Fixes the CaptureStart api to include the EVM, thus being able to set the statedb early on. This pr also exposes the struct we used internally in the interpreter to encapsulate the contract, mem, stack, rstack, so we pass it as a single struct to the tracer, and removes the error returns on the capture methods.
This adds support for EIP-2718 typed transactions as well as EIP-2930
access list transactions (tx type 1). These EIPs are scheduled for the
Berlin fork.
There very few changes to existing APIs in core/types, and several new APIs
to deal with access list transactions. In particular, there are two new
constructor functions for transactions: types.NewTx and types.SignNewTx.
Since the canonical encoding of typed transactions is not RLP-compatible,
Transaction now has new methods for encoding and decoding: MarshalBinary
and UnmarshalBinary.
The existing EIP-155 signer does not support the new transaction types.
All code dealing with transaction signatures should be updated to use the
newer EIP-2930 signer. To make this easier for future updates, we have
added new constructor functions for types.Signer: types.LatestSigner and
types.LatestSignerForChainID.
This change also adds support for the YoloV3 testnet.
Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Felix Lange <fjl@twurst.com>
Co-authored-by: Ryan Schneider <ryanleeschneider@gmail.com>
This PR adds a more CLI flag, so that the les-server can serve light clients even the local node is not synced yet.
This functionality is needed in some testing environments(e.g. hive). After launching the les server, no more blocks will be imported so the node is always marked as "non-synced".
This PR prevents users from submitting transactions without EIP-155 enabled. This behaviour can be overridden by specifying the flag --rpc.allow-unprotected-txs=true.
This PR optimizes the broadcast loop. Instead of iterating twice through a given set of transactions to weed out which peers have and which do not have a tx, to send/announce transactions, we do it only once.
Prevents a situation where we (not running snap) connects with a peer running snap, and get stalled waiting for snap registration to succeed (which will never happen), which cause a waitgroup wait to halt shutdown
This moves the eth config definition into a separate package, eth/ethconfig.
Packages eth and les can now import this common package instead of
importing eth from les, reducing dependencies.
Co-authored-by: Felix Lange <fjl@twurst.com>
The PR makes use of the stacktrie, which is is more lenient on resource consumption, than the regular trie, in cases where we only need it for DeriveSha
* remove uneeded convertion type
* remove redundant type in composite literal
* omit explicit type where implicit
* remove unused redundant parenthesis
* remove redundant import alias duktape
Removes the yolov2 definition, adds yolov3, including EIP-2565. This PR also disables some of the erroneously generated blockchain and statetests, and adds the new genesis hash + alloc for yolov3.
This PR disables the CLI switches for yolo, since it's not complete until we merge support for 2930.
This moves the tracing RPC API implementation to package eth/tracers.
By doing so, package eth no longer depends on tracing and the duktape JS engine.
The change also enables tracing using the light client. All tracing methods work with the
light client, but it's a lot slower compared to using a full node.
This PR introduces a new config field SyncFromCheckpoint for light client.
In some special scenarios, it's required to start synchronization from some
arbitrary checkpoint or even from the scratch. So this PR offers this
flexibility to users so that the synchronization start point can be configured.
There are two relevant configs: SyncFromCheckpoint and Checkpoint.
- If the SyncFromCheckpoint is true, the light client will try to sync from the
specified checkpoint.
- If the Checkpoint is not configured, then the light client will sync from the
scratch(from the latest header if the database is not empty)
Additional notes: these two configs are not visible in the CLI flags but only
accessable in the config file.
Example Usage:
[Eth]
SyncFromCheckpoint = true
[Eth.Checkpoint]
SectionIndex = 100
SectionHead = "0xabc"
CHTRoot = "0xabc"
BloomRoot = "0xabc"
PS. Historical checkpoint can be retrieved from the synced full node or light
client via les_getCheckpoint API.
This changes the chainID RPC method to return an error when EIP-155 is not yet
active at the current block height. It used to simply return zero in this case, but
that's confusing.