// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package scwallet import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/elliptic" "crypto/rand" "crypto/sha256" "crypto/sha512" "fmt" "github.com/ethereum/go-ethereum/crypto" pcsc "github.com/gballet/go-libpcsclite" "golang.org/x/crypto/pbkdf2" "golang.org/x/text/unicode/norm" ) const ( maxPayloadSize = 223 pairP1FirstStep = 0 pairP1LastStep = 1 scSecretLength = 32 scBlockSize = 16 insOpenSecureChannel = 0x10 insMutuallyAuthenticate = 0x11 insPair = 0x12 insUnpair = 0x13 pairingSalt = "Keycard Pairing Password Salt" ) // SecureChannelSession enables secure communication with a hardware wallet. type SecureChannelSession struct { card *pcsc.Card // A handle to the smartcard for communication secret []byte // A shared secret generated from our ECDSA keys publicKey []byte // Our own ephemeral public key PairingKey []byte // A permanent shared secret for a pairing, if present sessionEncKey []byte // The current session encryption key sessionMacKey []byte // The current session MAC key iv []byte // The current IV PairingIndex uint8 // The pairing index } // NewSecureChannelSession creates a new secure channel for the given card and public key. func NewSecureChannelSession(card *pcsc.Card, keyData []byte) (*SecureChannelSession, error) { // Generate an ECDSA keypair for ourselves key, err := crypto.GenerateKey() if err != nil { return nil, err } cardPublic, err := crypto.UnmarshalPubkey(keyData) if err != nil { return nil, fmt.Errorf("could not unmarshal public key from card: %v", err) } secret, _ := key.Curve.ScalarMult(cardPublic.X, cardPublic.Y, key.D.Bytes()) return &SecureChannelSession{ card: card, secret: secret.Bytes(), publicKey: elliptic.Marshal(crypto.S256(), key.PublicKey.X, key.PublicKey.Y), }, nil } // Pair establishes a new pairing with the smartcard. func (s *SecureChannelSession) Pair(pairingPassword []byte) error { secretHash := pbkdf2.Key(norm.NFKD.Bytes(pairingPassword), norm.NFKD.Bytes([]byte(pairingSalt)), 50000, 32, sha256.New) challenge := make([]byte, 32) if _, err := rand.Read(challenge); err != nil { return err } response, err := s.pair(pairP1FirstStep, challenge) if err != nil { return err } md := sha256.New() md.Write(secretHash[:]) md.Write(challenge) expectedCryptogram := md.Sum(nil) cardCryptogram := response.Data[:32] cardChallenge := response.Data[32:64] if !bytes.Equal(expectedCryptogram, cardCryptogram) { return fmt.Errorf("invalid card cryptogram %v != %v", expectedCryptogram, cardCryptogram) } md.Reset() md.Write(secretHash[:]) md.Write(cardChallenge) response, err = s.pair(pairP1LastStep, md.Sum(nil)) if err != nil { return err } md.Reset() md.Write(secretHash[:]) md.Write(response.Data[1:]) s.PairingKey = md.Sum(nil) s.PairingIndex = response.Data[0] return nil } // Unpair disestablishes an existing pairing. func (s *SecureChannelSession) Unpair() error { if s.PairingKey == nil { return fmt.Errorf("cannot unpair: not paired") } _, err := s.transmitEncrypted(claSCWallet, insUnpair, s.PairingIndex, 0, []byte{}) if err != nil { return err } s.PairingKey = nil // Close channel s.iv = nil return nil } // Open initializes the secure channel. func (s *SecureChannelSession) Open() error { if s.iv != nil { return fmt.Errorf("session already opened") } response, err := s.open() if err != nil { return err } // Generate the encryption/mac key by hashing our shared secret, // pairing key, and the first bytes returned from the Open APDU. md := sha512.New() md.Write(s.secret) md.Write(s.PairingKey) md.Write(response.Data[:scSecretLength]) keyData := md.Sum(nil) s.sessionEncKey = keyData[:scSecretLength] s.sessionMacKey = keyData[scSecretLength : scSecretLength*2] // The IV is the last bytes returned from the Open APDU. s.iv = response.Data[scSecretLength:] return s.mutuallyAuthenticate() } // mutuallyAuthenticate is an internal method to authenticate both ends of the // connection. func (s *SecureChannelSession) mutuallyAuthenticate() error { data := make([]byte, scSecretLength) if _, err := rand.Read(data); err != nil { return err } response, err := s.transmitEncrypted(claSCWallet, insMutuallyAuthenticate, 0, 0, data) if err != nil { return err } if response.Sw1 != 0x90 || response.Sw2 != 0x00 { return fmt.Errorf("got unexpected response from MUTUALLY_AUTHENTICATE: 0x%x%x", response.Sw1, response.Sw2) } if len(response.Data) != scSecretLength { return fmt.Errorf("response from MUTUALLY_AUTHENTICATE was %d bytes, expected %d", len(response.Data), scSecretLength) } return nil } // open is an internal method that sends an open APDU. func (s *SecureChannelSession) open() (*responseAPDU, error) { return transmit(s.card, &commandAPDU{ Cla: claSCWallet, Ins: insOpenSecureChannel, P1: s.PairingIndex, P2: 0, Data: s.publicKey, Le: 0, }) } // pair is an internal method that sends a pair APDU. func (s *SecureChannelSession) pair(p1 uint8, data []byte) (*responseAPDU, error) { return transmit(s.card, &commandAPDU{ Cla: claSCWallet, Ins: insPair, P1: p1, P2: 0, Data: data, Le: 0, }) } // transmitEncrypted sends an encrypted message, and decrypts and returns the response. func (s *SecureChannelSession) transmitEncrypted(cla, ins, p1, p2 byte, data []byte) (*responseAPDU, error) { if s.iv == nil { return nil, fmt.Errorf("channel not open") } data, err := s.encryptAPDU(data) if err != nil { return nil, err } meta := [16]byte{cla, ins, p1, p2, byte(len(data) + scBlockSize)} if err = s.updateIV(meta[:], data); err != nil { return nil, err } fulldata := make([]byte, len(s.iv)+len(data)) copy(fulldata, s.iv) copy(fulldata[len(s.iv):], data) response, err := transmit(s.card, &commandAPDU{ Cla: cla, Ins: ins, P1: p1, P2: p2, Data: fulldata, }) if err != nil { return nil, err } rmeta := [16]byte{byte(len(response.Data))} rmac := response.Data[:len(s.iv)] rdata := response.Data[len(s.iv):] plainData, err := s.decryptAPDU(rdata) if err != nil { return nil, err } if err = s.updateIV(rmeta[:], rdata); err != nil { return nil, err } if !bytes.Equal(s.iv, rmac) { return nil, fmt.Errorf("invalid MAC in response") } rapdu := &responseAPDU{} rapdu.deserialize(plainData) if rapdu.Sw1 != sw1Ok { return nil, fmt.Errorf("unexpected response status Cla=0x%x, Ins=0x%x, Sw=0x%x%x", cla, ins, rapdu.Sw1, rapdu.Sw2) } return rapdu, nil } // encryptAPDU is an internal method that serializes and encrypts an APDU. func (s *SecureChannelSession) encryptAPDU(data []byte) ([]byte, error) { if len(data) > maxPayloadSize { return nil, fmt.Errorf("payload of %d bytes exceeds maximum of %d", len(data), maxPayloadSize) } data = pad(data, 0x80) ret := make([]byte, len(data)) a, err := aes.NewCipher(s.sessionEncKey) if err != nil { return nil, err } crypter := cipher.NewCBCEncrypter(a, s.iv) crypter.CryptBlocks(ret, data) return ret, nil } // pad applies message padding to a 16 byte boundary. func pad(data []byte, terminator byte) []byte { padded := make([]byte, (len(data)/16+1)*16) copy(padded, data) padded[len(data)] = terminator return padded } // decryptAPDU is an internal method that decrypts and deserializes an APDU. func (s *SecureChannelSession) decryptAPDU(data []byte) ([]byte, error) { a, err := aes.NewCipher(s.sessionEncKey) if err != nil { return nil, err } ret := make([]byte, len(data)) crypter := cipher.NewCBCDecrypter(a, s.iv) crypter.CryptBlocks(ret, data) return unpad(ret, 0x80) } // unpad strips padding from a message. func unpad(data []byte, terminator byte) ([]byte, error) { for i := 1; i <= 16; i++ { switch data[len(data)-i] { case 0: continue case terminator: return data[:len(data)-i], nil default: return nil, fmt.Errorf("expected end of padding, got %d", data[len(data)-i]) } } return nil, fmt.Errorf("expected end of padding, got 0") } // updateIV is an internal method that updates the initialization vector after // each message exchanged. func (s *SecureChannelSession) updateIV(meta, data []byte) error { data = pad(data, 0) a, err := aes.NewCipher(s.sessionMacKey) if err != nil { return err } crypter := cipher.NewCBCEncrypter(a, make([]byte, 16)) crypter.CryptBlocks(meta, meta) crypter.CryptBlocks(data, data) // The first 16 bytes of the last block is the MAC s.iv = data[len(data)-32 : len(data)-16] return nil }