core/state/snapshot: extract and split cap method, cover corners

This commit is contained in:
Péter Szilágyi 2019-10-17 18:30:31 +03:00
parent e146fbe4e7
commit d7d81d7c12
No known key found for this signature in database
GPG Key ID: E9AE538CEDF8293D
5 changed files with 461 additions and 239 deletions

View File

@ -22,8 +22,6 @@ import (
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
)
@ -169,125 +167,6 @@ func (dl *diffLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]by
return newDiffLayer(dl, dl.number+1, blockRoot, accounts, storage)
}
// Cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. If
// the layer limit is reached, memory cap is also enforced (but not before). The
// block numbers for the disk layer and first diff layer are returned for GC.
func (dl *diffLayer) Cap(layers int, memory uint64) (uint64, uint64) {
// Dive until we run out of layers or reach the persistent database
if layers > 2 {
// If we still have diff layers below, recurse
if parent, ok := dl.parent.(*diffLayer); ok {
return parent.Cap(layers-1, memory)
}
// Diff stack too shallow, return block numbers without modifications
return dl.parent.(*diskLayer).number, dl.number
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := dl.parent.(type) {
case *diskLayer:
return parent.number, dl.number
case *diffLayer:
// Flatten the parent into the grandparent. The flattening internally obtains a
// write lock on grandparent.
flattened := parent.flatten().(*diffLayer)
dl.lock.Lock()
defer dl.lock.Unlock()
dl.parent = flattened
if flattened.memory < memory {
diskNumber, _ := flattened.parent.Info()
return diskNumber, flattened.number
}
default:
panic(fmt.Sprintf("unknown data layer: %T", parent))
}
// If the bottommost layer is larger than our memory cap, persist to disk
var (
parent = dl.parent.(*diffLayer)
base = parent.parent.(*diskLayer)
batch = base.db.NewBatch()
)
parent.lock.RLock()
defer parent.lock.RUnlock()
// Start by temporarily deleting the current snapshot block marker. This
// ensures that in the case of a crash, the entire snapshot is invalidated.
rawdb.DeleteSnapshotBlock(batch)
// Mark the original base as stale as we're going to create a new wrapper
base.lock.Lock()
if base.stale {
panic("parent disk layer is stale") // we've committed into the same base from two children, boo
}
base.stale = true
base.lock.Unlock()
// Push all the accounts into the database
for hash, data := range parent.accountData {
if len(data) > 0 {
// Account was updated, push to disk
rawdb.WriteAccountSnapshot(batch, hash, data)
base.cache.Set(string(hash[:]), data)
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write account snapshot", "err", err)
}
batch.Reset()
}
} else {
// Account was deleted, remove all storage slots too
rawdb.DeleteAccountSnapshot(batch, hash)
base.cache.Set(string(hash[:]), nil)
it := rawdb.IterateStorageSnapshots(base.db, hash)
for it.Next() {
if key := it.Key(); len(key) == 65 { // TODO(karalabe): Yuck, we should move this into the iterator
batch.Delete(key)
base.cache.Delete(string(key[1:]))
}
}
it.Release()
}
}
// Push all the storage slots into the database
for accountHash, storage := range parent.storageData {
for storageHash, data := range storage {
if len(data) > 0 {
rawdb.WriteStorageSnapshot(batch, accountHash, storageHash, data)
base.cache.Set(string(append(accountHash[:], storageHash[:]...)), data)
} else {
rawdb.DeleteStorageSnapshot(batch, accountHash, storageHash)
base.cache.Set(string(append(accountHash[:], storageHash[:]...)), nil)
}
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write storage snapshot", "err", err)
}
batch.Reset()
}
}
// Update the snapshot block marker and write any remainder data
newBase := &diskLayer{
root: parent.root,
number: parent.number,
cache: base.cache,
db: base.db,
journal: base.journal,
}
rawdb.WriteSnapshotBlock(batch, newBase.number, newBase.root)
if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err)
}
dl.parent = newBase
return newBase.number, dl.number
}
// flatten pushes all data from this point downwards, flattening everything into
// a single diff at the bottom. Since usually the lowermost diff is the largest,
// the flattening bulds up from there in reverse.

View File

@ -18,15 +18,11 @@ package snapshot
import (
"bytes"
"fmt"
"math/big"
"math/rand"
"testing"
"time"
"github.com/allegro/bigcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/rlp"
)
@ -192,113 +188,12 @@ func TestInsertAndMerge(t *testing.T) {
}
}
// TestCapTree tests some functionality regarding capping/flattening
func TestCapTree(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
// the bottom-most layer, aside from the 'disk layer'
cache, _ := bigcache.NewBigCache(bigcache.Config{ // TODO(karalabe): dedup
Shards: 1,
LifeWindow: time.Hour,
MaxEntriesInWindow: 1 * 1024,
MaxEntrySize: 1,
HardMaxCacheSize: 1,
})
base := &diskLayer{
journal: "",
db: rawdb.NewMemoryDatabase(),
cache: cache,
number: 0,
root: common.HexToHash("0x01"),
}
// The lowest difflayer
a1 := base.Update(common.HexToHash("0xa1"), setAccount("0xa1"), storage)
a2 := a1.Update(common.HexToHash("0xa2"), setAccount("0xa2"), storage)
b2 := a1.Update(common.HexToHash("0xb2"), setAccount("0xb2"), storage)
a3 := a2.Update(common.HexToHash("0xa3"), setAccount("0xa3"), storage)
b3 := b2.Update(common.HexToHash("0xb3"), setAccount("0xb3"), storage)
checkExist := func(layer *diffLayer, key string) error {
accountKey := common.HexToHash(key)
data, _ := layer.Account(accountKey)
if data == nil {
return fmt.Errorf("expected %x to exist, got nil", accountKey)
}
return nil
}
shouldErr := func(layer *diffLayer, key string) error {
accountKey := common.HexToHash(key)
data, err := layer.Account(accountKey)
if err == nil {
return fmt.Errorf("expected error, got data %x", data)
}
return nil
}
// check basics
if err := checkExist(b3, "0xa1"); err != nil {
t.Error(err)
}
if err := checkExist(b3, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(b3, "0xb3"); err != nil {
t.Error(err)
}
// Now, merge the a-chain
diskNum, diffNum := a3.Cap(0, 1024)
if diskNum != 0 {
t.Errorf("disk layer err, got %d exp %d", diskNum, 0)
}
if diffNum != 2 {
t.Errorf("diff layer err, got %d exp %d", diffNum, 2)
}
// At this point, a2 got merged into a1. Thus, a1 is now modified,
// and as a1 is the parent of b2, b2 should no longer be able to iterate into parent
// These should still be accessible
if err := checkExist(b3, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(b3, "0xb3"); err != nil {
t.Error(err)
}
//b2ParentNum, _ := b2.parent.Info()
//if b2.parent.invalid == false
// t.Errorf("err, exp parent to be invalid, got %v", b2.parent, b2ParentNum)
//}
// But these would need iteration into the modified parent:
if err := shouldErr(b3, "0xa1"); err != nil {
t.Error(err)
}
if err := shouldErr(b3, "0xa2"); err != nil {
t.Error(err)
}
if err := shouldErr(b3, "0xa3"); err != nil {
t.Error(err)
}
}
type emptyLayer struct{}
func (emptyLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
panic("implement me")
}
func (emptyLayer) Cap(layers int, memory uint64) (uint64, uint64) {
panic("implement me")
}
func (emptyLayer) Journal() error {
panic("implement me")
}
@ -403,7 +298,6 @@ func BenchmarkSearchSlot(b *testing.B) {
// Without sorting and tracking accountlist
// BenchmarkFlatten-6 300 5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
fill := func(parent snapshot, blocknum int) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)

View File

@ -126,12 +126,6 @@ func (dl *diskLayer) Update(blockHash common.Hash, accounts map[common.Hash][]by
return newDiffLayer(dl, dl.number+1, blockHash, accounts, storage)
}
// Cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards.
func (dl *diskLayer) Cap(layers int, memory uint64) (uint64, uint64) {
return dl.number, dl.number
}
// Journal commits an entire diff hierarchy to disk into a single journal file.
func (dl *diskLayer) Journal() error {
// There's no journalling a disk layer

View File

@ -73,11 +73,6 @@ type snapshot interface {
// copying everything.
Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer
// Cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. The
// block numbers for the disk layer and first diff layer are returned for GC.
Cap(layers int, memory uint64) (uint64, uint64)
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
@ -169,11 +164,56 @@ func (st *SnapshotTree) Cap(blockRoot common.Hash, layers int, memory uint64) er
if snap == nil {
return fmt.Errorf("snapshot [%#x] missing", blockRoot)
}
diff, ok := snap.(*diffLayer)
if !ok {
return fmt.Errorf("snapshot [%#x] is base layer", blockRoot)
}
// Run the internal capping and discard all stale layers
st.lock.Lock()
defer st.lock.Unlock()
diskNumber, diffNumber := snap.Cap(layers, memory)
var (
diskNumber uint64
diffNumber uint64
)
// Flattening the bottom-most diff layer requires special casing since there's
// no child to rewire to the grandparent. In that case we can fake a temporary
// child for the capping and then remove it.
switch layers {
case 0:
// If full commit was requested, flatten the diffs and merge onto disk
diff.lock.RLock()
base := diffToDisk(diff.flatten().(*diffLayer))
diff.lock.RUnlock()
st.layers[base.root] = base
diskNumber, diffNumber = base.number, base.number
case 1:
// If full flattening was requested, flatten the diffs but only merge if the
// memory limit was reached
var (
bottom *diffLayer
base *diskLayer
)
diff.lock.RLock()
bottom = diff.flatten().(*diffLayer)
if bottom.memory >= memory {
base = diffToDisk(bottom)
}
diff.lock.RUnlock()
if base != nil {
st.layers[base.root] = base
diskNumber, diffNumber = base.number, base.number
} else {
st.layers[bottom.root] = bottom
diskNumber, diffNumber = bottom.parent.(*diskLayer).number, bottom.number
}
default:
diskNumber, diffNumber = st.cap(diff, layers, memory)
}
for root, snap := range st.layers {
if number, _ := snap.Info(); number != diskNumber && number < diffNumber {
delete(st.layers, root)
@ -182,6 +222,135 @@ func (st *SnapshotTree) Cap(blockRoot common.Hash, layers int, memory uint64) er
return nil
}
// cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. If
// the layer limit is reached, memory cap is also enforced (but not before). The
// block numbers for the disk layer and first diff layer are returned for GC.
func (st *SnapshotTree) cap(diff *diffLayer, layers int, memory uint64) (uint64, uint64) {
// Dive until we run out of layers or reach the persistent database
if layers > 2 {
// If we still have diff layers below, recurse
if parent, ok := diff.parent.(*diffLayer); ok {
return st.cap(parent, layers-1, memory)
}
// Diff stack too shallow, return block numbers without modifications
return diff.parent.(*diskLayer).number, diff.number
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := diff.parent.(type) {
case *diskLayer:
return parent.number, diff.number
case *diffLayer:
// Flatten the parent into the grandparent. The flattening internally obtains a
// write lock on grandparent.
flattened := parent.flatten().(*diffLayer)
st.layers[flattened.root] = flattened
diff.lock.Lock()
defer diff.lock.Unlock()
diff.parent = flattened
if flattened.memory < memory {
diskNumber, _ := flattened.parent.Info()
return diskNumber, flattened.number
}
default:
panic(fmt.Sprintf("unknown data layer: %T", parent))
}
// If the bottom-most layer is larger than our memory cap, persist to disk
bottom := diff.parent.(*diffLayer)
bottom.lock.RLock()
base := diffToDisk(bottom)
bottom.lock.RUnlock()
st.layers[base.root] = base
diff.parent = base
return base.number, diff.number
}
// diffToDisk merges a bottom-most diff into the persistent disk layer underneath
// it. The method will panic if called onto a non-bottom-most diff layer.
func diffToDisk(bottom *diffLayer) *diskLayer {
var (
base = bottom.parent.(*diskLayer)
batch = base.db.NewBatch()
)
// Start by temporarily deleting the current snapshot block marker. This
// ensures that in the case of a crash, the entire snapshot is invalidated.
rawdb.DeleteSnapshotBlock(batch)
// Mark the original base as stale as we're going to create a new wrapper
base.lock.Lock()
if base.stale {
panic("parent disk layer is stale") // we've committed into the same base from two children, boo
}
base.stale = true
base.lock.Unlock()
// Push all the accounts into the database
for hash, data := range bottom.accountData {
if len(data) > 0 {
// Account was updated, push to disk
rawdb.WriteAccountSnapshot(batch, hash, data)
base.cache.Set(string(hash[:]), data)
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write account snapshot", "err", err)
}
batch.Reset()
}
} else {
// Account was deleted, remove all storage slots too
rawdb.DeleteAccountSnapshot(batch, hash)
base.cache.Set(string(hash[:]), nil)
it := rawdb.IterateStorageSnapshots(base.db, hash)
for it.Next() {
if key := it.Key(); len(key) == 65 { // TODO(karalabe): Yuck, we should move this into the iterator
batch.Delete(key)
base.cache.Delete(string(key[1:]))
}
}
it.Release()
}
}
// Push all the storage slots into the database
for accountHash, storage := range bottom.storageData {
for storageHash, data := range storage {
if len(data) > 0 {
rawdb.WriteStorageSnapshot(batch, accountHash, storageHash, data)
base.cache.Set(string(append(accountHash[:], storageHash[:]...)), data)
} else {
rawdb.DeleteStorageSnapshot(batch, accountHash, storageHash)
base.cache.Set(string(append(accountHash[:], storageHash[:]...)), nil)
}
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write storage snapshot", "err", err)
}
batch.Reset()
}
}
// Update the snapshot block marker and write any remainder data
rawdb.WriteSnapshotBlock(batch, bottom.number, bottom.root)
if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err)
}
return &diskLayer{
root: bottom.root,
number: bottom.number,
cache: base.cache,
db: base.db,
journal: base.journal,
}
}
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).

View File

@ -15,3 +15,289 @@
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"fmt"
"testing"
"time"
"github.com/allegro/bigcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
)
// Tests that if a disk layer becomes stale, no active external references will
// be returned with junk data. This version of the test flattens every diff layer
// to check internal corner case around the bottom-most memory accumulator.
func TestDiskLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(time.Minute))
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: cache,
}
snaps := &SnapshotTree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Retrieve a reference to the base and commit a diff on top
ref := snaps.Snapshot(base.root)
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
storage := make(map[common.Hash]map[common.Hash][]byte)
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 2)
}
// Commit the diff layer onto the disk and ensure it's persisted
if err := snaps.Cap(common.HexToHash("0x02"), 0, 0); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 1 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 1)
fmt.Println(snaps.layers)
}
}
// Tests that if a disk layer becomes stale, no active external references will
// be returned with junk data. This version of the test retains the bottom diff
// layer to check the usual mode of operation where the accumulator is retained.
func TestDiskLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(time.Minute))
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: cache,
}
snaps := &SnapshotTree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Retrieve a reference to the base and commit two diffs on top
ref := snaps.Snapshot(base.root)
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
storage := make(map[common.Hash]map[common.Hash][]byte)
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 3)
}
// Commit the diff layer onto the disk and ensure it's persisted
if err := snaps.Cap(common.HexToHash("0x03"), 2, 0); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 2)
fmt.Println(snaps.layers)
}
}
// Tests that if a diff layer becomes stale, no active external references will
// be returned with junk data. This version of the test flattens every diff layer
// to check internal corner case around the bottom-most memory accumulator.
func TestDiffLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(time.Minute))
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: cache,
}
snaps := &SnapshotTree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Commit two diffs on top and retrieve a reference to the bottommost
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
storage := make(map[common.Hash]map[common.Hash][]byte)
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 3)
}
ref := snaps.Snapshot(common.HexToHash("0x02"))
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x03"), 1, 1024*1024); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 2)
fmt.Println(snaps.layers)
}
}
// Tests that if a diff layer becomes stale, no active external references will
// be returned with junk data. This version of the test retains the bottom diff
// layer to check the usual mode of operation where the accumulator is retained.
func TestDiffLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(time.Minute))
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: cache,
}
snaps := &SnapshotTree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Commit three diffs on top and retrieve a reference to the bottommost
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
storage := make(map[common.Hash]map[common.Hash][]byte)
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), accounts, storage); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 4 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 4)
}
ref := snaps.Snapshot(common.HexToHash("0x02"))
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x04"), 2, 1024*1024); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievald on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 3)
fmt.Println(snaps.layers)
}
}
// TestPostCapBasicDataAccess tests some functionality regarding capping/flattening.
func TestPostCapBasicDataAccess(t *testing.T) {
// setAccount is a helper to construct a random account entry and assign it to
// an account slot in a snapshot
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
// Create a starting base layer and a snapshot tree out of it
cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(time.Minute))
base := &diskLayer{
db: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: cache,
}
snaps := &SnapshotTree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// The lowest difflayer
snaps.Update(common.HexToHash("0xa1"), common.HexToHash("0x01"), setAccount("0xa1"), nil)
snaps.Update(common.HexToHash("0xa2"), common.HexToHash("0xa1"), setAccount("0xa2"), nil)
snaps.Update(common.HexToHash("0xb2"), common.HexToHash("0xa1"), setAccount("0xb2"), nil)
snaps.Update(common.HexToHash("0xa3"), common.HexToHash("0xa2"), setAccount("0xa3"), nil)
snaps.Update(common.HexToHash("0xb3"), common.HexToHash("0xb2"), setAccount("0xb3"), nil)
// checkExist verifies if an account exiss in a snapshot
checkExist := func(layer *diffLayer, key string) error {
if data, _ := layer.Account(common.HexToHash(key)); data == nil {
return fmt.Errorf("expected %x to exist, got nil", common.HexToHash(key))
}
return nil
}
// shouldErr checks that an account access errors as expected
shouldErr := func(layer *diffLayer, key string) error {
if data, err := layer.Account(common.HexToHash(key)); err == nil {
return fmt.Errorf("expected error, got data %x", data)
}
return nil
}
// check basics
snap := snaps.Snapshot(common.HexToHash("0xb3")).(*diffLayer)
if err := checkExist(snap, "0xa1"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb3"); err != nil {
t.Error(err)
}
// Now, merge the a-chain
snaps.Cap(common.HexToHash("0xa3"), 0, 1024)
// At this point, a2 got merged into a1. Thus, a1 is now modified, and as a1 is
// the parent of b2, b2 should no longer be able to iterate into parent.
// These should still be accessible
if err := checkExist(snap, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb3"); err != nil {
t.Error(err)
}
// But these would need iteration into the modified parent
if err := shouldErr(snap, "0xa1"); err != nil {
t.Error(err)
}
if err := shouldErr(snap, "0xa2"); err != nil {
t.Error(err)
}
if err := shouldErr(snap, "0xa3"); err != nil {
t.Error(err)
}
}