// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "errors" "fmt" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/ethdb" ) // ErrNotRequested is returned by the trie sync when it's requested to process a // node it did not request. var ErrNotRequested = errors.New("not requested") // ErrAlreadyProcessed is returned by the trie sync when it's requested to process a // node it already processed previously. var ErrAlreadyProcessed = errors.New("already processed") // maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The // role of this value is to limit the number of trie nodes that get expanded in // memory if the node was configured with a significant number of peers. const maxFetchesPerDepth = 16384 // request represents a scheduled or already in-flight state retrieval request. type request struct { path []byte // Merkle path leading to this node for prioritization hash common.Hash // Hash of the node data content to retrieve data []byte // Data content of the node, cached until all subtrees complete code bool // Whether this is a code entry parents []*request // Parent state nodes referencing this entry (notify all upon completion) deps int // Number of dependencies before allowed to commit this node callback LeafCallback // Callback to invoke if a leaf node it reached on this branch } // SyncPath is a path tuple identifying a particular trie node either in a single // trie (account) or a layered trie (account -> storage). // // Content wise the tuple either has 1 element if it addresses a node in a single // trie or 2 elements if it addresses a node in a stacked trie. // // To support aiming arbitrary trie nodes, the path needs to support odd nibble // lengths. To avoid transferring expanded hex form over the network, the last // part of the tuple (which needs to index into the middle of a trie) is compact // encoded. In case of a 2-tuple, the first item is always 32 bytes so that is // simple binary encoded. // // Examples: // - Path 0x9 -> {0x19} // - Path 0x99 -> {0x0099} // - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19} // - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099} type SyncPath [][]byte // newSyncPath converts an expanded trie path from nibble form into a compact // version that can be sent over the network. func newSyncPath(path []byte) SyncPath { // If the hash is from the account trie, append a single item, if it // is from the a storage trie, append a tuple. Note, the length 64 is // clashing between account leaf and storage root. It's fine though // because having a trie node at 64 depth means a hash collision was // found and we're long dead. if len(path) < 64 { return SyncPath{hexToCompact(path)} } return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])} } // SyncResult is a response with requested data along with it's hash. type SyncResult struct { Hash common.Hash // Hash of the originally unknown trie node Data []byte // Data content of the retrieved node } // syncMemBatch is an in-memory buffer of successfully downloaded but not yet // persisted data items. type syncMemBatch struct { nodes map[common.Hash][]byte // In-memory membatch of recently completed nodes codes map[common.Hash][]byte // In-memory membatch of recently completed codes } // newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes. func newSyncMemBatch() *syncMemBatch { return &syncMemBatch{ nodes: make(map[common.Hash][]byte), codes: make(map[common.Hash][]byte), } } // hasNode reports the trie node with specific hash is already cached. func (batch *syncMemBatch) hasNode(hash common.Hash) bool { _, ok := batch.nodes[hash] return ok } // hasCode reports the contract code with specific hash is already cached. func (batch *syncMemBatch) hasCode(hash common.Hash) bool { _, ok := batch.codes[hash] return ok } // Sync is the main state trie synchronisation scheduler, which provides yet // unknown trie hashes to retrieve, accepts node data associated with said hashes // and reconstructs the trie step by step until all is done. type Sync struct { database ethdb.KeyValueReader // Persistent database to check for existing entries membatch *syncMemBatch // Memory buffer to avoid frequent database writes nodeReqs map[common.Hash]*request // Pending requests pertaining to a trie node hash codeReqs map[common.Hash]*request // Pending requests pertaining to a code hash queue *prque.Prque // Priority queue with the pending requests fetches map[int]int // Number of active fetches per trie node depth bloom *SyncBloom // Bloom filter for fast state existence checks } // NewSync creates a new trie data download scheduler. func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, bloom *SyncBloom) *Sync { ts := &Sync{ database: database, membatch: newSyncMemBatch(), nodeReqs: make(map[common.Hash]*request), codeReqs: make(map[common.Hash]*request), queue: prque.New(nil), fetches: make(map[int]int), bloom: bloom, } ts.AddSubTrie(root, nil, common.Hash{}, callback) return ts } // AddSubTrie registers a new trie to the sync code, rooted at the designated parent. func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, callback LeafCallback) { // Short circuit if the trie is empty or already known if root == emptyRoot { return } if s.membatch.hasNode(root) { return } if s.bloom == nil || s.bloom.Contains(root[:]) { // Bloom filter says this might be a duplicate, double check. // If database says yes, then at least the trie node is present // and we hold the assumption that it's NOT legacy contract code. blob := rawdb.ReadTrieNode(s.database, root) if len(blob) > 0 { return } // False positive, bump fault meter bloomFaultMeter.Mark(1) } // Assemble the new sub-trie sync request req := &request{ path: path, hash: root, callback: callback, } // If this sub-trie has a designated parent, link them together if parent != (common.Hash{}) { ancestor := s.nodeReqs[parent] if ancestor == nil { panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent)) } ancestor.deps++ req.parents = append(req.parents, ancestor) } s.schedule(req) } // AddCodeEntry schedules the direct retrieval of a contract code that should not // be interpreted as a trie node, but rather accepted and stored into the database // as is. func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash) { // Short circuit if the entry is empty or already known if hash == emptyState { return } if s.membatch.hasCode(hash) { return } if s.bloom == nil || s.bloom.Contains(hash[:]) { // Bloom filter says this might be a duplicate, double check. // If database says yes, the blob is present for sure. // Note we only check the existence with new code scheme, fast // sync is expected to run with a fresh new node. Even there // exists the code with legacy format, fetch and store with // new scheme anyway. if blob := rawdb.ReadCodeWithPrefix(s.database, hash); len(blob) > 0 { return } // False positive, bump fault meter bloomFaultMeter.Mark(1) } // Assemble the new sub-trie sync request req := &request{ path: path, hash: hash, code: true, } // If this sub-trie has a designated parent, link them together if parent != (common.Hash{}) { ancestor := s.nodeReqs[parent] // the parent of codereq can ONLY be nodereq if ancestor == nil { panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent)) } ancestor.deps++ req.parents = append(req.parents, ancestor) } s.schedule(req) } // Missing retrieves the known missing nodes from the trie for retrieval. To aid // both eth/6x style fast sync and snap/1x style state sync, the paths of trie // nodes are returned too, as well as separate hash list for codes. func (s *Sync) Missing(max int) (nodes []common.Hash, paths []SyncPath, codes []common.Hash) { var ( nodeHashes []common.Hash nodePaths []SyncPath codeHashes []common.Hash ) for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) { // Retrieve th enext item in line item, prio := s.queue.Peek() // If we have too many already-pending tasks for this depth, throttle depth := int(prio >> 56) if s.fetches[depth] > maxFetchesPerDepth { break } // Item is allowed to be scheduled, add it to the task list s.queue.Pop() s.fetches[depth]++ hash := item.(common.Hash) if req, ok := s.nodeReqs[hash]; ok { nodeHashes = append(nodeHashes, hash) nodePaths = append(nodePaths, newSyncPath(req.path)) } else { codeHashes = append(codeHashes, hash) } } return nodeHashes, nodePaths, codeHashes } // Process injects the received data for requested item. Note it can // happpen that the single response commits two pending requests(e.g. // there are two requests one for code and one for node but the hash // is same). In this case the second response for the same hash will // be treated as "non-requested" item or "already-processed" item but // there is no downside. func (s *Sync) Process(result SyncResult) error { // If the item was not requested either for code or node, bail out if s.nodeReqs[result.Hash] == nil && s.codeReqs[result.Hash] == nil { return ErrNotRequested } // There is an pending code request for this data, commit directly var filled bool if req := s.codeReqs[result.Hash]; req != nil && req.data == nil { filled = true req.data = result.Data s.commit(req) } // There is an pending node request for this data, fill it. if req := s.nodeReqs[result.Hash]; req != nil && req.data == nil { filled = true // Decode the node data content and update the request node, err := decodeNode(result.Hash[:], result.Data) if err != nil { return err } req.data = result.Data // Create and schedule a request for all the children nodes requests, err := s.children(req, node) if err != nil { return err } if len(requests) == 0 && req.deps == 0 { s.commit(req) } else { req.deps += len(requests) for _, child := range requests { s.schedule(child) } } } if !filled { return ErrAlreadyProcessed } return nil } // Commit flushes the data stored in the internal membatch out to persistent // storage, returning any occurred error. func (s *Sync) Commit(dbw ethdb.Batch) error { // Dump the membatch into a database dbw for key, value := range s.membatch.nodes { rawdb.WriteTrieNode(dbw, key, value) s.bloom.Add(key[:]) } for key, value := range s.membatch.codes { rawdb.WriteCode(dbw, key, value) s.bloom.Add(key[:]) } // Drop the membatch data and return s.membatch = newSyncMemBatch() return nil } // Pending returns the number of state entries currently pending for download. func (s *Sync) Pending() int { return len(s.nodeReqs) + len(s.codeReqs) } // schedule inserts a new state retrieval request into the fetch queue. If there // is already a pending request for this node, the new request will be discarded // and only a parent reference added to the old one. func (s *Sync) schedule(req *request) { var reqset = s.nodeReqs if req.code { reqset = s.codeReqs } // If we're already requesting this node, add a new reference and stop if old, ok := reqset[req.hash]; ok { old.parents = append(old.parents, req.parents...) return } reqset[req.hash] = req // Schedule the request for future retrieval. This queue is shared // by both node requests and code requests. It can happen that there // is a trie node and code has same hash. In this case two elements // with same hash and same or different depth will be pushed. But it's // ok the worst case is the second response will be treated as duplicated. prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents for i := 0; i < 14 && i < len(req.path); i++ { prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order } s.queue.Push(req.hash, prio) } // children retrieves all the missing children of a state trie entry for future // retrieval scheduling. func (s *Sync) children(req *request, object node) ([]*request, error) { // Gather all the children of the node, irrelevant whether known or not type child struct { path []byte node node } var children []child switch node := (object).(type) { case *shortNode: key := node.Key if hasTerm(key) { key = key[:len(key)-1] } children = []child{{ node: node.Val, path: append(append([]byte(nil), req.path...), key...), }} case *fullNode: for i := 0; i < 17; i++ { if node.Children[i] != nil { children = append(children, child{ node: node.Children[i], path: append(append([]byte(nil), req.path...), byte(i)), }) } } default: panic(fmt.Sprintf("unknown node: %+v", node)) } // Iterate over the children, and request all unknown ones requests := make([]*request, 0, len(children)) for _, child := range children { // Notify any external watcher of a new key/value node if req.callback != nil { if node, ok := (child.node).(valueNode); ok { if err := req.callback(child.path, node, req.hash); err != nil { return nil, err } } } // If the child references another node, resolve or schedule if node, ok := (child.node).(hashNode); ok { // Try to resolve the node from the local database hash := common.BytesToHash(node) if s.membatch.hasNode(hash) { continue } if s.bloom == nil || s.bloom.Contains(node) { // Bloom filter says this might be a duplicate, double check. // If database says yes, then at least the trie node is present // and we hold the assumption that it's NOT legacy contract code. if blob := rawdb.ReadTrieNode(s.database, hash); len(blob) > 0 { continue } // False positive, bump fault meter bloomFaultMeter.Mark(1) } // Locally unknown node, schedule for retrieval requests = append(requests, &request{ path: child.path, hash: hash, parents: []*request{req}, callback: req.callback, }) } } return requests, nil } // commit finalizes a retrieval request and stores it into the membatch. If any // of the referencing parent requests complete due to this commit, they are also // committed themselves. func (s *Sync) commit(req *request) (err error) { // Write the node content to the membatch if req.code { s.membatch.codes[req.hash] = req.data delete(s.codeReqs, req.hash) s.fetches[len(req.path)]-- } else { s.membatch.nodes[req.hash] = req.data delete(s.nodeReqs, req.hash) s.fetches[len(req.path)]-- } // Check all parents for completion for _, parent := range req.parents { parent.deps-- if parent.deps == 0 { if err := s.commit(parent); err != nil { return err } } } return nil }