With this commit, core/state's access to the underlying key/value database is
mediated through an interface. Database errors are tracked in StateDB and
returned by CommitTo or the new Error method.
Motivation for this change: We can remove the light client's duplicated copy of
core/state. The light client now supports node iteration, so tracing and storage
enumeration can work with the light client (not implemented in this commit).
* eth/downloader: separate state sync from queue
Scheduling of state node downloads hogged the downloader queue lock when
new requests were scheduled. This caused timeouts for other requests.
With this change, state sync is fully independent of all other downloads
and doesn't involve the queue at all.
State sync is started and checked on in processContent. This is slightly
awkward because processContent doesn't have a select loop. Instead, the
queue is closed by an auxiliary goroutine when state sync fails. We
tried several alternatives to this but settled on the current approach
because it's the least amount of change overall.
Handling of the pivot block has changed slightly: the queue previously
prevented import of pivot block receipts before the state of the pivot
block was available. In this commit, the receipt will be imported before
the state. This causes an annoyance where the pivot block is committed
as fast block head even when state downloads fail. Stay tuned for more
updates in this area ;)
* eth/downloader: remove cancelTimeout channel
* eth/downloader: retry state requests on timeout
* eth/downloader: improve comment
* eth/downloader: mark peers idle when state sync is done
* eth/downloader: move pivot block splitting to processContent
This change also ensures that pivot block receipts aren't imported
before the pivot block itself.
* eth/downloader: limit state node retries
* eth/downloader: improve state node error handling and retry check
* eth/downloader: remove maxStateNodeRetries
It fails the sync too much.
* eth/downloader: remove last use of cancelCh in statesync.go
Fixes TestDeliverHeadersHang*Fast and (hopefully)
the weird cancellation behaviour at the end of fast sync.
* eth/downloader: fix leak in runStateSync
* eth/downloader: don't run processFullSyncContent in LightSync mode
* eth/downloader: improve comments
* eth/downloader: fix vet, megacheck
* eth/downloader: remove unrequested tasks anyway
* eth/downloader, trie: various polishes around duplicate items
This commit explicitly tracks duplicate and unexpected state
delieveries done against a trie Sync structure, also adding
there to import info logs.
The commit moves the db batch used to commit trie changes one
level deeper so its flushed after every node insertion. This
is needed to avoid a lot of duplicate retrievals caused by
inconsistencies between Sync internals and database. A better
approach is to track not-yet-written states in trie.Sync and
flush on commit, but I'm focuing on correctness first now.
The commit fixes a regression around pivot block fail count.
The counter previously was reset to 1 if and only if a sync
cycle progressed (inserted at least 1 entry to the database).
The current code reset it already if a node was delivered,
which is not stong enough, because unless it ends up written
to disk, an attacker can just loop and attack ad infinitum.
The commit also fixes a regression around state deliveries
and timeouts. The old downloader tracked if a delivery is
stale (none of the deliveries were requestedt), in which
case it didn't mark the node idle and did not send further
requests, since it signals a past timeout. The current code
did mark it idle even on stale deliveries, which eventually
caused two requests to be in flight at the same time, making
the deliveries always stale and mass duplicating retrievals
between multiple peers.
* eth/downloader: fix state request leak
This commit fixes the hang seen sometimes while doing the state
sync. The cause of the hang was a rare combination of events:
request state data from peer, peer drops and reconnects almost
immediately. This caused a new download task to be assigned to
the peer, overwriting the old one still waiting for a timeout,
which in turned leaked the requests out, never to be retried.
The fix is to ensure that a task assignment moves any pending
one back into the retry queue.
The commit also fixes a regression with peer dropping due to
stalls. The current code considered a peer stalling if they
timed out delivering 1 item. However, the downloader never
requests only one, the minimum is 2 (attempt to fine tune
estimated latency/bandwidth). The fix is simply to drop if
a timeout is detected at 2 items.
Apart from the above bugfixes, the commit contains some code
polishes I made while debugging the hang.
* core, eth, trie: support batched trie sync db writes
* trie: rename SyncMemCache to syncMemBatch
This commit is a preparation for the upcoming metropolis hardfork. It
prepares the state, core and vm packages such that integration with
metropolis becomes less of a hassle.
* Difficulty calculation requires header instead of individual
parameters
* statedb.StartRecord renamed to statedb.Prepare and added Finalise
method required by metropolis, which removes unwanted accounts from
the state (i.e. selfdestruct)
* State keeps record of destructed objects (in addition to dirty
objects)
* core/vm pre-compiles may now return errors
* core/vm pre-compiles gas check now take the full byte slice as argument
instead of just the size
* core/vm now keeps several hard-fork instruction tables instead of a
single instruction table and removes the need for hard-fork checks in
the instructions
* core/vm contains a empty restruction function which is added in
preparation of metropolis write-only mode operations
* Adds the bn256 curve
* Adds and sets the metropolis chain config block parameters (2^64-1)
The 'step' method is split into two parts, 'peek' and 'push'. peek
returns the next state but doesn't make it current.
The end of iteration was previously tracked by setting 'trie' to nil.
End of iteration is now tracked using the 'iteratorEnd' error, which is
slightly cleaner and requires less code.
Make it so each iterator has exactly one public constructor:
- NodeIterators can be created through a method.
- Iterators can be created through NewIterator on any NodeIterator.
In `touch` operation, only `touched` filed has been changed. Therefore
in the related undo function, only `touched` field should be reverted.
In addition, whether remove this obj from dirty map should depend on
prevDirty flag.
This commit adds pluggable consensus engines to go-ethereum. In short, it
introduces a generic consensus interface, and refactors the entire codebase to
use this interface.
This commit solves several issues concerning the genesis block:
* Genesis/ChainConfig loading was handled by cmd/geth code. This left
library users in the cold. They could specify a JSON-encoded
string and overwrite the config, but didn't get any of the additional
checks performed by geth.
* Decoding and writing of genesis JSON was conflated in
WriteGenesisBlock. This made it a lot harder to embed the genesis
block into the forthcoming config file loader. This commit changes
things so there is a single Genesis type that represents genesis
blocks. All uses of Write*Genesis* are changed to use the new type
instead.
* If the chain config supplied by the user was incompatible with the
current chain (i.e. the chain had already advanced beyond a scheduled
fork), it got overwritten. This is not an issue in practice because
previous forks have always had the highest total difficulty. It might
matter in the future though. The new code reverts the local chain to
the point of the fork when upgrading configuration.
The change to genesis block data removes compression library
dependencies from package core.
This commit makes the wrapper types more generally applicable.
encoding.TextMarshaler is supported by most codec implementations (e.g.
for yaml).
The tests now ensure that package json actually recognizes the custom
marshaler implementation irrespective of how it is implemented.
The Uint type has new tests, too. These are tricky because uint size
depends on the CPU word size. Turns out that there was one incorrect
case where decoding returned ErrUint64Range instead of ErrUintRange.
* Improved the standard evm tracer output and renamed it to WriteTrace
which now takes an io.Writer to write the logs to.
* Added WriteLogs which writes logs to the given writer in a readable
format.
* evm utility now also prints logs generated during the execution.
* common/math: optimize PaddedBigBytes, use it more
name old time/op new time/op delta
PaddedBigBytes-8 71.1ns ± 5% 46.1ns ± 1% -35.15% (p=0.000 n=20+19)
name old alloc/op new alloc/op delta
PaddedBigBytes-8 48.0B ± 0% 32.0B ± 0% -33.33% (p=0.000 n=20+20)
* all: unify big.Int zero checks
Various checks were in use. This commit replaces them all with Int.Sign,
which is cheaper and less code.
eg templates:
func before(x *big.Int) bool { return x.BitLen() == 0 }
func after(x *big.Int) bool { return x.Sign() == 0 }
func before(x *big.Int) bool { return x.BitLen() > 0 }
func after(x *big.Int) bool { return x.Sign() != 0 }
func before(x *big.Int) int { return x.Cmp(common.Big0) }
func after(x *big.Int) int { return x.Sign() }
* common/math, crypto/secp256k1: make ReadBits public in package math
* common: remove CurrencyToString
Move denomination values to params instead.
* common: delete dead code
* common: move big integer operations to common/math
This commit consolidates all big integer operations into common/math and
adds tests and documentation.
There should be no change in semantics for BigPow, BigMin, BigMax, S256,
U256, Exp and their behaviour is now locked in by tests.
The BigD, BytesToBig and Bytes2Big functions don't provide additional
value, all uses are replaced by new(big.Int).SetBytes().
BigToBytes is now called PaddedBigBytes, its minimum output size
parameter is now specified as the number of bytes instead of bits. The
single use of this function is in the EVM's MSTORE instruction.
Big and String2Big are replaced by ParseBig, which is slightly stricter.
It previously accepted leading zeros for hexadecimal inputs but treated
decimal inputs as octal if a leading zero digit was present.
ParseUint64 is used in places where String2Big was used to decode a
uint64.
The new functions MustParseBig and MustParseUint64 are now used in many
places where parsing errors were previously ignored.
* common: delete unused big integer variables
* accounts/abi: replace uses of BytesToBig with use of encoding/binary
* common: remove BytesToBig
* common: remove Bytes2Big
* common: remove BigTrue
* cmd/utils: add BigFlag and use it for error-checked integer flags
While here, remove environment variable processing for DirectoryFlag
because we don't use it.
* core: add missing error checks in genesis block parser
* common: remove String2Big
* cmd/evm: use utils.BigFlag
* common/math: check for 256 bit overflow in ParseBig
This is supposed to prevent silent overflow/truncation of values in the
genesis block JSON. Without this check, a genesis block that set a
balance larger than 256 bits would lead to weird behaviour in the VM.
* cmd/utils: fixup import
This PR implements a differenceIterator, which allows iterating over trie nodes
that exist in one trie but not in another. This is a prerequisite for most GC
strategies, in order to find obsolete nodes.
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
* core,eth,internal: Added `debug_getBadBlocks()` method
When bad blocks are discovered, these are stored within geth.
An RPC-endpoint makes them availablewithin the `debug`
namespace. This feature makes it easier to discover network forks.
```
* core, api: go format + docs
* core/blockchain: Documentation, fix minor nitpick
* core: fix failing blockchain test
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
The Subscription type is gone, all uses are replaced by
*TypeMuxSubscription. This change is prep-work for the
introduction of the new Subscription type in a later commit.
gorename -from '"github.com/ethereum/go-ethereum/event"::Event' -to TypeMuxEvent
gorename -from '"github.com/ethereum/go-ethereum/event"::muxsub' -to TypeMuxSubscription
gofmt -w -r 'Subscription -> *TypeMuxSubscription' ./event/*.go
find . -name '*.go' -and -not -regex '\./vendor/.*' \| xargs gofmt -w -r 'event.Subscription -> *event.TypeMuxSubscription'
Removal of dead code that appeard as if we had a consensus issue. This
however is not the case as the proper error catching happens in the vm
package instead.
* core: Made logging of reorgs more structured, also always log if reorg is > 63 blocks long
* core/blockchain: go fmt
* core/blockchain: Minor fixes to the reorg reporting
This significantly reduces the dependency closure of ethclient, which no
longer depends on core/vm as of this change.
All uses of vm.Logs are replaced by []*types.Log. NewLog is gone too,
the constructor simply returned a literal.
The run loop, which previously contained custom opcode executes have been
removed and has been simplified to a few checks.
Each operation consists of 4 elements: execution function, gas cost function,
stack validation function and memory size function. The execution function
implements the operation's runtime behaviour, the gas cost function implements
the operation gas costs function and greatly depends on the memory and stack,
the stack validation function validates the stack and makes sure that enough
items can be popped off and pushed on and the memory size function calculates
the memory required for the operation and returns it.
This commit also allows the EVM to go unmetered. This is helpful for offline
operations such as contract calls.
To address increasing complexity in code that handles signatures, this PR
discards all notion of "different" signature types at the library level. Both
the crypto and accounts package is reduced to only be able to produce plain
canonical secp256k1 signatures. This makes the crpyto APIs much cleaner,
simpler and harder to abuse.
The transaction pool keeps track of the current nonce in its local pendingState. When a
new block comes in the pendingState is reset. During the reset it fetches multiple times
the current state through the use of the currentState callback. When a second block comes
in during the reset its possible that the state changes during the reset. If that block
holds transactions that are currently in the pool the local pendingState that is used to
determine nonces can get out of sync.
Environment is now a struct (not an interface). This
reduces a lot of tech-debt throughout the codebase where a virtual
machine environment had to be implemented in order to test or run it.
The new environment is suitable to be used en the json tests, core
consensus and light client.
This field used to be assigned by the filter system and returned through
the RPC API. Now that we have a Go client that uses the underlying type,
the field needs to move. It is now assigned to true when the RemovedLogs
event is generated so the filter system doesn't need to care about the
field at all.
While here, remove the log list from ChainSideEvent. There are no users
of this field right now and any potential users could subscribe to
RemovedLogsEvent instead.
* core, core/types: refactored tx chain id checking
Refactored explicit chain id checking in to the Sender deriviation method
* cmd/utils, params: define chain ids
This commit implements EIP158 part 1, 2, 3 & 4
1. If an account is empty it's no longer written to the trie. An empty
account is defined as (balance=0, nonce=0, storage=0, code=0).
2. Delete an empty account if it's touched
3. An empty account is redefined as either non-existent or empty.
4. Zero value calls and zero value suicides no longer consume the 25k
reation costs.
params: moved core/config to params
Signed-off-by: Jeffrey Wilcke <jeffrey@ethereum.org>
These accessors were introduced by light client changes, but
the only method that is actually used is GetNumberU64. This
commit replaces all uses of .GetNumberU64 with .Number.Uint64.
* core: Add metrics collection for transaction events; replace/discard for pending and future queues, as well as invalid transactions
* core: change namespace for txpool metrics
* core: define more metrics (not yet used)
* core: implement more tx metrics for when transactions are dropped
* core: minor formatting tweeks (will squash later)
* core: remove superfluous meter, fix missing pending nofunds
* core, metrics: switch txpool meters to counters
This commit includes several API changes:
- The behavior of eth_sign is changed. It now accepts an arbitrary
message, prepends the well-known string
\x19Ethereum Signed Message:\n<length of message>
hashes the result using keccak256 and calculates the signature of
the hash. This breaks backwards compatability!
- personal_sign(hash, address [, password]) is added. It has the same
semantics as eth_sign but also accepts a password. The private key
used to sign the hash is temporarily unlocked in the scope of the
request.
- personal_recover(message, signature) is added and returns the
address for the account that created a signature.
This implements 1b & 1c of EIP150 by adding a new GasTable which must be
returned from the RuleSet config method. This table is used to determine
the gas prices for the current epoch.
Please note that when the CreateBySuicide gas price is set it is assumed
that we're in the new epoch phase.
In addition this PR will serve as temporary basis while refactorisation
in being done in the EVM64 PR, which will substentially overhaul the gas
price code.
* trie: store nodes as pointers
This avoids memory copies when unwrapping node interface values.
name old time/op new time/op delta
Get 388ns ± 8% 215ns ± 2% -44.56% (p=0.000 n=15+15)
GetDB 363ns ± 3% 202ns ± 2% -44.21% (p=0.000 n=15+15)
UpdateBE 1.57µs ± 2% 1.29µs ± 3% -17.80% (p=0.000 n=13+15)
UpdateLE 1.92µs ± 2% 1.61µs ± 2% -16.25% (p=0.000 n=14+14)
HashBE 2.16µs ± 6% 2.18µs ± 6% ~ (p=0.436 n=15+15)
HashLE 7.43µs ± 3% 7.21µs ± 3% -2.96% (p=0.000 n=15+13)
* trie: close temporary databases in GetDB benchmark
* trie: don't keep []byte from DB load around
Nodes decoded from a DB load kept hashes and values as sub-slices of
the DB value. This can be a problem because loading from leveldb often
returns []byte with a cap that's larger than necessary, increasing
memory usage.
* trie: unload old cached nodes
* trie, core/state: use cache unloading for account trie
* trie: use explicit private flags (fixes Go 1.5 reflection issue).
* trie: fixup cachegen overflow at request of nick
* core/state: rename journal size constant
Two new tests are skipped because they're buggy. Making some newer
random state tests work required implementing the 'compressed return
value encoding'.
This commit replaces the deep-copy based state revert mechanism with a
linear complexity journal. This commit also hides several internal
StateDB methods to limit the number of ways in which calling code can
use the journal incorrectly.
As usual consultation and bug fixes to the initial implementation were
provided by @karalabe, @obscuren and @Arachnid. Thank you!
that specifies the maximum number of elements in the `structLogs`
output. This option is useful for debugging a transaction that
involves a large number of repetition.
For example,
```
debug.traceTransaction(tx, {disableStorage: true, limit: 2})
```
shows at most the first two steps in the `structLogs`.
In this commit, core/types's types learn how to encode and decode
themselves as JSON. The encoding is very similar to what the RPC API
uses. The RPC API is missing some output fields (e.g. transaction
signature values) which will be added to the API in a later commit. Some
fields that the API generates are ignored by the decoder methods here.
This CL makes several refactors:
- Define a Tracer interface, implementing the `CaptureState` method
- Add the VM environment as the first argument of
`Tracer.CaptureState`
- Rename existing functionality `StructLogger` an make it an
implementation of `Tracer`
- Delete `StructLogCollector` and make `StructLogger` collect the logs
directly
- Change all callers to use the new `StructLogger` where necessary and
extract logs from that.
- Deletes the apparently obsolete and likely nonfunctional 'TraceCall'
from the eth API.
Callers that only wish accumulated logs can use the `StructLogger`
implementation straightforwardly. Callers that wish to efficiently
capture VM traces and operate on them without excessive copying can now
implement the `Tracer` interface to receive VM state at each step and
do with it as they wish.
This CL also removes the accumulation of logs from the vm.Environment;
this was necessary as part of the refactor, but also simplifies it by
removing a responsibility that doesn't directly belong to the
Environment.
This implements a generic approach to enabling soft forks by allowing
anyone to put in hashes of contracts that should not be interacted from.
This will help "The DAO" in their endevour to stop any whithdrawals from
any DAO contract by convincing the mining community to accept their code
hash.
Consensus rules dictate that objects can only be removed during the
finalisation of the transaction (i.e. after all calls have finished).
Thus calling a suicided contract twice from the same transaction:
A->B(S)->ret(A)->B(S) results in 2 suicides. Calling the suicided
object twice from two transactions: A->B(S), A->B, results in only one
suicide and a call to an empty object.
Our current debug tracing functionality replays all transaction that
were executed prior to the targetted transaction in order to provide
the user with an accurate trace.
As a side effect to calling StateDB.IntermediateRoot it also deletes any
suicides objects. Our tracing code never calls this function because it
isn't interested in the intermediate root. Becasue of this it caused a
bug in the tracing code where transactions that were send to priviously
deleted objects resulted in two suicides rather than one suicide and a
call to an empty object.
Fixes#2542