. handshakeTimeout = 5 * time.Second // This is the timeout for sending the disconnect reason. // This is shorter than the usual timeout because we don't want // to wait if the connection is known to be bad anyway. discWriteTimeout = 1 * time.Second ) // errPlainMessageTooLarge is returned if a decompressed message length exceeds // the allowed 24 bits (i.e. length >= 16MB). var errPlainMessageTooLarge = errors.New("message length >= 16MB") // rlpx is the transport protocol used by actual (non-test) connections. // It wraps the frame encoder with locks and read/write deadlines. type rlpx struct { fd net.Conn rmu, wmu sync.Mutex rw *rlpxFrameRW } func newRLPX(fd net.Conn) transport { fd.SetDeadline(time.Now().Add(handshakeTimeout)) return &rlpx{fd: fd} } func (t *rlpx) ReadMsg() (Msg, error) { t.rmu.Lock() defer t.rmu.Unlock() t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) return t.rw.ReadMsg() } func (t *rlpx) WriteMsg(msg Msg) error { t.wmu.Lock() defer t.wmu.Unlock() t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) return t.rw.WriteMsg(msg) } func (t *rlpx) close(err error) { t.wmu.Lock() defer t.wmu.Unlock() // Tell the remote end why we're disconnecting if possible. if t.rw != nil { if r, ok := err.(DiscReason); ok && r != DiscNetworkError { // rlpx tries to send DiscReason to disconnected peer // if the connection is net.Pipe (in-memory simulation) // it hangs forever, since net.Pipe does not implement // a write deadline. Because of this only try to send // the disconnect reason message if there is no error. if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil { SendItems(t.rw, discMsg, r) } } } t.fd.Close() } func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { // Writing our handshake happens concurrently, we prefer // returning the handshake read error. If the remote side // disconnects us early with a valid reason, we should return it // as the error so it can be tracked elsewhere. werr := make(chan error, 1) go func() { werr <- Send(t.rw, handshakeMsg, our) }() if their, err = readProtocolHandshake(t.rw); err != nil { <-werr // make sure the write terminates too return nil, err } if err := <-werr; err != nil { return nil, fmt.Errorf("write error: %v", err) } // If the protocol version supports Snappy encoding, upgrade immediately t.rw.snappy = their.Version >= snappyProtocolVersion return their, nil } func readProtocolHandshake(rw MsgReader) (*protoHandshake, error) { msg, err := rw.ReadMsg() if err != nil { return nil, err } if msg.Size > baseProtocolMaxMsgSize { return nil, fmt.Errorf("message too big") } if msg.Code == discMsg { // Disconnect before protocol handshake is valid according to the // spec and we send it ourself if the post-handshake checks fail. // We can't return the reason directly, though, because it is echoed // back otherwise. Wrap it in a string instead. var reason [1]DiscReason rlp.Decode(msg.Payload, &reason) return nil, reason[0] } if msg.Code != handshakeMsg { return nil, fmt.Errorf("expected handshake, got %x", msg.Code) } var hs protoHandshake if err := msg.Decode(&hs); err != nil { return nil, err } if len(hs.ID) != 64 || !bitutil.TestBytes(hs.ID) { return nil, DiscInvalidIdentity } return &hs, nil } // doEncHandshake runs the protocol handshake using authenticated // messages. the protocol handshake is the first authenticated message // and also verifies whether the encryption handshake 'worked' and the // remote side actually provided the right public key. func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *ecdsa.PublicKey) (*ecdsa.PublicKey, error) { var ( sec secrets err error ) if dial == nil { sec, err = receiverEncHandshake(t.fd, prv) } else { sec, err = initiatorEncHandshake(t.fd, prv, dial) } if err != nil { return nil, err } t.wmu.Lock() t.rw = newRLPXFrameRW(t.fd, sec) t.wmu.Unlock() return sec.Remote.ExportECDSA(), nil } // encHandshake contains the state of the encryption handshake. type encHandshake struct { initiator bool remote *ecies.PublicKey // remote-pubk initNonce, respNonce []byte // nonce randomPrivKey *ecies.PrivateKey // ecdhe-random remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk } // secrets represents the connection secrets // which are negotiated during the encryption handshake. type secrets struct { Remote *ecies.PublicKey AES, MAC []byte EgressMAC, IngressMAC hash.Hash Token []byte } // RLPx v4 handshake auth (defined in EIP-8). type authMsgV4 struct { gotPlain bool // whether read packet had plain format. Signature [sigLen]byte InitiatorPubkey [pubLen]byte Nonce [shaLen]byte Version uint // Ignore additional fields (forward-compatibility) Rest []rlp.RawValue `rlp:"tail"` } // RLPx v4 handshake response (defined in EIP-8). type authRespV4 struct { RandomPubkey [pubLen]byte Nonce [shaLen]byte Version uint // Ignore additional fields (forward-compatibility) Rest []rlp.RawValue `rlp:"tail"` } // secrets is called after the handshake is completed. // It extracts the connection secrets from the handshake values. func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) if err != nil { return secrets{}, err } // derive base secrets from ephemeral key agreement sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) s := secrets{ Remote: h.remote, AES: aesSecret, MAC: crypto.Keccak256(ecdheSecret, aesSecret), } // setup sha3 instances for the MACs mac1 := sha3.NewLegacyKeccak256() mac1.Write(xor(s.MAC, h.respNonce)) mac1.Write(auth) mac2 := sha3.NewLegacyKeccak256() mac2.Write(xor(s.MAC, h.initNonce)) mac2.Write(authResp) if h.initiator { s.EgressMAC, s.IngressMAC = mac1, mac2 } else { s.EgressMAC, s.IngressMAC = mac2, mac1 } return s, nil } // staticSharedSecret returns the static shared secret, the result // of key agreement between the local and remote static node key. func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) } // initiatorEncHandshake negotiates a session token on conn. // it should be called on the dialing side of the connection. // // prv is the local client's private key. func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s secrets, err error) { h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)} authMsg, err := h.makeAuthMsg(prv) if err != nil { return s, err } authPacket, err := sealEIP8(authMsg, h) if err != nil { return s, err } if _, err = conn.Write(authPacket); err != nil { return s, err } authRespMsg := new(authRespV4) authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) if err != nil { return s, err } if err := h.handleAuthResp(authRespMsg); err != nil { return s, err } return h.secrets(authPacket, authRespPacket) } // makeAuthMsg creates the initiator handshake message. func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { // Generate random initiator nonce. h.initNonce = make([]byte, shaLen) _, err := rand.Read(h.initNonce) if err != nil { return nil, err } // Generate random keypair to for ECDH. h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { return nil, err } // Sign known message: static-shared-secret ^ nonce token, err := h.staticSharedSecret(prv) if err != nil { return nil, err } signed := xor(token, h.initNonce) signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) if err != nil { return nil, err } msg := new(authMsgV4) copy(msg.Signature[:], signature) copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) copy(msg.Nonce[:], h.initNonce) msg.Version = 4 return msg, nil } func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { h.respNonce = msg.Nonce[:] h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) return err } // receiverEncHandshake negotiates a session token on conn. // it should be called on the listening side of the connection. // // prv is the local client's private key. func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s secrets, err error) { authMsg := new(authMsgV4) authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) if err != nil { return s, err } h := new(encHandshake) if err := h.handleAuthMsg(authMsg, prv); err != nil { return s, err } authRespMsg, err := h.makeAuthResp() if err != nil { return s, err } var authRespPacket []byte if authMsg.gotPlain { authRespPacket, err = authRespMsg.sealPlain(h) } else { authRespPacket, err = sealEIP8(authRespMsg, h) } if err != nil { return s, err } if _, err = conn.Write(authRespPacket); err != nil { return s, err } return h.secrets(authPacket, authRespPacket) } func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { // Import the remote identity. rpub, err := importPublicKey(msg.InitiatorPubkey[:]) if err != nil { return err } h.initNonce = msg.Nonce[:] h.remote = rpub // Generate random keypair for ECDH. // If a private key is already set, use it instead of generating one (for testing). if h.randomPrivKey == nil { h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { return err } } // Check the signature. token, err := h.staticSharedSecret(prv) if err != nil { return err } signedMsg := xor(token, h.initNonce) remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) if err != nil { return err } h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) return nil } func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { // Generate random nonce. h.respNonce = make([]byte, shaLen) if _, err = rand.Read(h.respNonce); err != nil { return nil, err } msg = new(authRespV4) copy(msg.Nonce[:], h.respNonce) copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) msg.Version = 4 return msg, nil } func (msg *authMsgV4) decodePlain(input []byte) { n := copy(msg.Signature[:], input) n += shaLen // skip sha3(initiator-ephemeral-pubk) n += copy(msg.InitiatorPubkey[:], input[n:]) copy(msg.Nonce[:], input[n:]) msg.Version = 4 msg.gotPlain = true } func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { buf := make([]byte, authRespLen) n := copy(buf, msg.RandomPubkey[:]) copy(buf[n:], msg.Nonce[:]) return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil) } func (msg *authRespV4) decodePlain(input []byte) { n := copy(msg.RandomPubkey[:], input) copy(msg.Nonce[:], input[n:]) msg.Version = 4 } var padSpace = make([]byte, 300) func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { buf := new(bytes.Buffer) if err := rlp.Encode(buf, msg); err != nil { return nil, err } // pad with random amount of data. the amount needs to be at least 100 bytes to make // the message distinguishable from pre-EIP-8 handshakes. pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] buf.Write(pad) prefix := make([]byte, 2) binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix) return append(prefix, enc...), err } type plainDecoder interface { decodePlain([]byte) } func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { buf := make([]byte, plainSize) if _, err := io.ReadFull(r, buf); err != nil { return buf, err } // Attempt decoding pre-EIP-8 "plain" format. key := ecies.ImportECDSA(prv) if dec, err := key.Decrypt(buf, nil, nil); err == nil { msg.decodePlain(dec) return buf, nil } // Could be EIP-8 format, try that. prefix := buf[:2] size := binary.BigEndian.Uint16(prefix) if size < uint16(plainSize) { return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) } buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { return buf, err } dec, err := key.Decrypt(buf[2:], nil, prefix) if err != nil { return buf, err } // Can't use rlp.DecodeBytes here because it rejects // trailing data (forward-compatibility). s := rlp.NewStream(bytes.NewReader(dec), 0) return buf, s.Decode(msg) } // importPublicKey unmarshals 512 bit public keys. func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { var pubKey65 []byte switch len(pubKey) { case 64: // add 'uncompressed key' flag pubKey65 = append([]byte{0x04}, pubKey...) case 65: pubKey65 = pubKey default: return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) } // TODO: fewer pointless conversions pub, err := crypto.UnmarshalPubkey(pubKey65) if err != nil { return nil, err } return ecies.ImportECDSAPublic(pub), nil } func exportPubkey(pub *ecies.PublicKey) []byte { if pub == nil { panic("nil pubkey") } return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] } func xor(one, other []byte) (xor []byte) { xor = make([]byte, len(one)) for i := 0; i < len(one); i++ { xor[i] = one[i] ^ other[i] } return xor } var ( // this is used in place of actual frame header data. // TODO: replace this when Msg contains the protocol type code. zeroHeader = []byte{0xC2, 0x80, 0x80} // sixteen zero bytes zero16 = make([]byte, 16) ) // rlpxFrameRW implements a simplified version of RLPx framing. // chunked messages are not supported and all headers are equal to // zeroHeader. // // rlpxFrameRW is not safe for concurrent use from multiple goroutines. type rlpxFrameRW struct { conn io.ReadWriter enc cipher.Stream dec cipher.Stream macCipher cipher.Block egressMAC hash.Hash ingressMAC hash.Hash snappy bool } func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { macc, err := aes.NewCipher(s.MAC) if err != nil { panic("invalid MAC secret: " + err.Error()) } encc, err := aes.NewCipher(s.AES) if err != nil { panic("invalid AES secret: " + err.Error()) } // we use an all-zeroes IV for AES because the key used // for encryption is ephemeral. iv := make([]byte, encc.BlockSize()) return &rlpxFrameRW{ conn: conn, enc: cipher.NewCTR(encc, iv), dec: cipher.NewCTR(encc, iv), macCipher: macc, egressMAC: s.EgressMAC, ingressMAC: s.IngressMAC, } } func (rw *rlpxFrameRW) WriteMsg(msg Msg) error { ptype, _ := rlp.EncodeToBytes(msg.Code) // if snappy is enabled, compress message now if rw.snappy { if msg.Size > maxUint24 { return errPlainMessageTooLarge } payload, _ := ioutil.ReadAll(msg.Payload) payload = snappy.Encode(nil, payload) msg.Payload = bytes.NewReader(payload) msg.Size = uint32(len(payload)) } msg.meterSize = msg.Size if metrics.Enabled && msg.meterCap.Name != "" { // don't meter non-subprotocol messages m := fmt.Sprintf("%s/%s/%d/%#02x", egressMeterName, msg.meterCap.Name, msg.meterCap.Version, msg.meterCode) metrics.GetOrRegisterMeter(m, nil).Mark(int64(msg.meterSize)) } // write header headbuf := make([]byte, 32) fsize := uint32(len(ptype)) + msg.Size if fsize > maxUint24 { return errors.New("message size overflows uint24") } putInt24(fsize, headbuf) // TODO: check overflow copy(headbuf[3:], zeroHeader) rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted // write header MAC copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) if _, err := rw.conn.Write(headbuf); err != nil { return err } // write encrypted frame, updating the egress MAC hash with // the data written to conn. tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} if _, err := tee.Write(ptype); err != nil { return err } if _, err := io.Copy(tee, msg.Payload); err != nil { return err } if padding := fsize % 16; padding > 0 { if _, err := tee.Write(zero16[:16-padding]); err != nil { return err } } // write frame MAC. egress MAC hash is up to date because // frame content was written to it as well. fmacseed := rw.egressMAC.Sum(nil) mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) _, err := rw.conn.Write(mac) return err } func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) { // read the header headbuf := make([]byte, 32) if _, err := io.ReadFull(rw.conn, headbuf); err != nil { return msg, err } // verify header mac shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) if !hmac.Equal(shouldMAC, headbuf[16:]) { return msg, errors.New("bad header MAC") } rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted fsize := readInt24(headbuf) // ignore protocol type for now // read the frame content var rsize = fsize // frame size rounded up to 16 byte boundary if padding := fsize % 16; padding > 0 { rsize += 16 - padding } framebuf := make([]byte, rsize) if _, err := io.ReadFull(rw.conn, framebuf); err != nil { return msg, err } // read and validate frame MAC. we can re-use headbuf for that. rw.ingressMAC.Write(framebuf) fmacseed := rw.ingressMAC.Sum(nil) if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { return msg, err } shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) if !hmac.Equal(shouldMAC, headbuf[:16]) { return msg, errors.New("bad frame MAC") } // decrypt frame content rw.dec.XORKeyStream(framebuf, framebuf) // decode message code content := bytes.NewReader(framebuf[:fsize]) if err := rlp.Decode(content, &msg.Code); err != nil { return msg, err } msg.Size = uint32(content.Len()) msg.meterSize = msg.Size msg.Payload = content // if snappy is enabled, verify and decompress message if rw.snappy { payload, err := ioutil.ReadAll(msg.Payload) if err != nil { return msg, err } size, err := snappy.DecodedLen(payload) if err != nil { return msg, err } if size > int(maxUint24) { return msg, errPlainMessageTooLarge } payload, err = snappy.Decode(nil, payload) if err != nil { return msg, err } msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload) } return msg, nil } // updateMAC reseeds the given hash with encrypted seed. // it returns the first 16 bytes of the hash sum after seeding. func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { aesbuf := make([]byte, aes.BlockSize) block.Encrypt(aesbuf, mac.Sum(nil)) for i := range aesbuf { aesbuf[i] ^= seed[i] } mac.Write(aesbuf) return mac.Sum(nil)[:16] } func readInt24(b []byte) uint32 { return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 } func putInt24(v uint32, b []byte) { b[0] = byte(v >> 16) b[1] = byte(v >> 8) b[2] = byte(v) }