* consensus/ethash: start remote ggoroutine to handle remote mining
* consensus/ethash: expose remote miner api
* consensus/ethash: expose submitHashrate api
* miner, ethash: push empty block to sealer without waiting execution
* consensus, internal: add getHashrate API for ethash
* consensus: add three method for consensus interface
* miner: expose consensus engine running status to miner
* eth, miner: specify etherbase when miner created
* miner: commit new work when consensus engine is started
* consensus, miner: fix some logics
* all: delete useless interfaces
* consensus: polish a bit
* cmd, consensus, core, miner: instatx clique for --dev
* cmd, consensus, clique: support configurable --dev block times
* cmd, core: allow --dev to use persistent storage too
* ethdb: add Putter interface and Has method
* ethdb: improve docs and add IdealBatchSize
* ethdb: remove memory batch lock
Batches are not safe for concurrent use.
* core: use ethdb.Putter for Write* functions
This covers the easy cases.
* core/state: simplify StateSync
* trie: optimize local node check
* ethdb: add ValueSize to Batch
* core: optimize HasHeader check
This avoids one random database read get the block number. For many uses
of HasHeader, the expectation is that it's actually there. Using Has
avoids a load + decode of the value.
* core: write fast sync block data in batches
Collect writes into batches up to the ideal size instead of issuing many
small, concurrent writes.
* eth/downloader: commit larger state batches
Collect nodes into a batch up to the ideal size instead of committing
whenever a node is received.
* core: optimize HasBlock check
This avoids a random database read to get the number.
* core: use numberCache in HasHeader
numberCache has higher capacity, increasing the odds of finding the
header without a database lookup.
* core: write imported block data using a batch
Restore batch writes of state and add blocks, tx entries, receipts to
the same batch. The change also simplifies the miner.
This commit also removes posting of logs when a forked block is imported.
* core: fix DB write error handling
* ethdb: use RLock for Has
* core: fix HasBlock comment
* core: remove redundant storage of transactions and receipts
* core, eth, internal: new transaction schema usage polishes
* eth: implement upgrade mechanism for db deduplication
* core, eth: drop old sequential key db upgrader
* eth: close last iterator on successful db upgrage
* core: prefix the lookup entries to make their purpose clearer
With this commit, core/state's access to the underlying key/value database is
mediated through an interface. Database errors are tracked in StateDB and
returned by CommitTo or the new Error method.
Motivation for this change: We can remove the light client's duplicated copy of
core/state. The light client now supports node iteration, so tracing and storage
enumeration can work with the light client (not implemented in this commit).
This commit is a preparation for the upcoming metropolis hardfork. It
prepares the state, core and vm packages such that integration with
metropolis becomes less of a hassle.
* Difficulty calculation requires header instead of individual
parameters
* statedb.StartRecord renamed to statedb.Prepare and added Finalise
method required by metropolis, which removes unwanted accounts from
the state (i.e. selfdestruct)
* State keeps record of destructed objects (in addition to dirty
objects)
* core/vm pre-compiles may now return errors
* core/vm pre-compiles gas check now take the full byte slice as argument
instead of just the size
* core/vm now keeps several hard-fork instruction tables instead of a
single instruction table and removes the need for hard-fork checks in
the instructions
* core/vm contains a empty restruction function which is added in
preparation of metropolis write-only mode operations
* Adds the bn256 curve
* Adds and sets the metropolis chain config block parameters (2^64-1)
This commit adds pluggable consensus engines to go-ethereum. In short, it
introduces a generic consensus interface, and refactors the entire codebase to
use this interface.
* common: remove CurrencyToString
Move denomination values to params instead.
* common: delete dead code
* common: move big integer operations to common/math
This commit consolidates all big integer operations into common/math and
adds tests and documentation.
There should be no change in semantics for BigPow, BigMin, BigMax, S256,
U256, Exp and their behaviour is now locked in by tests.
The BigD, BytesToBig and Bytes2Big functions don't provide additional
value, all uses are replaced by new(big.Int).SetBytes().
BigToBytes is now called PaddedBigBytes, its minimum output size
parameter is now specified as the number of bytes instead of bits. The
single use of this function is in the EVM's MSTORE instruction.
Big and String2Big are replaced by ParseBig, which is slightly stricter.
It previously accepted leading zeros for hexadecimal inputs but treated
decimal inputs as octal if a leading zero digit was present.
ParseUint64 is used in places where String2Big was used to decode a
uint64.
The new functions MustParseBig and MustParseUint64 are now used in many
places where parsing errors were previously ignored.
* common: delete unused big integer variables
* accounts/abi: replace uses of BytesToBig with use of encoding/binary
* common: remove BytesToBig
* common: remove Bytes2Big
* common: remove BigTrue
* cmd/utils: add BigFlag and use it for error-checked integer flags
While here, remove environment variable processing for DirectoryFlag
because we don't use it.
* core: add missing error checks in genesis block parser
* common: remove String2Big
* cmd/evm: use utils.BigFlag
* common/math: check for 256 bit overflow in ParseBig
This is supposed to prevent silent overflow/truncation of values in the
genesis block JSON. Without this check, a genesis block that set a
balance larger than 256 bits would lead to weird behaviour in the VM.
* cmd/utils: fixup import
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
The Subscription type is gone, all uses are replaced by
*TypeMuxSubscription. This change is prep-work for the
introduction of the new Subscription type in a later commit.
gorename -from '"github.com/ethereum/go-ethereum/event"::Event' -to TypeMuxEvent
gorename -from '"github.com/ethereum/go-ethereum/event"::muxsub' -to TypeMuxSubscription
gofmt -w -r 'Subscription -> *TypeMuxSubscription' ./event/*.go
find . -name '*.go' -and -not -regex '\./vendor/.*' \| xargs gofmt -w -r 'event.Subscription -> *event.TypeMuxSubscription'
This significantly reduces the dependency closure of ethclient, which no
longer depends on core/vm as of this change.
All uses of vm.Logs are replaced by []*types.Log. NewLog is gone too,
the constructor simply returned a literal.
The run loop, which previously contained custom opcode executes have been
removed and has been simplified to a few checks.
Each operation consists of 4 elements: execution function, gas cost function,
stack validation function and memory size function. The execution function
implements the operation's runtime behaviour, the gas cost function implements
the operation gas costs function and greatly depends on the memory and stack,
the stack validation function validates the stack and makes sure that enough
items can be popped off and pushed on and the memory size function calculates
the memory required for the operation and returns it.
This commit also allows the EVM to go unmetered. This is helpful for offline
operations such as contract calls.
The transaction pool keeps track of the current nonce in its local pendingState. When a
new block comes in the pendingState is reset. During the reset it fetches multiple times
the current state through the use of the currentState callback. When a second block comes
in during the reset its possible that the state changes during the reset. If that block
holds transactions that are currently in the pool the local pendingState that is used to
determine nonces can get out of sync.
This commit implements EIP158 part 1, 2, 3 & 4
1. If an account is empty it's no longer written to the trie. An empty
account is defined as (balance=0, nonce=0, storage=0, code=0).
2. Delete an empty account if it's touched
3. An empty account is redefined as either non-existent or empty.
4. Zero value calls and zero value suicides no longer consume the 25k
reation costs.
params: moved core/config to params
Signed-off-by: Jeffrey Wilcke <jeffrey@ethereum.org>
This commit replaces the deep-copy based state revert mechanism with a
linear complexity journal. This commit also hides several internal
StateDB methods to limit the number of ways in which calling code can
use the journal incorrectly.
As usual consultation and bug fixes to the initial implementation were
provided by @karalabe, @obscuren and @Arachnid. Thank you!
Shutting down geth prints hundreds of annoying error messages in some
cases. The errors appear because the Stop method of eth.ProtocolManager,
miner.Miner and core.TxPool is asynchronous. Left over peer sessions
generate events which are processed after Stop even though the database
has already been closed.
The fix is to make Stop synchronous using sync.WaitGroup.
For eth.ProtocolManager, in order to make use of WaitGroup safe, we need
a way to stop new peer sessions from being added while waiting on the
WaitGroup. The eth protocol Run function now selects on a signaling
channel and adds to the WaitGroup only if ProtocolManager is not
shutting down.
For miner.worker and core.TxPool the number of goroutines is static,
WaitGroup can be used in the usual way without additional
synchronisation.
- Manager.Accounts no longer returns an error.
- Manager methods take Account instead of common.Address.
- All uses of Account with unkeyed fields are converted.
This PR introduces a 10% probability that you'll run the client with the
JIT enabled testing the new client and helps us potentially catch
errors when reported.
This feature is **disabled** for miners (disabling the JIT completely).
The JIT can however be force for miners if they enable both --jitvm and
--forcejit.
Added chain configuration options and write out during genesis database
insertion. If no "config" was found, nothing is written to the database.
Configurations are written on a per genesis base. This means
that any chain (which is identified by it's genesis hash) can have their
own chain settings.
* Removed some strange code that didn't apply state reverting properly
* Refactored code setting from vm & state transition to the executioner
* Updated tests
Pending logs are now filterable through the Go API. Filter API changed
such that each filter type has it's own bucket and adding filter
explicitly requires you specify the bucket to put it in.
This removes the burden on a single object to take care of all
validation and state processing. Now instead the validation is done by
the `core.BlockValidator` (`types.Validator`) that takes care of both
header and uncle validation through the `ValidateBlock` method and state
validation through the `ValidateState` method. The state processing is
done by a new object `core.StateProcessor` (`types.Processor`) and
accepts a new state as input and uses that to process the given block's
transactions (and uncles for rewords) to calculate the state root for
the next block (P_n + 1).