// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is> // Copyright (c) 2012 The Go Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package ecies import ( "bytes" "crypto/elliptic" "crypto/rand" "crypto/sha256" "encoding/hex" "fmt" "math/big" "testing" "github.com/ethereum/go-ethereum/crypto" ) func TestKDF(t *testing.T) { tests := []struct { length int output []byte }{ {6, decode("858b192fa2ed")}, {32, decode("858b192fa2ed4395e2bf88dd8d5770d67dc284ee539f12da8bceaa45d06ebae0")}, {48, decode("858b192fa2ed4395e2bf88dd8d5770d67dc284ee539f12da8bceaa45d06ebae0700f1ab918a5f0413b8140f9940d6955")}, {64, decode("858b192fa2ed4395e2bf88dd8d5770d67dc284ee539f12da8bceaa45d06ebae0700f1ab918a5f0413b8140f9940d6955f3467fd6672cce1024c5b1effccc0f61")}, } for _, test := range tests { h := sha256.New() k := concatKDF(h, []byte("input"), nil, test.length) if !bytes.Equal(k, test.output) { t.Fatalf("KDF: generated key %x does not match expected output %x", k, test.output) } } } var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match") // cmpParams compares a set of ECIES parameters. We assume, as per the // docs, that AES is the only supported symmetric encryption algorithm. func cmpParams(p1, p2 *ECIESParams) bool { return p1.hashAlgo == p2.hashAlgo && p1.KeyLen == p2.KeyLen && p1.BlockSize == p2.BlockSize } // Validate the ECDH component. func TestSharedKey(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2 prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) if err != nil { t.Fatal(err) } sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) if err != nil { t.Fatal(err) } if !bytes.Equal(sk1, sk2) { t.Fatal(ErrBadSharedKeys) } } func TestSharedKeyPadding(t *testing.T) { // sanity checks prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9") prv1 := hexKey("0097a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a") x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16) x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16) y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16) y1, _ := new(big.Int).SetString("8ad915f2b503a8be6facab6588731fefeb584fd2dfa9a77a5e0bba1ec439e4fa", 16) if prv0.PublicKey.X.Cmp(x0) != 0 { t.Errorf("mismatched prv0.X:\nhave: %x\nwant: %x\n", prv0.PublicKey.X.Bytes(), x0.Bytes()) } if prv0.PublicKey.Y.Cmp(y0) != 0 { t.Errorf("mismatched prv0.Y:\nhave: %x\nwant: %x\n", prv0.PublicKey.Y.Bytes(), y0.Bytes()) } if prv1.PublicKey.X.Cmp(x1) != 0 { t.Errorf("mismatched prv1.X:\nhave: %x\nwant: %x\n", prv1.PublicKey.X.Bytes(), x1.Bytes()) } if prv1.PublicKey.Y.Cmp(y1) != 0 { t.Errorf("mismatched prv1.Y:\nhave: %x\nwant: %x\n", prv1.PublicKey.Y.Bytes(), y1.Bytes()) } // test shared secret generation sk1, err := prv0.GenerateShared(&prv1.PublicKey, 16, 16) if err != nil { t.Log(err.Error()) } sk2, err := prv1.GenerateShared(&prv0.PublicKey, 16, 16) if err != nil { t.Fatal(err.Error()) } if !bytes.Equal(sk1, sk2) { t.Fatal(ErrBadSharedKeys.Error()) } } // Verify that the key generation code fails when too much key data is // requested. func TestTooBigSharedKey(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } _, err = prv1.GenerateShared(&prv2.PublicKey, 32, 32) if err != ErrSharedKeyTooBig { t.Fatal("ecdh: shared key should be too large for curve") } _, err = prv2.GenerateShared(&prv1.PublicKey, 32, 32) if err != ErrSharedKeyTooBig { t.Fatal("ecdh: shared key should be too large for curve") } } // Benchmark the generation of P256 keys. func BenchmarkGenerateKeyP256(b *testing.B) { for i := 0; i < b.N; i++ { if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil { b.Fatal(err) } } } // Benchmark the generation of P256 shared keys. func BenchmarkGenSharedKeyP256(b *testing.B) { prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil) if err != nil { b.Fatal(err) } b.ResetTimer() for i := 0; i < b.N; i++ { _, err := prv.GenerateShared(&prv.PublicKey, 16, 16) if err != nil { b.Fatal(err) } } } // Benchmark the generation of S256 shared keys. func BenchmarkGenSharedKeyS256(b *testing.B) { prv, err := GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { b.Fatal(err) } b.ResetTimer() for i := 0; i < b.N; i++ { _, err := prv.GenerateShared(&prv.PublicKey, 16, 16) if err != nil { b.Fatal(err) } } } // Verify that an encrypted message can be successfully decrypted. func TestEncryptDecrypt(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) if err != nil { t.Fatal(err) } pt, err := prv2.Decrypt(ct, nil, nil) if err != nil { t.Fatal(err) } if !bytes.Equal(pt, message) { t.Fatal("ecies: plaintext doesn't match message") } _, err = prv1.Decrypt(ct, nil, nil) if err == nil { t.Fatal("ecies: encryption should not have succeeded") } } func TestDecryptShared2(t *testing.T) { prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } message := []byte("Hello, world.") shared2 := []byte("shared data 2") ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2) if err != nil { t.Fatal(err) } // Check that decrypting with correct shared data works. pt, err := prv.Decrypt(ct, nil, shared2) if err != nil { t.Fatal(err) } if !bytes.Equal(pt, message) { t.Fatal("ecies: plaintext doesn't match message") } // Decrypting without shared data or incorrect shared data fails. if _, err = prv.Decrypt(ct, nil, nil); err == nil { t.Fatal("ecies: decrypting without shared data didn't fail") } if _, err = prv.Decrypt(ct, nil, []byte("garbage")); err == nil { t.Fatal("ecies: decrypting with incorrect shared data didn't fail") } } type testCase struct { Curve elliptic.Curve Name string Expected *ECIESParams } var testCases = []testCase{ { Curve: elliptic.P256(), Name: "P256", Expected: ECIES_AES128_SHA256, }, { Curve: elliptic.P384(), Name: "P384", Expected: ECIES_AES256_SHA384, }, { Curve: elliptic.P521(), Name: "P521", Expected: ECIES_AES256_SHA512, }, } // Test parameter selection for each curve, and that P224 fails automatic // parameter selection (see README for a discussion of P224). Ensures that // selecting a set of parameters automatically for the given curve works. func TestParamSelection(t *testing.T) { for _, c := range testCases { testParamSelection(t, c) } } func testParamSelection(t *testing.T, c testCase) { params := ParamsFromCurve(c.Curve) if params == nil { t.Fatal("ParamsFromCurve returned nil") } else if params != nil && !cmpParams(params, c.Expected) { t.Fatalf("ecies: parameters should be invalid (%s)\n", c.Name) } prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatalf("%s (%s)\n", err.Error(), c.Name) } prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatalf("%s (%s)\n", err.Error(), c.Name) } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) if err != nil { t.Fatalf("%s (%s)\n", err.Error(), c.Name) } pt, err := prv2.Decrypt(ct, nil, nil) if err != nil { t.Fatalf("%s (%s)\n", err.Error(), c.Name) } if !bytes.Equal(pt, message) { t.Fatalf("ecies: plaintext doesn't match message (%s)\n", c.Name) } _, err = prv1.Decrypt(ct, nil, nil) if err == nil { t.Fatalf("ecies: encryption should not have succeeded (%s)\n", c.Name) } } // Ensure that the basic public key validation in the decryption operation // works. func TestBasicKeyValidation(t *testing.T) { badBytes := []byte{0, 1, 5, 6, 7, 8, 9} prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil) if err != nil { t.Fatal(err) } for _, b := range badBytes { ct[0] = b _, err := prv.Decrypt(ct, nil, nil) if err != ErrInvalidPublicKey { t.Fatal("ecies: validated an invalid key") } } } func TestBox(t *testing.T) { prv1 := hexKey("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f") prv2 := hexKey("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a") pub2 := &prv2.PublicKey message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, pub2, message, nil, nil) if err != nil { t.Fatal(err) } pt, err := prv2.Decrypt(ct, nil, nil) if err != nil { t.Fatal(err) } if !bytes.Equal(pt, message) { t.Fatal("ecies: plaintext doesn't match message") } if _, err = prv1.Decrypt(ct, nil, nil); err == nil { t.Fatal("ecies: encryption should not have succeeded") } } // Verify GenerateShared against static values - useful when // debugging changes in underlying libs func TestSharedKeyStatic(t *testing.T) { prv1 := hexKey("7ebbc6a8358bc76dd73ebc557056702c8cfc34e5cfcd90eb83af0347575fd2ad") prv2 := hexKey("6a3d6396903245bba5837752b9e0348874e72db0c4e11e9c485a81b4ea4353b9") skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2 sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) if err != nil { t.Fatal(err) } sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) if err != nil { t.Fatal(err) } if !bytes.Equal(sk1, sk2) { t.Fatal(ErrBadSharedKeys) } sk := decode("167ccc13ac5e8a26b131c3446030c60fbfac6aa8e31149d0869f93626a4cdf62") if !bytes.Equal(sk1, sk) { t.Fatalf("shared secret mismatch: want: %x have: %x", sk, sk1) } } func hexKey(prv string) *PrivateKey { key, err := crypto.HexToECDSA(prv) if err != nil { panic(err) } return ImportECDSA(key) } func decode(s string) []byte { bytes, err := hex.DecodeString(s) if err != nil { panic(err) } return bytes }