// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package discv5 import ( "bytes" "crypto/ecdsa" "errors" "fmt" "net" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/netutil" "github.com/ethereum/go-ethereum/rlp" ) var ( errInvalidEvent = errors.New("invalid in current state") errNoQuery = errors.New("no pending query") ) const ( autoRefreshInterval = 1 * time.Hour bucketRefreshInterval = 1 * time.Minute seedCount = 30 seedMaxAge = 5 * 24 * time.Hour lowPort = 1024 ) const testTopic = "foo" const ( printTestImgLogs = false ) // Network manages the table and all protocol interaction. type Network struct { db *nodeDB // database of known nodes conn transport netrestrict *netutil.Netlist closed chan struct{} // closed when loop is done closeReq chan struct{} // 'request to close' refreshReq chan []*Node // lookups ask for refresh on this channel refreshResp chan (<-chan struct{}) // ...and get the channel to block on from this one read chan ingressPacket // ingress packets arrive here timeout chan timeoutEvent queryReq chan *findnodeQuery // lookups submit findnode queries on this channel tableOpReq chan func() tableOpResp chan struct{} topicRegisterReq chan topicRegisterReq topicSearchReq chan topicSearchReq // State of the main loop. tab *Table topictab *topicTable ticketStore *ticketStore nursery []*Node nodes map[NodeID]*Node // tracks active nodes with state != known timeoutTimers map[timeoutEvent]*time.Timer // Revalidation queues. // Nodes put on these queues will be pinged eventually. slowRevalidateQueue []*Node fastRevalidateQueue []*Node // Buffers for state transition. sendBuf []*ingressPacket } // transport is implemented by the UDP transport. // it is an interface so we can test without opening lots of UDP // sockets and without generating a private key. type transport interface { sendPing(remote *Node, remoteAddr *net.UDPAddr, topics []Topic) (hash []byte) sendNeighbours(remote *Node, nodes []*Node) sendFindnodeHash(remote *Node, target common.Hash) sendTopicRegister(remote *Node, topics []Topic, topicIdx int, pong []byte) sendTopicNodes(remote *Node, queryHash common.Hash, nodes []*Node) send(remote *Node, ptype nodeEvent, p interface{}) (hash []byte) localAddr() *net.UDPAddr Close() } type findnodeQuery struct { remote *Node target common.Hash reply chan<- []*Node nresults int // counter for received nodes } type topicRegisterReq struct { add bool topic Topic } type topicSearchReq struct { topic Topic found chan<- *Node lookup chan<- bool delay time.Duration } type topicSearchResult struct { target lookupInfo nodes []*Node } type timeoutEvent struct { ev nodeEvent node *Node } func newNetwork(conn transport, ourPubkey ecdsa.PublicKey, dbPath string, netrestrict *netutil.Netlist) (*Network, error) { ourID := PubkeyID(&ourPubkey) var db *nodeDB if dbPath != "<no database>" { var err error if db, err = newNodeDB(dbPath, Version, ourID); err != nil { return nil, err } } tab := newTable(ourID, conn.localAddr()) net := &Network{ db: db, conn: conn, netrestrict: netrestrict, tab: tab, topictab: newTopicTable(db, tab.self), ticketStore: newTicketStore(), refreshReq: make(chan []*Node), refreshResp: make(chan (<-chan struct{})), closed: make(chan struct{}), closeReq: make(chan struct{}), read: make(chan ingressPacket, 100), timeout: make(chan timeoutEvent), timeoutTimers: make(map[timeoutEvent]*time.Timer), tableOpReq: make(chan func()), tableOpResp: make(chan struct{}), queryReq: make(chan *findnodeQuery), topicRegisterReq: make(chan topicRegisterReq), topicSearchReq: make(chan topicSearchReq), nodes: make(map[NodeID]*Node), } go net.loop() return net, nil } // Close terminates the network listener and flushes the node database. func (net *Network) Close() { net.conn.Close() select { case <-net.closed: case net.closeReq <- struct{}{}: <-net.closed } } // Self returns the local node. // The returned node should not be modified by the caller. func (net *Network) Self() *Node { return net.tab.self } // ReadRandomNodes fills the given slice with random nodes from the // table. It will not write the same node more than once. The nodes in // the slice are copies and can be modified by the caller. func (net *Network) ReadRandomNodes(buf []*Node) (n int) { net.reqTableOp(func() { n = net.tab.readRandomNodes(buf) }) return n } // SetFallbackNodes sets the initial points of contact. These nodes // are used to connect to the network if the table is empty and there // are no known nodes in the database. func (net *Network) SetFallbackNodes(nodes []*Node) error { nursery := make([]*Node, 0, len(nodes)) for _, n := range nodes { if err := n.validateComplete(); err != nil { return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err) } // Recompute cpy.sha because the node might not have been // created by NewNode or ParseNode. cpy := *n cpy.sha = crypto.Keccak256Hash(n.ID[:]) nursery = append(nursery, &cpy) } net.reqRefresh(nursery) return nil } // Resolve searches for a specific node with the given ID. // It returns nil if the node could not be found. func (net *Network) Resolve(targetID NodeID) *Node { result := net.lookup(crypto.Keccak256Hash(targetID[:]), true) for _, n := range result { if n.ID == targetID { return n } } return nil } // Lookup performs a network search for nodes close // to the given target. It approaches the target by querying // nodes that are closer to it on each iteration. // The given target does not need to be an actual node // identifier. // // The local node may be included in the result. func (net *Network) Lookup(targetID NodeID) []*Node { return net.lookup(crypto.Keccak256Hash(targetID[:]), false) } func (net *Network) lookup(target common.Hash, stopOnMatch bool) []*Node { var ( asked = make(map[NodeID]bool) seen = make(map[NodeID]bool) reply = make(chan []*Node, alpha) result = nodesByDistance{target: target} pendingQueries = 0 ) // Get initial answers from the local node. result.push(net.tab.self, bucketSize) for { // Ask the α closest nodes that we haven't asked yet. for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ { n := result.entries[i] if !asked[n.ID] { asked[n.ID] = true pendingQueries++ net.reqQueryFindnode(n, target, reply) } } if pendingQueries == 0 { // We have asked all closest nodes, stop the search. break } // Wait for the next reply. select { case nodes := <-reply: for _, n := range nodes { if n != nil && !seen[n.ID] { seen[n.ID] = true result.push(n, bucketSize) if stopOnMatch && n.sha == target { return result.entries } } } pendingQueries-- case <-time.After(respTimeout): // forget all pending requests, start new ones pendingQueries = 0 reply = make(chan []*Node, alpha) } } return result.entries } func (net *Network) RegisterTopic(topic Topic, stop <-chan struct{}) { select { case net.topicRegisterReq <- topicRegisterReq{true, topic}: case <-net.closed: return } select { case <-net.closed: case <-stop: select { case net.topicRegisterReq <- topicRegisterReq{false, topic}: case <-net.closed: } } } func (net *Network) SearchTopic(topic Topic, setPeriod <-chan time.Duration, found chan<- *Node, lookup chan<- bool) { for { select { case <-net.closed: return case delay, ok := <-setPeriod: select { case net.topicSearchReq <- topicSearchReq{topic: topic, found: found, lookup: lookup, delay: delay}: case <-net.closed: return } if !ok { return } } } } func (net *Network) reqRefresh(nursery []*Node) <-chan struct{} { select { case net.refreshReq <- nursery: return <-net.refreshResp case <-net.closed: return net.closed } } func (net *Network) reqQueryFindnode(n *Node, target common.Hash, reply chan []*Node) bool { q := &findnodeQuery{remote: n, target: target, reply: reply} select { case net.queryReq <- q: return true case <-net.closed: return false } } func (net *Network) reqReadPacket(pkt ingressPacket) { select { case net.read <- pkt: case <-net.closed: } } func (net *Network) reqTableOp(f func()) (called bool) { select { case net.tableOpReq <- f: <-net.tableOpResp return true case <-net.closed: return false } } // TODO: external address handling. type topicSearchInfo struct { lookupChn chan<- bool period time.Duration } const maxSearchCount = 5 func (net *Network) loop() { var ( refreshTimer = time.NewTicker(autoRefreshInterval) bucketRefreshTimer = time.NewTimer(bucketRefreshInterval) refreshDone chan struct{} // closed when the 'refresh' lookup has ended ) // Tracking the next ticket to register. var ( nextTicket *ticketRef nextRegisterTimer *time.Timer nextRegisterTime <-chan time.Time ) defer func() { if nextRegisterTimer != nil { nextRegisterTimer.Stop() } }() resetNextTicket := func() { ticket, timeout := net.ticketStore.nextFilteredTicket() if nextTicket != ticket { nextTicket = ticket if nextRegisterTimer != nil { nextRegisterTimer.Stop() nextRegisterTime = nil } if ticket != nil { nextRegisterTimer = time.NewTimer(timeout) nextRegisterTime = nextRegisterTimer.C } } } // Tracking registration and search lookups. var ( topicRegisterLookupTarget lookupInfo topicRegisterLookupDone chan []*Node topicRegisterLookupTick = time.NewTimer(0) searchReqWhenRefreshDone []topicSearchReq searchInfo = make(map[Topic]topicSearchInfo) activeSearchCount int ) topicSearchLookupDone := make(chan topicSearchResult, 100) topicSearch := make(chan Topic, 100) <-topicRegisterLookupTick.C statsDump := time.NewTicker(10 * time.Second) loop: for { resetNextTicket() select { case <-net.closeReq: log.Trace("<-net.closeReq") break loop // Ingress packet handling. case pkt := <-net.read: //fmt.Println("read", pkt.ev) log.Trace("<-net.read") n := net.internNode(&pkt) prestate := n.state status := "ok" if err := net.handle(n, pkt.ev, &pkt); err != nil { status = err.Error() } log.Trace("", "msg", log.Lazy{Fn: func() string { return fmt.Sprintf("<<< (%d) %v from %x@%v: %v -> %v (%v)", net.tab.count, pkt.ev, pkt.remoteID[:8], pkt.remoteAddr, prestate, n.state, status) }}) // TODO: persist state if n.state goes >= known, delete if it goes <= known // State transition timeouts. case timeout := <-net.timeout: log.Trace("<-net.timeout") if net.timeoutTimers[timeout] == nil { // Stale timer (was aborted). continue } delete(net.timeoutTimers, timeout) prestate := timeout.node.state status := "ok" if err := net.handle(timeout.node, timeout.ev, nil); err != nil { status = err.Error() } log.Trace("", "msg", log.Lazy{Fn: func() string { return fmt.Sprintf("--- (%d) %v for %x@%v: %v -> %v (%v)", net.tab.count, timeout.ev, timeout.node.ID[:8], timeout.node.addr(), prestate, timeout.node.state, status) }}) // Querying. case q := <-net.queryReq: log.Trace("<-net.queryReq") if !q.start(net) { q.remote.deferQuery(q) } // Interacting with the table. case f := <-net.tableOpReq: log.Trace("<-net.tableOpReq") f() net.tableOpResp <- struct{}{} // Topic registration stuff. case req := <-net.topicRegisterReq: log.Trace("<-net.topicRegisterReq") if !req.add { net.ticketStore.removeRegisterTopic(req.topic) continue } net.ticketStore.addTopic(req.topic, true) // If we're currently waiting idle (nothing to look up), give the ticket store a // chance to start it sooner. This should speed up convergence of the radius // determination for new topics. // if topicRegisterLookupDone == nil { if topicRegisterLookupTarget.target == (common.Hash{}) { log.Trace("topicRegisterLookupTarget == null") if topicRegisterLookupTick.Stop() { <-topicRegisterLookupTick.C } target, delay := net.ticketStore.nextRegisterLookup() topicRegisterLookupTarget = target topicRegisterLookupTick.Reset(delay) } case nodes := <-topicRegisterLookupDone: log.Trace("<-topicRegisterLookupDone") net.ticketStore.registerLookupDone(topicRegisterLookupTarget, nodes, func(n *Node) []byte { net.ping(n, n.addr()) return n.pingEcho }) target, delay := net.ticketStore.nextRegisterLookup() topicRegisterLookupTarget = target topicRegisterLookupTick.Reset(delay) topicRegisterLookupDone = nil case <-topicRegisterLookupTick.C: log.Trace("<-topicRegisterLookupTick") if (topicRegisterLookupTarget.target == common.Hash{}) { target, delay := net.ticketStore.nextRegisterLookup() topicRegisterLookupTarget = target topicRegisterLookupTick.Reset(delay) topicRegisterLookupDone = nil } else { topicRegisterLookupDone = make(chan []*Node) target := topicRegisterLookupTarget.target go func() { topicRegisterLookupDone <- net.lookup(target, false) }() } case <-nextRegisterTime: log.Trace("<-nextRegisterTime") net.ticketStore.ticketRegistered(*nextTicket) //fmt.Println("sendTopicRegister", nextTicket.t.node.addr().String(), nextTicket.t.topics, nextTicket.idx, nextTicket.t.pong) net.conn.sendTopicRegister(nextTicket.t.node, nextTicket.t.topics, nextTicket.idx, nextTicket.t.pong) case req := <-net.topicSearchReq: if refreshDone == nil { log.Trace("<-net.topicSearchReq") info, ok := searchInfo[req.topic] if ok { if req.delay == time.Duration(0) { delete(searchInfo, req.topic) net.ticketStore.removeSearchTopic(req.topic) } else { info.period = req.delay searchInfo[req.topic] = info } continue } if req.delay != time.Duration(0) { var info topicSearchInfo info.period = req.delay info.lookupChn = req.lookup searchInfo[req.topic] = info net.ticketStore.addSearchTopic(req.topic, req.found) topicSearch <- req.topic } } else { searchReqWhenRefreshDone = append(searchReqWhenRefreshDone, req) } case topic := <-topicSearch: if activeSearchCount < maxSearchCount { activeSearchCount++ target := net.ticketStore.nextSearchLookup(topic) go func() { nodes := net.lookup(target.target, false) topicSearchLookupDone <- topicSearchResult{target: target, nodes: nodes} }() } period := searchInfo[topic].period if period != time.Duration(0) { go func() { time.Sleep(period) topicSearch <- topic }() } case res := <-topicSearchLookupDone: activeSearchCount-- if lookupChn := searchInfo[res.target.topic].lookupChn; lookupChn != nil { lookupChn <- net.ticketStore.radius[res.target.topic].converged } net.ticketStore.searchLookupDone(res.target, res.nodes, func(n *Node, topic Topic) []byte { if n.state != nil && n.state.canQuery { return net.conn.send(n, topicQueryPacket, topicQuery{Topic: topic}) // TODO: set expiration } else { if n.state == unknown { net.ping(n, n.addr()) } return nil } }) case <-statsDump.C: log.Trace("<-statsDump.C") /*r, ok := net.ticketStore.radius[testTopic] if !ok { fmt.Printf("(%x) no radius @ %v\n", net.tab.self.ID[:8], time.Now()) } else { topics := len(net.ticketStore.tickets) tickets := len(net.ticketStore.nodes) rad := r.radius / (maxRadius/10000+1) fmt.Printf("(%x) topics:%d radius:%d tickets:%d @ %v\n", net.tab.self.ID[:8], topics, rad, tickets, time.Now()) }*/ tm := mclock.Now() for topic, r := range net.ticketStore.radius { if printTestImgLogs { rad := r.radius / (maxRadius/1000000 + 1) minrad := r.minRadius / (maxRadius/1000000 + 1) fmt.Printf("*R %d %v %016x %v\n", tm/1000000, topic, net.tab.self.sha[:8], rad) fmt.Printf("*MR %d %v %016x %v\n", tm/1000000, topic, net.tab.self.sha[:8], minrad) } } for topic, t := range net.topictab.topics { wp := t.wcl.nextWaitPeriod(tm) if printTestImgLogs { fmt.Printf("*W %d %v %016x %d\n", tm/1000000, topic, net.tab.self.sha[:8], wp/1000000) } } // Periodic / lookup-initiated bucket refresh. case <-refreshTimer.C: log.Trace("<-refreshTimer.C") // TODO: ideally we would start the refresh timer after // fallback nodes have been set for the first time. if refreshDone == nil { refreshDone = make(chan struct{}) net.refresh(refreshDone) } case <-bucketRefreshTimer.C: target := net.tab.chooseBucketRefreshTarget() go func() { net.lookup(target, false) bucketRefreshTimer.Reset(bucketRefreshInterval) }() case newNursery := <-net.refreshReq: log.Trace("<-net.refreshReq") if newNursery != nil { net.nursery = newNursery } if refreshDone == nil { refreshDone = make(chan struct{}) net.refresh(refreshDone) } net.refreshResp <- refreshDone case <-refreshDone: log.Trace("<-net.refreshDone", "table size", net.tab.count) if net.tab.count != 0 { refreshDone = nil list := searchReqWhenRefreshDone searchReqWhenRefreshDone = nil go func() { for _, req := range list { net.topicSearchReq <- req } }() } else { refreshDone = make(chan struct{}) net.refresh(refreshDone) } } } log.Trace("loop stopped") log.Debug(fmt.Sprintf("shutting down")) if net.conn != nil { net.conn.Close() } if refreshDone != nil { // TODO: wait for pending refresh. //<-refreshResults } // Cancel all pending timeouts. for _, timer := range net.timeoutTimers { timer.Stop() } if net.db != nil { net.db.close() } close(net.closed) } // Everything below runs on the Network.loop goroutine // and can modify Node, Table and Network at any time without locking. func (net *Network) refresh(done chan<- struct{}) { var seeds []*Node if net.db != nil { seeds = net.db.querySeeds(seedCount, seedMaxAge) } if len(seeds) == 0 { seeds = net.nursery } if len(seeds) == 0 { log.Trace("no seed nodes found") time.AfterFunc(time.Second*10, func() { close(done) }) return } for _, n := range seeds { log.Debug("", "msg", log.Lazy{Fn: func() string { var age string if net.db != nil { age = time.Since(net.db.lastPong(n.ID)).String() } else { age = "unknown" } return fmt.Sprintf("seed node (age %s): %v", age, n) }}) n = net.internNodeFromDB(n) if n.state == unknown { net.transition(n, verifyinit) } // Force-add the seed node so Lookup does something. // It will be deleted again if verification fails. net.tab.add(n) } // Start self lookup to fill up the buckets. go func() { net.Lookup(net.tab.self.ID) close(done) }() } // Node Interning. func (net *Network) internNode(pkt *ingressPacket) *Node { if n := net.nodes[pkt.remoteID]; n != nil { n.IP = pkt.remoteAddr.IP n.UDP = uint16(pkt.remoteAddr.Port) n.TCP = uint16(pkt.remoteAddr.Port) return n } n := NewNode(pkt.remoteID, pkt.remoteAddr.IP, uint16(pkt.remoteAddr.Port), uint16(pkt.remoteAddr.Port)) n.state = unknown net.nodes[pkt.remoteID] = n return n } func (net *Network) internNodeFromDB(dbn *Node) *Node { if n := net.nodes[dbn.ID]; n != nil { return n } n := NewNode(dbn.ID, dbn.IP, dbn.UDP, dbn.TCP) n.state = unknown net.nodes[n.ID] = n return n } func (net *Network) internNodeFromNeighbours(sender *net.UDPAddr, rn rpcNode) (n *Node, err error) { if rn.ID == net.tab.self.ID { return nil, errors.New("is self") } if rn.UDP <= lowPort { return nil, errors.New("low port") } n = net.nodes[rn.ID] if n == nil { // We haven't seen this node before. n, err = nodeFromRPC(sender, rn) if net.netrestrict != nil && !net.netrestrict.Contains(n.IP) { return n, errors.New("not contained in netrestrict whitelist") } if err == nil { n.state = unknown net.nodes[n.ID] = n } return n, err } if !n.IP.Equal(rn.IP) || n.UDP != rn.UDP || n.TCP != rn.TCP { if n.state == known { // reject address change if node is known by us err = fmt.Errorf("metadata mismatch: got %v, want %v", rn, n) } else { // accept otherwise; this will be handled nicer with signed ENRs n.IP = rn.IP n.UDP = rn.UDP n.TCP = rn.TCP } } return n, err } // nodeNetGuts is embedded in Node and contains fields. type nodeNetGuts struct { // This is a cached copy of sha3(ID) which is used for node // distance calculations. This is part of Node in order to make it // possible to write tests that need a node at a certain distance. // In those tests, the content of sha will not actually correspond // with ID. sha common.Hash // State machine fields. Access to these fields // is restricted to the Network.loop goroutine. state *nodeState pingEcho []byte // hash of last ping sent by us pingTopics []Topic // topic set sent by us in last ping deferredQueries []*findnodeQuery // queries that can't be sent yet pendingNeighbours *findnodeQuery // current query, waiting for reply queryTimeouts int } func (n *nodeNetGuts) deferQuery(q *findnodeQuery) { n.deferredQueries = append(n.deferredQueries, q) } func (n *nodeNetGuts) startNextQuery(net *Network) { if len(n.deferredQueries) == 0 { return } nextq := n.deferredQueries[0] if nextq.start(net) { n.deferredQueries = append(n.deferredQueries[:0], n.deferredQueries[1:]...) } } func (q *findnodeQuery) start(net *Network) bool { // Satisfy queries against the local node directly. if q.remote == net.tab.self { closest := net.tab.closest(crypto.Keccak256Hash(q.target[:]), bucketSize) q.reply <- closest.entries return true } if q.remote.state.canQuery && q.remote.pendingNeighbours == nil { net.conn.sendFindnodeHash(q.remote, q.target) net.timedEvent(respTimeout, q.remote, neighboursTimeout) q.remote.pendingNeighbours = q return true } // If the node is not known yet, it won't accept queries. // Initiate the transition to known. // The request will be sent later when the node reaches known state. if q.remote.state == unknown { net.transition(q.remote, verifyinit) } return false } // Node Events (the input to the state machine). type nodeEvent uint //go:generate stringer -type=nodeEvent const ( // Packet type events. // These correspond to packet types in the UDP protocol. pingPacket = iota + 1 pongPacket findnodePacket neighborsPacket findnodeHashPacket topicRegisterPacket topicQueryPacket topicNodesPacket // Non-packet events. // Event values in this category are allocated outside // the packet type range (packet types are encoded as a single byte). pongTimeout nodeEvent = iota + 256 pingTimeout neighboursTimeout ) // Node State Machine. type nodeState struct { name string handle func(*Network, *Node, nodeEvent, *ingressPacket) (next *nodeState, err error) enter func(*Network, *Node) canQuery bool } func (s *nodeState) String() string { return s.name } var ( unknown *nodeState verifyinit *nodeState verifywait *nodeState remoteverifywait *nodeState known *nodeState contested *nodeState unresponsive *nodeState ) func init() { unknown = &nodeState{ name: "unknown", enter: func(net *Network, n *Node) { net.tab.delete(n) n.pingEcho = nil // Abort active queries. for _, q := range n.deferredQueries { q.reply <- nil } n.deferredQueries = nil if n.pendingNeighbours != nil { n.pendingNeighbours.reply <- nil n.pendingNeighbours = nil } n.queryTimeouts = 0 }, handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pingPacket: net.handlePing(n, pkt) net.ping(n, pkt.remoteAddr) return verifywait, nil default: return unknown, errInvalidEvent } }, } verifyinit = &nodeState{ name: "verifyinit", enter: func(net *Network, n *Node) { net.ping(n, n.addr()) }, handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pingPacket: net.handlePing(n, pkt) return verifywait, nil case pongPacket: err := net.handleKnownPong(n, pkt) return remoteverifywait, err case pongTimeout: return unknown, nil default: return verifyinit, errInvalidEvent } }, } verifywait = &nodeState{ name: "verifywait", handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pingPacket: net.handlePing(n, pkt) return verifywait, nil case pongPacket: err := net.handleKnownPong(n, pkt) return known, err case pongTimeout: return unknown, nil default: return verifywait, errInvalidEvent } }, } remoteverifywait = &nodeState{ name: "remoteverifywait", enter: func(net *Network, n *Node) { net.timedEvent(respTimeout, n, pingTimeout) }, handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pingPacket: net.handlePing(n, pkt) return remoteverifywait, nil case pingTimeout: return known, nil default: return remoteverifywait, errInvalidEvent } }, } known = &nodeState{ name: "known", canQuery: true, enter: func(net *Network, n *Node) { n.queryTimeouts = 0 n.startNextQuery(net) // Insert into the table and start revalidation of the last node // in the bucket if it is full. last := net.tab.add(n) if last != nil && last.state == known { // TODO: do this asynchronously net.transition(last, contested) } }, handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pingPacket: net.handlePing(n, pkt) return known, nil case pongPacket: err := net.handleKnownPong(n, pkt) return known, err default: return net.handleQueryEvent(n, ev, pkt) } }, } contested = &nodeState{ name: "contested", canQuery: true, enter: func(net *Network, n *Node) { net.ping(n, n.addr()) }, handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pongPacket: // Node is still alive. err := net.handleKnownPong(n, pkt) return known, err case pongTimeout: net.tab.deleteReplace(n) return unresponsive, nil case pingPacket: net.handlePing(n, pkt) return contested, nil default: return net.handleQueryEvent(n, ev, pkt) } }, } unresponsive = &nodeState{ name: "unresponsive", canQuery: true, handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case pingPacket: net.handlePing(n, pkt) return known, nil case pongPacket: err := net.handleKnownPong(n, pkt) return known, err default: return net.handleQueryEvent(n, ev, pkt) } }, } } // handle processes packets sent by n and events related to n. func (net *Network) handle(n *Node, ev nodeEvent, pkt *ingressPacket) error { //fmt.Println("handle", n.addr().String(), n.state, ev) if pkt != nil { if err := net.checkPacket(n, ev, pkt); err != nil { //fmt.Println("check err:", err) return err } // Start the background expiration goroutine after the first // successful communication. Subsequent calls have no effect if it // is already running. We do this here instead of somewhere else // so that the search for seed nodes also considers older nodes // that would otherwise be removed by the expirer. if net.db != nil { net.db.ensureExpirer() } } if n.state == nil { n.state = unknown //??? } next, err := n.state.handle(net, n, ev, pkt) net.transition(n, next) //fmt.Println("new state:", n.state) return err } func (net *Network) checkPacket(n *Node, ev nodeEvent, pkt *ingressPacket) error { // Replay prevention checks. switch ev { case pingPacket, findnodeHashPacket, neighborsPacket: // TODO: check date is > last date seen // TODO: check ping version case pongPacket: if !bytes.Equal(pkt.data.(*pong).ReplyTok, n.pingEcho) { // fmt.Println("pong reply token mismatch") return fmt.Errorf("pong reply token mismatch") } n.pingEcho = nil } // Address validation. // TODO: Ideally we would do the following: // - reject all packets with wrong address except ping. // - for ping with new address, transition to verifywait but keep the // previous node (with old address) around. if the new one reaches known, // swap it out. return nil } func (net *Network) transition(n *Node, next *nodeState) { if n.state != next { n.state = next if next.enter != nil { next.enter(net, n) } } // TODO: persist/unpersist node } func (net *Network) timedEvent(d time.Duration, n *Node, ev nodeEvent) { timeout := timeoutEvent{ev, n} net.timeoutTimers[timeout] = time.AfterFunc(d, func() { select { case net.timeout <- timeout: case <-net.closed: } }) } func (net *Network) abortTimedEvent(n *Node, ev nodeEvent) { timer := net.timeoutTimers[timeoutEvent{ev, n}] if timer != nil { timer.Stop() delete(net.timeoutTimers, timeoutEvent{ev, n}) } } func (net *Network) ping(n *Node, addr *net.UDPAddr) { //fmt.Println("ping", n.addr().String(), n.ID.String(), n.sha.Hex()) if n.pingEcho != nil || n.ID == net.tab.self.ID { //fmt.Println(" not sent") return } log.Trace("Pinging remote node", "node", n.ID) n.pingTopics = net.ticketStore.regTopicSet() n.pingEcho = net.conn.sendPing(n, addr, n.pingTopics) net.timedEvent(respTimeout, n, pongTimeout) } func (net *Network) handlePing(n *Node, pkt *ingressPacket) { log.Trace("Handling remote ping", "node", n.ID) ping := pkt.data.(*ping) n.TCP = ping.From.TCP t := net.topictab.getTicket(n, ping.Topics) pong := &pong{ To: makeEndpoint(n.addr(), n.TCP), // TODO: maybe use known TCP port from DB ReplyTok: pkt.hash, Expiration: uint64(time.Now().Add(expiration).Unix()), } ticketToPong(t, pong) net.conn.send(n, pongPacket, pong) } func (net *Network) handleKnownPong(n *Node, pkt *ingressPacket) error { log.Trace("Handling known pong", "node", n.ID) net.abortTimedEvent(n, pongTimeout) now := mclock.Now() ticket, err := pongToTicket(now, n.pingTopics, n, pkt) if err == nil { // fmt.Printf("(%x) ticket: %+v\n", net.tab.self.ID[:8], pkt.data) net.ticketStore.addTicket(now, pkt.data.(*pong).ReplyTok, ticket) } else { log.Trace("Failed to convert pong to ticket", "err", err) } n.pingEcho = nil n.pingTopics = nil return err } func (net *Network) handleQueryEvent(n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) { switch ev { case findnodePacket: target := crypto.Keccak256Hash(pkt.data.(*findnode).Target[:]) results := net.tab.closest(target, bucketSize).entries net.conn.sendNeighbours(n, results) return n.state, nil case neighborsPacket: err := net.handleNeighboursPacket(n, pkt) return n.state, err case neighboursTimeout: if n.pendingNeighbours != nil { n.pendingNeighbours.reply <- nil n.pendingNeighbours = nil } n.queryTimeouts++ if n.queryTimeouts > maxFindnodeFailures && n.state == known { return contested, errors.New("too many timeouts") } return n.state, nil // v5 case findnodeHashPacket: results := net.tab.closest(pkt.data.(*findnodeHash).Target, bucketSize).entries net.conn.sendNeighbours(n, results) return n.state, nil case topicRegisterPacket: //fmt.Println("got topicRegisterPacket") regdata := pkt.data.(*topicRegister) pong, err := net.checkTopicRegister(regdata) if err != nil { //fmt.Println(err) return n.state, fmt.Errorf("bad waiting ticket: %v", err) } net.topictab.useTicket(n, pong.TicketSerial, regdata.Topics, int(regdata.Idx), pong.Expiration, pong.WaitPeriods) return n.state, nil case topicQueryPacket: // TODO: handle expiration topic := pkt.data.(*topicQuery).Topic results := net.topictab.getEntries(topic) if _, ok := net.ticketStore.tickets[topic]; ok { results = append(results, net.tab.self) // we're not registering in our own table but if we're advertising, return ourselves too } if len(results) > 10 { results = results[:10] } var hash common.Hash copy(hash[:], pkt.hash) net.conn.sendTopicNodes(n, hash, results) return n.state, nil case topicNodesPacket: p := pkt.data.(*topicNodes) if net.ticketStore.gotTopicNodes(n, p.Echo, p.Nodes) { n.queryTimeouts++ if n.queryTimeouts > maxFindnodeFailures && n.state == known { return contested, errors.New("too many timeouts") } } return n.state, nil default: return n.state, errInvalidEvent } } func (net *Network) checkTopicRegister(data *topicRegister) (*pong, error) { var pongpkt ingressPacket if err := decodePacket(data.Pong, &pongpkt); err != nil { return nil, err } if pongpkt.ev != pongPacket { return nil, errors.New("is not pong packet") } if pongpkt.remoteID != net.tab.self.ID { return nil, errors.New("not signed by us") } // check that we previously authorised all topics // that the other side is trying to register. if rlpHash(data.Topics) != pongpkt.data.(*pong).TopicHash { return nil, errors.New("topic hash mismatch") } if data.Idx >= uint(len(data.Topics)) { return nil, errors.New("topic index out of range") } return pongpkt.data.(*pong), nil } func rlpHash(x interface{}) (h common.Hash) { hw := sha3.NewKeccak256() rlp.Encode(hw, x) hw.Sum(h[:0]) return h } func (net *Network) handleNeighboursPacket(n *Node, pkt *ingressPacket) error { if n.pendingNeighbours == nil { return errNoQuery } net.abortTimedEvent(n, neighboursTimeout) req := pkt.data.(*neighbors) nodes := make([]*Node, len(req.Nodes)) for i, rn := range req.Nodes { nn, err := net.internNodeFromNeighbours(pkt.remoteAddr, rn) if err != nil { log.Debug(fmt.Sprintf("invalid neighbour (%v) from %x@%v: %v", rn.IP, n.ID[:8], pkt.remoteAddr, err)) continue } nodes[i] = nn // Start validation of query results immediately. // This fills the table quickly. // TODO: generates way too many packets, maybe do it via queue. if nn.state == unknown { net.transition(nn, verifyinit) } } // TODO: don't ignore second packet n.pendingNeighbours.reply <- nodes n.pendingNeighbours = nil // Now that this query is done, start the next one. n.startNextQuery(net) return nil }