// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package miner import ( "bytes" "fmt" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/accounts" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/pow" "gopkg.in/fatih/set.v0" ) const ( resultQueueSize = 10 miningLogAtDepth = 5 ) // Agent can register themself with the worker type Agent interface { Work() chan<- *Work SetReturnCh(chan<- *Result) Stop() Start() GetHashRate() int64 } // Work is the workers current environment and holds // all of the current state information type Work struct { config *params.ChainConfig signer types.Signer state *state.StateDB // apply state changes here ancestors *set.Set // ancestor set (used for checking uncle parent validity) family *set.Set // family set (used for checking uncle invalidity) uncles *set.Set // uncle set tcount int // tx count in cycle ownedAccounts *set.Set lowGasTxs types.Transactions failedTxs types.Transactions Block *types.Block // the new block header *types.Header txs []*types.Transaction receipts []*types.Receipt createdAt time.Time } type Result struct { Work *Work Block *types.Block } // worker is the main object which takes care of applying messages to the new state type worker struct { config *params.ChainConfig mu sync.Mutex // update loop mux *event.TypeMux events event.Subscription wg sync.WaitGroup agents map[Agent]struct{} recv chan *Result pow pow.PoW eth Backend chain *core.BlockChain proc core.Validator chainDb ethdb.Database coinbase common.Address gasPrice *big.Int extra []byte currentMu sync.Mutex current *Work uncleMu sync.Mutex possibleUncles map[common.Hash]*types.Block txQueueMu sync.Mutex txQueue map[common.Hash]*types.Transaction unconfirmed *unconfirmedBlocks // set of locally mined blocks pending canonicalness confirmations // atomic status counters mining int32 atWork int32 fullValidation bool } func newWorker(config *params.ChainConfig, coinbase common.Address, eth Backend, mux *event.TypeMux) *worker { worker := &worker{ config: config, eth: eth, mux: mux, chainDb: eth.ChainDb(), recv: make(chan *Result, resultQueueSize), gasPrice: new(big.Int), chain: eth.BlockChain(), proc: eth.BlockChain().Validator(), possibleUncles: make(map[common.Hash]*types.Block), coinbase: coinbase, txQueue: make(map[common.Hash]*types.Transaction), agents: make(map[Agent]struct{}), unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), 5), fullValidation: false, } worker.events = worker.mux.Subscribe(core.ChainHeadEvent{}, core.ChainSideEvent{}, core.TxPreEvent{}) go worker.update() go worker.wait() worker.commitNewWork() return worker } func (self *worker) setEtherbase(addr common.Address) { self.mu.Lock() defer self.mu.Unlock() self.coinbase = addr } func (self *worker) setExtra(extra []byte) { self.mu.Lock() defer self.mu.Unlock() self.extra = extra } func (self *worker) pending() (*types.Block, *state.StateDB) { self.currentMu.Lock() defer self.currentMu.Unlock() if atomic.LoadInt32(&self.mining) == 0 { return types.NewBlock( self.current.header, self.current.txs, nil, self.current.receipts, ), self.current.state.Copy() } return self.current.Block, self.current.state.Copy() } func (self *worker) pendingBlock() *types.Block { self.currentMu.Lock() defer self.currentMu.Unlock() if atomic.LoadInt32(&self.mining) == 0 { return types.NewBlock( self.current.header, self.current.txs, nil, self.current.receipts, ) } return self.current.Block } func (self *worker) start() { self.mu.Lock() defer self.mu.Unlock() atomic.StoreInt32(&self.mining, 1) // spin up agents for agent := range self.agents { agent.Start() } } func (self *worker) stop() { self.wg.Wait() self.mu.Lock() defer self.mu.Unlock() if atomic.LoadInt32(&self.mining) == 1 { // Stop all agents. for agent := range self.agents { agent.Stop() // Remove CPU agents. if _, ok := agent.(*CpuAgent); ok { delete(self.agents, agent) } } } atomic.StoreInt32(&self.mining, 0) atomic.StoreInt32(&self.atWork, 0) } func (self *worker) register(agent Agent) { self.mu.Lock() defer self.mu.Unlock() self.agents[agent] = struct{}{} agent.SetReturnCh(self.recv) } func (self *worker) unregister(agent Agent) { self.mu.Lock() defer self.mu.Unlock() delete(self.agents, agent) agent.Stop() } func (self *worker) update() { for event := range self.events.Chan() { // A real event arrived, process interesting content switch ev := event.Data.(type) { case core.ChainHeadEvent: self.commitNewWork() case core.ChainSideEvent: self.uncleMu.Lock() self.possibleUncles[ev.Block.Hash()] = ev.Block self.uncleMu.Unlock() case core.TxPreEvent: // Apply transaction to the pending state if we're not mining if atomic.LoadInt32(&self.mining) == 0 { self.currentMu.Lock() acc, _ := types.Sender(self.current.signer, ev.Tx) txs := map[common.Address]types.Transactions{acc: {ev.Tx}} txset := types.NewTransactionsByPriceAndNonce(txs) self.current.commitTransactions(self.mux, txset, self.gasPrice, self.chain) self.currentMu.Unlock() } } } } func (self *worker) wait() { for { mustCommitNewWork := true for result := range self.recv { atomic.AddInt32(&self.atWork, -1) if result == nil { continue } block := result.Block work := result.Work if self.fullValidation { if _, err := self.chain.InsertChain(types.Blocks{block}); err != nil { glog.V(logger.Error).Infoln("mining err", err) continue } go self.mux.Post(core.NewMinedBlockEvent{Block: block}) } else { work.state.Commit(self.config.IsEIP158(block.Number())) parent := self.chain.GetBlock(block.ParentHash(), block.NumberU64()-1) if parent == nil { glog.V(logger.Error).Infoln("Invalid block found during mining") continue } auxValidator := self.eth.BlockChain().AuxValidator() if err := core.ValidateHeader(self.config, auxValidator, block.Header(), parent.Header(), true, false); err != nil && err != core.BlockFutureErr { glog.V(logger.Error).Infoln("Invalid header on mined block:", err) continue } stat, err := self.chain.WriteBlock(block) if err != nil { glog.V(logger.Error).Infoln("error writing block to chain", err) continue } // update block hash since it is now available and not when the receipt/log of individual transactions were created for _, r := range work.receipts { for _, l := range r.Logs { l.BlockHash = block.Hash() } } for _, log := range work.state.Logs() { log.BlockHash = block.Hash() } // check if canon block and write transactions if stat == core.CanonStatTy { // This puts transactions in a extra db for rpc core.WriteTransactions(self.chainDb, block) // store the receipts core.WriteReceipts(self.chainDb, work.receipts) // Write map map bloom filters core.WriteMipmapBloom(self.chainDb, block.NumberU64(), work.receipts) // implicit by posting ChainHeadEvent mustCommitNewWork = false } // broadcast before waiting for validation go func(block *types.Block, logs []*types.Log, receipts []*types.Receipt) { self.mux.Post(core.NewMinedBlockEvent{Block: block}) self.mux.Post(core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs}) if stat == core.CanonStatTy { self.mux.Post(core.ChainHeadEvent{Block: block}) self.mux.Post(logs) } if err := core.WriteBlockReceipts(self.chainDb, block.Hash(), block.NumberU64(), receipts); err != nil { glog.V(logger.Warn).Infoln("error writing block receipts:", err) } }(block, work.state.Logs(), work.receipts) } // Insert the block into the set of pending ones to wait for confirmations self.unconfirmed.Insert(block.NumberU64(), block.Hash()) if mustCommitNewWork { self.commitNewWork() } } } } // push sends a new work task to currently live miner agents. func (self *worker) push(work *Work) { if atomic.LoadInt32(&self.mining) != 1 { return } for agent := range self.agents { atomic.AddInt32(&self.atWork, 1) if ch := agent.Work(); ch != nil { ch <- work } } } // makeCurrent creates a new environment for the current cycle. func (self *worker) makeCurrent(parent *types.Block, header *types.Header) error { state, err := self.chain.StateAt(parent.Root()) if err != nil { return err } work := &Work{ config: self.config, signer: types.NewEIP155Signer(self.config.ChainId), state: state, ancestors: set.New(), family: set.New(), uncles: set.New(), header: header, createdAt: time.Now(), } // when 08 is processed ancestors contain 07 (quick block) for _, ancestor := range self.chain.GetBlocksFromHash(parent.Hash(), 7) { for _, uncle := range ancestor.Uncles() { work.family.Add(uncle.Hash()) } work.family.Add(ancestor.Hash()) work.ancestors.Add(ancestor.Hash()) } accounts := self.eth.AccountManager().Accounts() // Keep track of transactions which return errors so they can be removed work.tcount = 0 work.ownedAccounts = accountAddressesSet(accounts) self.current = work return nil } func (w *worker) setGasPrice(p *big.Int) { w.mu.Lock() defer w.mu.Unlock() // calculate the minimal gas price the miner accepts when sorting out transactions. const pct = int64(90) w.gasPrice = gasprice(p, pct) w.mux.Post(core.GasPriceChanged{Price: w.gasPrice}) } func (self *worker) commitNewWork() { self.mu.Lock() defer self.mu.Unlock() self.uncleMu.Lock() defer self.uncleMu.Unlock() self.currentMu.Lock() defer self.currentMu.Unlock() tstart := time.Now() parent := self.chain.CurrentBlock() tstamp := tstart.Unix() if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 { tstamp = parent.Time().Int64() + 1 } // this will ensure we're not going off too far in the future if now := time.Now().Unix(); tstamp > now+4 { wait := time.Duration(tstamp-now) * time.Second glog.V(logger.Info).Infoln("We are too far in the future. Waiting for", wait) time.Sleep(wait) } num := parent.Number() header := &types.Header{ ParentHash: parent.Hash(), Number: num.Add(num, common.Big1), Difficulty: core.CalcDifficulty(self.config, uint64(tstamp), parent.Time().Uint64(), parent.Number(), parent.Difficulty()), GasLimit: core.CalcGasLimit(parent), GasUsed: new(big.Int), Coinbase: self.coinbase, Extra: self.extra, Time: big.NewInt(tstamp), } // If we are care about TheDAO hard-fork check whether to override the extra-data or not if daoBlock := self.config.DAOForkBlock; daoBlock != nil { // Check whether the block is among the fork extra-override range limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 { // Depending whether we support or oppose the fork, override differently if self.config.DAOForkSupport { header.Extra = common.CopyBytes(params.DAOForkBlockExtra) } else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) { header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data } } } // Could potentially happen if starting to mine in an odd state. err := self.makeCurrent(parent, header) if err != nil { glog.V(logger.Info).Infoln("Could not create new env for mining, retrying on next block.") return } // Create the current work task and check any fork transitions needed work := self.current if self.config.DAOForkSupport && self.config.DAOForkBlock != nil && self.config.DAOForkBlock.Cmp(header.Number) == 0 { core.ApplyDAOHardFork(work.state) } pending, err := self.eth.TxPool().Pending() if err != nil { glog.Errorf("Could not fetch pending transactions: %v", err) return } txs := types.NewTransactionsByPriceAndNonce(pending) work.commitTransactions(self.mux, txs, self.gasPrice, self.chain) self.eth.TxPool().RemoveBatch(work.lowGasTxs) self.eth.TxPool().RemoveBatch(work.failedTxs) // compute uncles for the new block. var ( uncles []*types.Header badUncles []common.Hash ) for hash, uncle := range self.possibleUncles { if len(uncles) == 2 { break } if err := self.commitUncle(work, uncle.Header()); err != nil { if glog.V(logger.Ridiculousness) { glog.V(logger.Detail).Infof("Bad uncle found and will be removed (%x)\n", hash[:4]) glog.V(logger.Detail).Infoln(uncle) } badUncles = append(badUncles, hash) } else { glog.V(logger.Debug).Infof("committing %x as uncle\n", hash[:4]) uncles = append(uncles, uncle.Header()) } } for _, hash := range badUncles { delete(self.possibleUncles, hash) } if atomic.LoadInt32(&self.mining) == 1 { // commit state root after all state transitions. core.AccumulateRewards(work.state, header, uncles) header.Root = work.state.IntermediateRoot(self.config.IsEIP158(header.Number)) } // create the new block whose nonce will be mined. work.Block = types.NewBlock(header, work.txs, uncles, work.receipts) // We only care about logging if we're actually mining. if atomic.LoadInt32(&self.mining) == 1 { glog.V(logger.Info).Infof("commit new work on block %v with %d txs & %d uncles. Took %v\n", work.Block.Number(), work.tcount, len(uncles), time.Since(tstart)) self.unconfirmed.Shift(work.Block.NumberU64() - 1) } self.push(work) } func (self *worker) commitUncle(work *Work, uncle *types.Header) error { hash := uncle.Hash() if work.uncles.Has(hash) { return core.UncleError("Uncle not unique") } if !work.ancestors.Has(uncle.ParentHash) { return core.UncleError(fmt.Sprintf("Uncle's parent unknown (%x)", uncle.ParentHash[0:4])) } if work.family.Has(hash) { return core.UncleError(fmt.Sprintf("Uncle already in family (%x)", hash)) } work.uncles.Add(uncle.Hash()) return nil } func (env *Work) commitTransactions(mux *event.TypeMux, txs *types.TransactionsByPriceAndNonce, gasPrice *big.Int, bc *core.BlockChain) { gp := new(core.GasPool).AddGas(env.header.GasLimit) var coalescedLogs []*types.Log for { // Retrieve the next transaction and abort if all done tx := txs.Peek() if tx == nil { break } // Error may be ignored here. The error has already been checked // during transaction acceptance is the transaction pool. // // We use the eip155 signer regardless of the current hf. from, _ := types.Sender(env.signer, tx) // Check whether the tx is replay protected. If we're not in the EIP155 hf // phase, start ignoring the sender until we do. if tx.Protected() && !env.config.IsEIP155(env.header.Number) { glog.V(logger.Detail).Infof("Transaction (%x) is replay protected, but we haven't yet hardforked. Transaction will be ignored until we hardfork.\n", tx.Hash()) txs.Pop() continue } // Ignore any transactions (and accounts subsequently) with low gas limits if tx.GasPrice().Cmp(gasPrice) < 0 && !env.ownedAccounts.Has(from) { // Pop the current low-priced transaction without shifting in the next from the account glog.V(logger.Info).Infof("Transaction (%x) below gas price (tx=%v ask=%v). All sequential txs from this address(%x) will be ignored\n", tx.Hash().Bytes()[:4], common.CurrencyToString(tx.GasPrice()), common.CurrencyToString(gasPrice), from[:4]) env.lowGasTxs = append(env.lowGasTxs, tx) txs.Pop() continue } // Start executing the transaction env.state.StartRecord(tx.Hash(), common.Hash{}, env.tcount) err, logs := env.commitTransaction(tx, bc, gp) switch { case core.IsGasLimitErr(err): // Pop the current out-of-gas transaction without shifting in the next from the account glog.V(logger.Detail).Infof("Gas limit reached for (%x) in this block. Continue to try smaller txs\n", from[:4]) txs.Pop() case err != nil: // Pop the current failed transaction without shifting in the next from the account glog.V(logger.Detail).Infof("Transaction (%x) failed, will be removed: %v\n", tx.Hash().Bytes()[:4], err) env.failedTxs = append(env.failedTxs, tx) txs.Pop() default: // Everything ok, collect the logs and shift in the next transaction from the same account coalescedLogs = append(coalescedLogs, logs...) env.tcount++ txs.Shift() } } if len(coalescedLogs) > 0 || env.tcount > 0 { // make a copy, the state caches the logs and these logs get "upgraded" from pending to mined // logs by filling in the block hash when the block was mined by the local miner. This can // cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed. cpy := make([]*types.Log, len(coalescedLogs)) for i, l := range coalescedLogs { cpy[i] = new(types.Log) *cpy[i] = *l } go func(logs []*types.Log, tcount int) { if len(logs) > 0 { mux.Post(core.PendingLogsEvent{Logs: logs}) } if tcount > 0 { mux.Post(core.PendingStateEvent{}) } }(cpy, env.tcount) } } func (env *Work) commitTransaction(tx *types.Transaction, bc *core.BlockChain, gp *core.GasPool) (error, []*types.Log) { snap := env.state.Snapshot() receipt, _, err := core.ApplyTransaction(env.config, bc, gp, env.state, env.header, tx, env.header.GasUsed, vm.Config{}) if err != nil { env.state.RevertToSnapshot(snap) return err, nil } env.txs = append(env.txs, tx) env.receipts = append(env.receipts, receipt) return nil, receipt.Logs } // TODO: remove or use func (self *worker) HashRate() int64 { return 0 } // gasprice calculates a reduced gas price based on the pct // XXX Use big.Rat? func gasprice(price *big.Int, pct int64) *big.Int { p := new(big.Int).Set(price) p.Div(p, big.NewInt(100)) p.Mul(p, big.NewInt(pct)) return p } func accountAddressesSet(accounts []accounts.Account) *set.Set { accountSet := set.New() for _, account := range accounts { accountSet.Add(account.Address) } return accountSet }