forked from cerc-io/plugeth
swarm/storage: pyramid chunker re-write (#14382)
This commit is contained in:
parent
3c8656347f
commit
d558a595ad
3
.gitignore
vendored
3
.gitignore
vendored
@ -30,3 +30,6 @@ build/_vendor/pkg
|
||||
# travis
|
||||
profile.tmp
|
||||
profile.cov
|
||||
|
||||
# IdeaIDE
|
||||
.idea
|
||||
|
@ -29,12 +29,12 @@ import (
|
||||
// Handler for storage/retrieval related protocol requests
|
||||
// implements the StorageHandler interface used by the bzz protocol
|
||||
type Depo struct {
|
||||
hashfunc storage.Hasher
|
||||
hashfunc storage.SwarmHasher
|
||||
localStore storage.ChunkStore
|
||||
netStore storage.ChunkStore
|
||||
}
|
||||
|
||||
func NewDepo(hash storage.Hasher, localStore, remoteStore storage.ChunkStore) *Depo {
|
||||
func NewDepo(hash storage.SwarmHasher, localStore, remoteStore storage.ChunkStore) *Depo {
|
||||
return &Depo{
|
||||
hashfunc: hash,
|
||||
localStore: localStore,
|
||||
|
@ -20,9 +20,9 @@ import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"hash"
|
||||
"io"
|
||||
"sync"
|
||||
"time"
|
||||
)
|
||||
|
||||
/*
|
||||
@ -50,14 +50,6 @@ data_{i} := size(subtree_{i}) || key_{j} || key_{j+1} .... || key_{j+n-1}
|
||||
The underlying hash function is configurable
|
||||
*/
|
||||
|
||||
const (
|
||||
defaultHash = "SHA3"
|
||||
// defaultHash = "BMTSHA3" // http://golang.org/pkg/hash/#Hash
|
||||
// defaultHash = "SHA256" // http://golang.org/pkg/hash/#Hash
|
||||
defaultBranches int64 = 128
|
||||
// hashSize int64 = hasherfunc.New().Size() // hasher knows about its own length in bytes
|
||||
// chunksize int64 = branches * hashSize // chunk is defined as this
|
||||
)
|
||||
|
||||
/*
|
||||
Tree chunker is a concrete implementation of data chunking.
|
||||
@ -67,25 +59,19 @@ If all is well it is possible to implement this by simply composing readers so t
|
||||
The hashing itself does use extra copies and allocation though, since it does need it.
|
||||
*/
|
||||
|
||||
type ChunkerParams struct {
|
||||
Branches int64
|
||||
Hash string
|
||||
}
|
||||
|
||||
func NewChunkerParams() *ChunkerParams {
|
||||
return &ChunkerParams{
|
||||
Branches: defaultBranches,
|
||||
Hash: defaultHash,
|
||||
}
|
||||
}
|
||||
var (
|
||||
errAppendOppNotSuported = errors.New("Append operation not supported")
|
||||
errOperationTimedOut = errors.New("operation timed out")
|
||||
)
|
||||
|
||||
type TreeChunker struct {
|
||||
branches int64
|
||||
hashFunc Hasher
|
||||
hashFunc SwarmHasher
|
||||
// calculated
|
||||
hashSize int64 // self.hashFunc.New().Size()
|
||||
chunkSize int64 // hashSize* branches
|
||||
workerCount int
|
||||
workerCount int64 // the number of worker routines used
|
||||
workerLock sync.RWMutex // lock for the worker count
|
||||
}
|
||||
|
||||
func NewTreeChunker(params *ChunkerParams) (self *TreeChunker) {
|
||||
@ -94,7 +80,8 @@ func NewTreeChunker(params *ChunkerParams) (self *TreeChunker) {
|
||||
self.branches = params.Branches
|
||||
self.hashSize = int64(self.hashFunc().Size())
|
||||
self.chunkSize = self.hashSize * self.branches
|
||||
self.workerCount = 1
|
||||
self.workerCount = 0
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
@ -114,13 +101,31 @@ type hashJob struct {
|
||||
parentWg *sync.WaitGroup
|
||||
}
|
||||
|
||||
func (self *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
|
||||
func (self *TreeChunker) incrementWorkerCount() {
|
||||
self.workerLock.Lock()
|
||||
defer self.workerLock.Unlock()
|
||||
self.workerCount += 1
|
||||
}
|
||||
|
||||
func (self *TreeChunker) getWorkerCount() int64 {
|
||||
self.workerLock.RLock()
|
||||
defer self.workerLock.RUnlock()
|
||||
return self.workerCount
|
||||
}
|
||||
|
||||
func (self *TreeChunker) decrementWorkerCount() {
|
||||
self.workerLock.Lock()
|
||||
defer self.workerLock.Unlock()
|
||||
self.workerCount -= 1
|
||||
}
|
||||
|
||||
func (self *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
|
||||
if self.chunkSize <= 0 {
|
||||
panic("chunker must be initialised")
|
||||
}
|
||||
|
||||
jobC := make(chan *hashJob, 2*processors)
|
||||
|
||||
jobC := make(chan *hashJob, 2*ChunkProcessors)
|
||||
wg := &sync.WaitGroup{}
|
||||
errC := make(chan error)
|
||||
quitC := make(chan bool)
|
||||
@ -129,6 +134,8 @@ func (self *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, s
|
||||
if wwg != nil {
|
||||
wwg.Add(1)
|
||||
}
|
||||
|
||||
self.incrementWorkerCount()
|
||||
go self.hashWorker(jobC, chunkC, errC, quitC, swg, wwg)
|
||||
|
||||
depth := 0
|
||||
@ -157,17 +164,24 @@ func (self *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, s
|
||||
close(errC)
|
||||
}()
|
||||
|
||||
//TODO: add a timeout
|
||||
if err := <-errC; err != nil {
|
||||
close(quitC)
|
||||
|
||||
defer close(quitC)
|
||||
select {
|
||||
case err := <-errC:
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
case <-time.NewTimer(splitTimeout).C:
|
||||
return nil,errOperationTimedOut
|
||||
}
|
||||
|
||||
return key, nil
|
||||
}
|
||||
|
||||
func (self *TreeChunker) split(depth int, treeSize int64, key Key, data io.Reader, size int64, jobC chan *hashJob, chunkC chan *Chunk, errC chan error, quitC chan bool, parentWg, swg, wwg *sync.WaitGroup) {
|
||||
|
||||
//
|
||||
|
||||
for depth > 0 && size < treeSize {
|
||||
treeSize /= self.branches
|
||||
depth--
|
||||
@ -223,12 +237,15 @@ func (self *TreeChunker) split(depth int, treeSize int64, key Key, data io.Reade
|
||||
// parentWg.Add(1)
|
||||
// go func() {
|
||||
childrenWg.Wait()
|
||||
if len(jobC) > self.workerCount && self.workerCount < processors {
|
||||
|
||||
worker := self.getWorkerCount()
|
||||
if int64(len(jobC)) > worker && worker < ChunkProcessors {
|
||||
if wwg != nil {
|
||||
wwg.Add(1)
|
||||
}
|
||||
self.workerCount++
|
||||
self.incrementWorkerCount()
|
||||
go self.hashWorker(jobC, chunkC, errC, quitC, swg, wwg)
|
||||
|
||||
}
|
||||
select {
|
||||
case jobC <- &hashJob{key, chunk, size, parentWg}:
|
||||
@ -237,6 +254,8 @@ func (self *TreeChunker) split(depth int, treeSize int64, key Key, data io.Reade
|
||||
}
|
||||
|
||||
func (self *TreeChunker) hashWorker(jobC chan *hashJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) {
|
||||
defer self.decrementWorkerCount()
|
||||
|
||||
hasher := self.hashFunc()
|
||||
if wwg != nil {
|
||||
defer wwg.Done()
|
||||
@ -249,7 +268,6 @@ func (self *TreeChunker) hashWorker(jobC chan *hashJob, chunkC chan *Chunk, errC
|
||||
return
|
||||
}
|
||||
// now we got the hashes in the chunk, then hash the chunks
|
||||
hasher.Reset()
|
||||
self.hashChunk(hasher, job, chunkC, swg)
|
||||
case <-quitC:
|
||||
return
|
||||
@ -260,9 +278,11 @@ func (self *TreeChunker) hashWorker(jobC chan *hashJob, chunkC chan *Chunk, errC
|
||||
// The treeChunkers own Hash hashes together
|
||||
// - the size (of the subtree encoded in the Chunk)
|
||||
// - the Chunk, ie. the contents read from the input reader
|
||||
func (self *TreeChunker) hashChunk(hasher hash.Hash, job *hashJob, chunkC chan *Chunk, swg *sync.WaitGroup) {
|
||||
hasher.Write(job.chunk)
|
||||
func (self *TreeChunker) hashChunk(hasher SwarmHash, job *hashJob, chunkC chan *Chunk, swg *sync.WaitGroup) {
|
||||
hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length
|
||||
hasher.Write(job.chunk[8:]) // minus 8 []byte length
|
||||
h := hasher.Sum(nil)
|
||||
|
||||
newChunk := &Chunk{
|
||||
Key: h,
|
||||
SData: job.chunk,
|
||||
@ -285,6 +305,10 @@ func (self *TreeChunker) hashChunk(hasher hash.Hash, job *hashJob, chunkC chan *
|
||||
}
|
||||
}
|
||||
|
||||
func (self *TreeChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
|
||||
return nil, errAppendOppNotSuported
|
||||
}
|
||||
|
||||
// LazyChunkReader implements LazySectionReader
|
||||
type LazyChunkReader struct {
|
||||
key Key // root key
|
||||
@ -298,7 +322,6 @@ type LazyChunkReader struct {
|
||||
|
||||
// implements the Joiner interface
|
||||
func (self *TreeChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader {
|
||||
|
||||
return &LazyChunkReader{
|
||||
key: key,
|
||||
chunkC: chunkC,
|
||||
|
@ -20,12 +20,14 @@ import (
|
||||
"bytes"
|
||||
"crypto/rand"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"runtime"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto/sha3"
|
||||
)
|
||||
|
||||
/*
|
||||
@ -43,7 +45,7 @@ type chunkerTester struct {
|
||||
t test
|
||||
}
|
||||
|
||||
func (self *chunkerTester) Split(chunker Splitter, data io.Reader, size int64, chunkC chan *Chunk, swg *sync.WaitGroup, expectedError error) (key Key) {
|
||||
func (self *chunkerTester) Split(chunker Splitter, data io.Reader, size int64, chunkC chan *Chunk, swg *sync.WaitGroup, expectedError error) (key Key, err error) {
|
||||
// reset
|
||||
self.chunks = make(map[string]*Chunk)
|
||||
|
||||
@ -54,13 +56,13 @@ func (self *chunkerTester) Split(chunker Splitter, data io.Reader, size int64, c
|
||||
quitC := make(chan bool)
|
||||
timeout := time.After(600 * time.Second)
|
||||
if chunkC != nil {
|
||||
go func() {
|
||||
go func() error {
|
||||
for {
|
||||
select {
|
||||
case <-timeout:
|
||||
self.t.Fatalf("Join timeout error")
|
||||
return errors.New(("Split timeout error"))
|
||||
case <-quitC:
|
||||
return
|
||||
return nil
|
||||
case chunk := <-chunkC:
|
||||
// self.chunks = append(self.chunks, chunk)
|
||||
self.chunks[chunk.Key.String()] = chunk
|
||||
@ -68,22 +70,69 @@ func (self *chunkerTester) Split(chunker Splitter, data io.Reader, size int64, c
|
||||
chunk.wg.Done()
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}()
|
||||
}
|
||||
key, err := chunker.Split(data, size, chunkC, swg, nil)
|
||||
|
||||
key, err = chunker.Split(data, size, chunkC, swg, nil)
|
||||
if err != nil && expectedError == nil {
|
||||
self.t.Fatalf("Split error: %v", err)
|
||||
} else if expectedError != nil && (err == nil || err.Error() != expectedError.Error()) {
|
||||
self.t.Fatalf("Not receiving the correct error! Expected %v, received %v", expectedError, err)
|
||||
err = errors.New(fmt.Sprintf("Split error: %v", err))
|
||||
}
|
||||
|
||||
if chunkC != nil {
|
||||
if swg != nil {
|
||||
swg.Wait()
|
||||
}
|
||||
close(quitC)
|
||||
}
|
||||
return
|
||||
return key, err
|
||||
}
|
||||
|
||||
func (self *chunkerTester) Append(chunker Splitter, rootKey Key, data io.Reader, chunkC chan *Chunk, swg *sync.WaitGroup, expectedError error) (key Key, err error) {
|
||||
quitC := make(chan bool)
|
||||
timeout := time.After(60 * time.Second)
|
||||
if chunkC != nil {
|
||||
go func() error {
|
||||
for {
|
||||
select {
|
||||
case <-timeout:
|
||||
return errors.New(("Append timeout error"))
|
||||
case <-quitC:
|
||||
return nil
|
||||
case chunk := <-chunkC:
|
||||
if chunk != nil {
|
||||
stored, success := self.chunks[chunk.Key.String()]
|
||||
if !success {
|
||||
// Requesting data
|
||||
self.chunks[chunk.Key.String()] = chunk
|
||||
if chunk.wg != nil {
|
||||
chunk.wg.Done()
|
||||
}
|
||||
} else {
|
||||
// getting data
|
||||
chunk.SData = stored.SData
|
||||
chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))
|
||||
close(chunk.C)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
key, err = chunker.Append(rootKey, data, chunkC, swg, nil)
|
||||
if err != nil && expectedError == nil {
|
||||
err = errors.New(fmt.Sprintf("Append error: %v", err))
|
||||
}
|
||||
|
||||
if chunkC != nil {
|
||||
if swg != nil {
|
||||
swg.Wait()
|
||||
}
|
||||
close(quitC)
|
||||
}
|
||||
return key, err
|
||||
}
|
||||
|
||||
func (self *chunkerTester) Join(chunker Chunker, key Key, c int, chunkC chan *Chunk, quitC chan bool) LazySectionReader {
|
||||
@ -93,22 +142,20 @@ func (self *chunkerTester) Join(chunker Chunker, key Key, c int, chunkC chan *Ch
|
||||
|
||||
timeout := time.After(600 * time.Second)
|
||||
i := 0
|
||||
go func() {
|
||||
go func() error {
|
||||
for {
|
||||
select {
|
||||
case <-timeout:
|
||||
self.t.Fatalf("Join timeout error")
|
||||
|
||||
return errors.New(("Join timeout error"))
|
||||
case chunk, ok := <-chunkC:
|
||||
if !ok {
|
||||
close(quitC)
|
||||
return
|
||||
return nil
|
||||
}
|
||||
// this just mocks the behaviour of a chunk store retrieval
|
||||
stored, success := self.chunks[chunk.Key.String()]
|
||||
if !success {
|
||||
self.t.Fatalf("not found")
|
||||
return
|
||||
return errors.New(("Not found"))
|
||||
}
|
||||
chunk.SData = stored.SData
|
||||
chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))
|
||||
@ -136,11 +183,15 @@ func testRandomBrokenData(splitter Splitter, n int, tester *chunkerTester) {
|
||||
chunkC := make(chan *Chunk, 1000)
|
||||
swg := &sync.WaitGroup{}
|
||||
|
||||
key := tester.Split(splitter, brokendata, int64(n), chunkC, swg, fmt.Errorf("Broken reader"))
|
||||
expectedError := fmt.Errorf("Broken reader")
|
||||
key, err := tester.Split(splitter, brokendata, int64(n), chunkC, swg, expectedError)
|
||||
if err == nil || err.Error() != expectedError.Error() {
|
||||
tester.t.Fatalf("Not receiving the correct error! Expected %v, received %v", expectedError, err)
|
||||
}
|
||||
tester.t.Logf(" Key = %v\n", key)
|
||||
}
|
||||
|
||||
func testRandomData(splitter Splitter, n int, tester *chunkerTester) {
|
||||
func testRandomData(splitter Splitter, n int, tester *chunkerTester) Key {
|
||||
if tester.inputs == nil {
|
||||
tester.inputs = make(map[uint64][]byte)
|
||||
}
|
||||
@ -156,7 +207,10 @@ func testRandomData(splitter Splitter, n int, tester *chunkerTester) {
|
||||
chunkC := make(chan *Chunk, 1000)
|
||||
swg := &sync.WaitGroup{}
|
||||
|
||||
key := tester.Split(splitter, data, int64(n), chunkC, swg, nil)
|
||||
key, err := tester.Split(splitter, data, int64(n), chunkC, swg, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
tester.t.Logf(" Key = %v\n", key)
|
||||
|
||||
chunkC = make(chan *Chunk, 1000)
|
||||
@ -176,29 +230,145 @@ func testRandomData(splitter Splitter, n int, tester *chunkerTester) {
|
||||
}
|
||||
close(chunkC)
|
||||
<-quitC
|
||||
|
||||
return key
|
||||
}
|
||||
|
||||
func testRandomDataAppend(splitter Splitter, n, m int, tester *chunkerTester) {
|
||||
if tester.inputs == nil {
|
||||
tester.inputs = make(map[uint64][]byte)
|
||||
}
|
||||
input, found := tester.inputs[uint64(n)]
|
||||
var data io.Reader
|
||||
if !found {
|
||||
data, input = testDataReaderAndSlice(n)
|
||||
tester.inputs[uint64(n)] = input
|
||||
} else {
|
||||
data = io.LimitReader(bytes.NewReader(input), int64(n))
|
||||
}
|
||||
|
||||
chunkC := make(chan *Chunk, 1000)
|
||||
swg := &sync.WaitGroup{}
|
||||
|
||||
key, err := tester.Split(splitter, data, int64(n), chunkC, swg, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
tester.t.Logf(" Key = %v\n", key)
|
||||
|
||||
//create a append data stream
|
||||
appendInput, found := tester.inputs[uint64(m)]
|
||||
var appendData io.Reader
|
||||
if !found {
|
||||
appendData, appendInput = testDataReaderAndSlice(m)
|
||||
tester.inputs[uint64(m)] = appendInput
|
||||
} else {
|
||||
appendData = io.LimitReader(bytes.NewReader(appendInput), int64(m))
|
||||
}
|
||||
|
||||
chunkC = make(chan *Chunk, 1000)
|
||||
swg = &sync.WaitGroup{}
|
||||
|
||||
newKey, err := tester.Append(splitter, key, appendData, chunkC, swg, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
tester.t.Logf(" NewKey = %v\n", newKey)
|
||||
|
||||
chunkC = make(chan *Chunk, 1000)
|
||||
quitC := make(chan bool)
|
||||
|
||||
chunker := NewTreeChunker(NewChunkerParams())
|
||||
reader := tester.Join(chunker, newKey, 0, chunkC, quitC)
|
||||
newOutput := make([]byte, n+m)
|
||||
r, err := reader.Read(newOutput)
|
||||
if r != (n + m) {
|
||||
tester.t.Fatalf("read error read: %v n = %v err = %v\n", r, n, err)
|
||||
}
|
||||
|
||||
newInput := append(input, appendInput...)
|
||||
if !bytes.Equal(newOutput, newInput) {
|
||||
tester.t.Fatalf("input and output mismatch\n IN: %v\nOUT: %v\n", newInput, newOutput)
|
||||
}
|
||||
|
||||
close(chunkC)
|
||||
}
|
||||
|
||||
func TestSha3ForCorrectness(t *testing.T) {
|
||||
tester := &chunkerTester{t: t}
|
||||
|
||||
size := 4096
|
||||
input := make([]byte, size+8)
|
||||
binary.LittleEndian.PutUint64(input[:8], uint64(size))
|
||||
|
||||
io.LimitReader(bytes.NewReader(input[8:]), int64(size))
|
||||
|
||||
rawSha3 := sha3.NewKeccak256()
|
||||
rawSha3.Reset()
|
||||
rawSha3.Write(input)
|
||||
rawSha3Output := rawSha3.Sum(nil)
|
||||
|
||||
sha3FromMakeFunc := MakeHashFunc(SHA3Hash)()
|
||||
sha3FromMakeFunc.ResetWithLength(input[:8])
|
||||
sha3FromMakeFunc.Write(input[8:])
|
||||
sha3FromMakeFuncOutput := sha3FromMakeFunc.Sum(nil)
|
||||
|
||||
if len(rawSha3Output) != len(sha3FromMakeFuncOutput) {
|
||||
tester.t.Fatalf("Original SHA3 and abstracted Sha3 has different length %v:%v\n", len(rawSha3Output), len(sha3FromMakeFuncOutput))
|
||||
}
|
||||
|
||||
if !bytes.Equal(rawSha3Output, sha3FromMakeFuncOutput) {
|
||||
tester.t.Fatalf("Original SHA3 and abstracted Sha3 mismatch %v:%v\n", rawSha3Output, sha3FromMakeFuncOutput)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func TestDataAppend(t *testing.T) {
|
||||
sizes := []int{1, 1, 1, 4095, 4096, 4097, 1, 1, 1, 123456, 2345678, 2345678}
|
||||
appendSizes := []int{4095, 4096, 4097, 1, 1, 1, 8191, 8192, 8193, 9000, 3000, 5000}
|
||||
|
||||
tester := &chunkerTester{t: t}
|
||||
chunker := NewPyramidChunker(NewChunkerParams())
|
||||
for i, s := range sizes {
|
||||
testRandomDataAppend(chunker, s, appendSizes[i], tester)
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
func TestRandomData(t *testing.T) {
|
||||
// sizes := []int{123456}
|
||||
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 123456, 2345678}
|
||||
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 12287, 12288, 12289, 123456, 2345678}
|
||||
tester := &chunkerTester{t: t}
|
||||
|
||||
chunker := NewTreeChunker(NewChunkerParams())
|
||||
for _, s := range sizes {
|
||||
testRandomData(chunker, s, tester)
|
||||
}
|
||||
pyramid := NewPyramidChunker(NewChunkerParams())
|
||||
for _, s := range sizes {
|
||||
testRandomData(pyramid, s, tester)
|
||||
treeChunkerKey := testRandomData(chunker, s, tester)
|
||||
pyramidChunkerKey := testRandomData(pyramid, s, tester)
|
||||
if treeChunkerKey.String() != pyramidChunkerKey.String() {
|
||||
tester.t.Fatalf("tree chunker and pyramid chunker key mismatch for size %v\n TC: %v\n PC: %v\n", s, treeChunkerKey.String(), pyramidChunkerKey.String())
|
||||
}
|
||||
}
|
||||
|
||||
cp := NewChunkerParams()
|
||||
cp.Hash = BMTHash
|
||||
chunker = NewTreeChunker(cp)
|
||||
pyramid = NewPyramidChunker(cp)
|
||||
for _, s := range sizes {
|
||||
treeChunkerKey := testRandomData(chunker, s, tester)
|
||||
pyramidChunkerKey := testRandomData(pyramid, s, tester)
|
||||
if treeChunkerKey.String() != pyramidChunkerKey.String() {
|
||||
tester.t.Fatalf("tree chunker BMT and pyramid chunker BMT key mismatch for size %v \n TC: %v\n PC: %v\n", s, treeChunkerKey.String(), pyramidChunkerKey.String())
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func TestRandomBrokenData(t *testing.T) {
|
||||
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 123456, 2345678}
|
||||
sizes := []int{1, 60, 83, 179, 253, 1024, 4095, 4096, 4097, 8191, 8192, 8193, 12287, 12288, 12289, 123456, 2345678}
|
||||
tester := &chunkerTester{t: t}
|
||||
chunker := NewTreeChunker(NewChunkerParams())
|
||||
for _, s := range sizes {
|
||||
testRandomBrokenData(chunker, s, tester)
|
||||
t.Logf("done size: %v", s)
|
||||
}
|
||||
}
|
||||
|
||||
@ -220,45 +390,100 @@ func benchmarkJoin(n int, t *testing.B) {
|
||||
chunkC := make(chan *Chunk, 1000)
|
||||
swg := &sync.WaitGroup{}
|
||||
|
||||
key := tester.Split(chunker, data, int64(n), chunkC, swg, nil)
|
||||
// t.StartTimer()
|
||||
key, err := tester.Split(chunker, data, int64(n), chunkC, swg, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
chunkC = make(chan *Chunk, 1000)
|
||||
quitC := make(chan bool)
|
||||
reader := tester.Join(chunker, key, i, chunkC, quitC)
|
||||
benchReadAll(reader)
|
||||
close(chunkC)
|
||||
<-quitC
|
||||
// t.StopTimer()
|
||||
}
|
||||
stats := new(runtime.MemStats)
|
||||
runtime.ReadMemStats(stats)
|
||||
fmt.Println(stats.Sys)
|
||||
}
|
||||
|
||||
func benchmarkSplitTree(n int, t *testing.B) {
|
||||
func benchmarkSplitTreeSHA3(n int, t *testing.B) {
|
||||
t.ReportAllocs()
|
||||
for i := 0; i < t.N; i++ {
|
||||
chunker := NewTreeChunker(NewChunkerParams())
|
||||
tester := &chunkerTester{t: t}
|
||||
data := testDataReader(n)
|
||||
tester.Split(chunker, data, int64(n), nil, nil, nil)
|
||||
_, err := tester.Split(chunker, data, int64(n), nil, nil, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
}
|
||||
stats := new(runtime.MemStats)
|
||||
runtime.ReadMemStats(stats)
|
||||
fmt.Println(stats.Sys)
|
||||
}
|
||||
|
||||
func benchmarkSplitPyramid(n int, t *testing.B) {
|
||||
func benchmarkSplitTreeBMT(n int, t *testing.B) {
|
||||
t.ReportAllocs()
|
||||
for i := 0; i < t.N; i++ {
|
||||
cp := NewChunkerParams()
|
||||
cp.Hash = BMTHash
|
||||
chunker := NewTreeChunker(cp)
|
||||
tester := &chunkerTester{t: t}
|
||||
data := testDataReader(n)
|
||||
_, err := tester.Split(chunker, data, int64(n), nil, nil, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkSplitPyramidSHA3(n int, t *testing.B) {
|
||||
t.ReportAllocs()
|
||||
for i := 0; i < t.N; i++ {
|
||||
splitter := NewPyramidChunker(NewChunkerParams())
|
||||
tester := &chunkerTester{t: t}
|
||||
data := testDataReader(n)
|
||||
tester.Split(splitter, data, int64(n), nil, nil, nil)
|
||||
_, err := tester.Split(splitter, data, int64(n), nil, nil, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkSplitPyramidBMT(n int, t *testing.B) {
|
||||
t.ReportAllocs()
|
||||
for i := 0; i < t.N; i++ {
|
||||
cp := NewChunkerParams()
|
||||
cp.Hash = BMTHash
|
||||
splitter := NewPyramidChunker(cp)
|
||||
tester := &chunkerTester{t: t}
|
||||
data := testDataReader(n)
|
||||
_, err := tester.Split(splitter, data, int64(n), nil, nil, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func benchmarkAppendPyramid(n, m int, t *testing.B) {
|
||||
t.ReportAllocs()
|
||||
for i := 0; i < t.N; i++ {
|
||||
chunker := NewPyramidChunker(NewChunkerParams())
|
||||
tester := &chunkerTester{t: t}
|
||||
data := testDataReader(n)
|
||||
data1 := testDataReader(m)
|
||||
|
||||
chunkC := make(chan *Chunk, 1000)
|
||||
swg := &sync.WaitGroup{}
|
||||
key, err := tester.Split(chunker, data, int64(n), chunkC, swg, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
|
||||
chunkC = make(chan *Chunk, 1000)
|
||||
swg = &sync.WaitGroup{}
|
||||
|
||||
_, err = tester.Append(chunker, key, data1, chunkC, swg, nil)
|
||||
if err != nil {
|
||||
tester.t.Fatalf(err.Error())
|
||||
}
|
||||
|
||||
close(chunkC)
|
||||
}
|
||||
stats := new(runtime.MemStats)
|
||||
runtime.ReadMemStats(stats)
|
||||
fmt.Println(stats.Sys)
|
||||
}
|
||||
|
||||
func BenchmarkJoin_2(t *testing.B) { benchmarkJoin(100, t) }
|
||||
@ -269,26 +494,59 @@ func BenchmarkJoin_6(t *testing.B) { benchmarkJoin(1000000, t) }
|
||||
func BenchmarkJoin_7(t *testing.B) { benchmarkJoin(10000000, t) }
|
||||
func BenchmarkJoin_8(t *testing.B) { benchmarkJoin(100000000, t) }
|
||||
|
||||
func BenchmarkSplitTree_2(t *testing.B) { benchmarkSplitTree(100, t) }
|
||||
func BenchmarkSplitTree_2h(t *testing.B) { benchmarkSplitTree(500, t) }
|
||||
func BenchmarkSplitTree_3(t *testing.B) { benchmarkSplitTree(1000, t) }
|
||||
func BenchmarkSplitTree_3h(t *testing.B) { benchmarkSplitTree(5000, t) }
|
||||
func BenchmarkSplitTree_4(t *testing.B) { benchmarkSplitTree(10000, t) }
|
||||
func BenchmarkSplitTree_4h(t *testing.B) { benchmarkSplitTree(50000, t) }
|
||||
func BenchmarkSplitTree_5(t *testing.B) { benchmarkSplitTree(100000, t) }
|
||||
func BenchmarkSplitTree_6(t *testing.B) { benchmarkSplitTree(1000000, t) }
|
||||
func BenchmarkSplitTree_7(t *testing.B) { benchmarkSplitTree(10000000, t) }
|
||||
func BenchmarkSplitTree_8(t *testing.B) { benchmarkSplitTree(100000000, t) }
|
||||
func BenchmarkSplitTreeSHA3_2(t *testing.B) { benchmarkSplitTreeSHA3(100, t) }
|
||||
func BenchmarkSplitTreeSHA3_2h(t *testing.B) { benchmarkSplitTreeSHA3(500, t) }
|
||||
func BenchmarkSplitTreeSHA3_3(t *testing.B) { benchmarkSplitTreeSHA3(1000, t) }
|
||||
func BenchmarkSplitTreeSHA3_3h(t *testing.B) { benchmarkSplitTreeSHA3(5000, t) }
|
||||
func BenchmarkSplitTreeSHA3_4(t *testing.B) { benchmarkSplitTreeSHA3(10000, t) }
|
||||
func BenchmarkSplitTreeSHA3_4h(t *testing.B) { benchmarkSplitTreeSHA3(50000, t) }
|
||||
func BenchmarkSplitTreeSHA3_5(t *testing.B) { benchmarkSplitTreeSHA3(100000, t) }
|
||||
func BenchmarkSplitTreeSHA3_6(t *testing.B) { benchmarkSplitTreeSHA3(1000000, t) }
|
||||
func BenchmarkSplitTreeSHA3_7(t *testing.B) { benchmarkSplitTreeSHA3(10000000, t) }
|
||||
func BenchmarkSplitTreeSHA3_8(t *testing.B) { benchmarkSplitTreeSHA3(100000000, t) }
|
||||
|
||||
func BenchmarkSplitPyramid_2(t *testing.B) { benchmarkSplitPyramid(100, t) }
|
||||
func BenchmarkSplitPyramid_2h(t *testing.B) { benchmarkSplitPyramid(500, t) }
|
||||
func BenchmarkSplitPyramid_3(t *testing.B) { benchmarkSplitPyramid(1000, t) }
|
||||
func BenchmarkSplitPyramid_3h(t *testing.B) { benchmarkSplitPyramid(5000, t) }
|
||||
func BenchmarkSplitPyramid_4(t *testing.B) { benchmarkSplitPyramid(10000, t) }
|
||||
func BenchmarkSplitPyramid_4h(t *testing.B) { benchmarkSplitPyramid(50000, t) }
|
||||
func BenchmarkSplitPyramid_5(t *testing.B) { benchmarkSplitPyramid(100000, t) }
|
||||
func BenchmarkSplitPyramid_6(t *testing.B) { benchmarkSplitPyramid(1000000, t) }
|
||||
func BenchmarkSplitPyramid_7(t *testing.B) { benchmarkSplitPyramid(10000000, t) }
|
||||
func BenchmarkSplitPyramid_8(t *testing.B) { benchmarkSplitPyramid(100000000, t) }
|
||||
func BenchmarkSplitTreeBMT_2(t *testing.B) { benchmarkSplitTreeBMT(100, t) }
|
||||
func BenchmarkSplitTreeBMT_2h(t *testing.B) { benchmarkSplitTreeBMT(500, t) }
|
||||
func BenchmarkSplitTreeBMT_3(t *testing.B) { benchmarkSplitTreeBMT(1000, t) }
|
||||
func BenchmarkSplitTreeBMT_3h(t *testing.B) { benchmarkSplitTreeBMT(5000, t) }
|
||||
func BenchmarkSplitTreeBMT_4(t *testing.B) { benchmarkSplitTreeBMT(10000, t) }
|
||||
func BenchmarkSplitTreeBMT_4h(t *testing.B) { benchmarkSplitTreeBMT(50000, t) }
|
||||
func BenchmarkSplitTreeBMT_5(t *testing.B) { benchmarkSplitTreeBMT(100000, t) }
|
||||
func BenchmarkSplitTreeBMT_6(t *testing.B) { benchmarkSplitTreeBMT(1000000, t) }
|
||||
func BenchmarkSplitTreeBMT_7(t *testing.B) { benchmarkSplitTreeBMT(10000000, t) }
|
||||
func BenchmarkSplitTreeBMT_8(t *testing.B) { benchmarkSplitTreeBMT(100000000, t) }
|
||||
|
||||
// godep go test -bench ./swarm/storage -cpuprofile cpu.out -memprofile mem.out
|
||||
func BenchmarkSplitPyramidSHA3_2(t *testing.B) { benchmarkSplitPyramidSHA3(100, t) }
|
||||
func BenchmarkSplitPyramidSHA3_2h(t *testing.B) { benchmarkSplitPyramidSHA3(500, t) }
|
||||
func BenchmarkSplitPyramidSHA3_3(t *testing.B) { benchmarkSplitPyramidSHA3(1000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_3h(t *testing.B) { benchmarkSplitPyramidSHA3(5000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_4(t *testing.B) { benchmarkSplitPyramidSHA3(10000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_4h(t *testing.B) { benchmarkSplitPyramidSHA3(50000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_5(t *testing.B) { benchmarkSplitPyramidSHA3(100000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_6(t *testing.B) { benchmarkSplitPyramidSHA3(1000000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_7(t *testing.B) { benchmarkSplitPyramidSHA3(10000000, t) }
|
||||
func BenchmarkSplitPyramidSHA3_8(t *testing.B) { benchmarkSplitPyramidSHA3(100000000, t) }
|
||||
|
||||
func BenchmarkSplitPyramidBMT_2(t *testing.B) { benchmarkSplitPyramidBMT(100, t) }
|
||||
func BenchmarkSplitPyramidBMT_2h(t *testing.B) { benchmarkSplitPyramidBMT(500, t) }
|
||||
func BenchmarkSplitPyramidBMT_3(t *testing.B) { benchmarkSplitPyramidBMT(1000, t) }
|
||||
func BenchmarkSplitPyramidBMT_3h(t *testing.B) { benchmarkSplitPyramidBMT(5000, t) }
|
||||
func BenchmarkSplitPyramidBMT_4(t *testing.B) { benchmarkSplitPyramidBMT(10000, t) }
|
||||
func BenchmarkSplitPyramidBMT_4h(t *testing.B) { benchmarkSplitPyramidBMT(50000, t) }
|
||||
func BenchmarkSplitPyramidBMT_5(t *testing.B) { benchmarkSplitPyramidBMT(100000, t) }
|
||||
func BenchmarkSplitPyramidBMT_6(t *testing.B) { benchmarkSplitPyramidBMT(1000000, t) }
|
||||
func BenchmarkSplitPyramidBMT_7(t *testing.B) { benchmarkSplitPyramidBMT(10000000, t) }
|
||||
func BenchmarkSplitPyramidBMT_8(t *testing.B) { benchmarkSplitPyramidBMT(100000000, t) }
|
||||
|
||||
func BenchmarkAppendPyramid_2(t *testing.B) { benchmarkAppendPyramid(100, 1000, t) }
|
||||
func BenchmarkAppendPyramid_2h(t *testing.B) { benchmarkAppendPyramid(500, 1000, t) }
|
||||
func BenchmarkAppendPyramid_3(t *testing.B) { benchmarkAppendPyramid(1000, 1000, t) }
|
||||
func BenchmarkAppendPyramid_4(t *testing.B) { benchmarkAppendPyramid(10000, 1000, t) }
|
||||
func BenchmarkAppendPyramid_4h(t *testing.B) { benchmarkAppendPyramid(50000, 1000, t) }
|
||||
func BenchmarkAppendPyramid_5(t *testing.B) { benchmarkAppendPyramid(1000000, 1000, t) }
|
||||
func BenchmarkAppendPyramid_6(t *testing.B) { benchmarkAppendPyramid(1000000, 1000, t) }
|
||||
func BenchmarkAppendPyramid_7(t *testing.B) { benchmarkAppendPyramid(10000000, 1000, t) }
|
||||
func BenchmarkAppendPyramid_8(t *testing.B) { benchmarkAppendPyramid(100000000, 1000, t) }
|
||||
|
||||
// go test -timeout 20m -cpu 4 -bench=./swarm/storage -run no
|
||||
// If you dont add the timeout argument above .. the benchmark will timeout and dump
|
||||
|
@ -76,7 +76,7 @@ func testStore(m ChunkStore, l int64, branches int64, t *testing.T) {
|
||||
}()
|
||||
chunker := NewTreeChunker(&ChunkerParams{
|
||||
Branches: branches,
|
||||
Hash: defaultHash,
|
||||
Hash: SHA3Hash,
|
||||
})
|
||||
swg := &sync.WaitGroup{}
|
||||
key, _ := chunker.Split(rand.Reader, l, chunkC, swg, nil)
|
||||
|
@ -72,12 +72,12 @@ type DbStore struct {
|
||||
gcPos, gcStartPos []byte
|
||||
gcArray []*gcItem
|
||||
|
||||
hashfunc Hasher
|
||||
hashfunc SwarmHasher
|
||||
|
||||
lock sync.Mutex
|
||||
}
|
||||
|
||||
func NewDbStore(path string, hash Hasher, capacity uint64, radius int) (s *DbStore, err error) {
|
||||
func NewDbStore(path string, hash SwarmHasher, capacity uint64, radius int) (s *DbStore, err error) {
|
||||
s = new(DbStore)
|
||||
|
||||
s.hashfunc = hash
|
||||
|
@ -29,7 +29,7 @@ func initDbStore(t *testing.T) *DbStore {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
m, err := NewDbStore(dir, MakeHashFunc(defaultHash), defaultDbCapacity, defaultRadius)
|
||||
m, err := NewDbStore(dir, MakeHashFunc(SHA3Hash), defaultDbCapacity, defaultRadius)
|
||||
if err != nil {
|
||||
t.Fatal("can't create store:", err)
|
||||
}
|
||||
|
@ -28,7 +28,7 @@ type LocalStore struct {
|
||||
}
|
||||
|
||||
// This constructor uses MemStore and DbStore as components
|
||||
func NewLocalStore(hash Hasher, params *StoreParams) (*LocalStore, error) {
|
||||
func NewLocalStore(hash SwarmHasher, params *StoreParams) (*LocalStore, error) {
|
||||
dbStore, err := NewDbStore(params.ChunkDbPath, hash, params.DbCapacity, params.Radius)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
|
@ -36,7 +36,7 @@ NetStore falls back to a backend (CloudStorage interface)
|
||||
implemented by bzz/network/forwarder. forwarder or IPFS or IPΞS
|
||||
*/
|
||||
type NetStore struct {
|
||||
hashfunc Hasher
|
||||
hashfunc SwarmHasher
|
||||
localStore *LocalStore
|
||||
cloud CloudStore
|
||||
}
|
||||
@ -69,7 +69,7 @@ func NewStoreParams(path string) (self *StoreParams) {
|
||||
// netstore contructor, takes path argument that is used to initialise dbStore,
|
||||
// the persistent (disk) storage component of LocalStore
|
||||
// the second argument is the hive, the connection/logistics manager for the node
|
||||
func NewNetStore(hash Hasher, lstore *LocalStore, cloud CloudStore, params *StoreParams) *NetStore {
|
||||
func NewNetStore(hash SwarmHasher, lstore *LocalStore, cloud CloudStore, params *StoreParams) *NetStore {
|
||||
return &NetStore{
|
||||
hashfunc: hash,
|
||||
localStore: lstore,
|
||||
|
@ -18,53 +18,112 @@ package storage
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"errors"
|
||||
"io"
|
||||
"math"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
)
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
/*
|
||||
The main idea of a pyramid chunker is to process the input data without knowing the entire size apriori.
|
||||
For this to be achieved, the chunker tree is built from the ground up until the data is exhausted.
|
||||
This opens up new aveneus such as easy append and other sort of modifications to the tree therby avoiding
|
||||
duplication of data chunks.
|
||||
|
||||
|
||||
Below is an example of a two level chunks tree. The leaf chunks are called data chunks and all the above
|
||||
chunks are called tree chunks. The tree chunk above data chunks is level 0 and so on until it reaches
|
||||
the root tree chunk.
|
||||
|
||||
|
||||
|
||||
T10 <- Tree chunk lvl1
|
||||
|
|
||||
__________________________|_____________________________
|
||||
/ | | \
|
||||
/ | \ \
|
||||
__T00__ ___T01__ ___T02__ ___T03__ <- Tree chunks lvl 0
|
||||
/ / \ / / \ / / \ / / \
|
||||
/ / \ / / \ / / \ / / \
|
||||
D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 <- Data Chunks
|
||||
|
||||
|
||||
The split function continuously read the data and creates data chunks and send them to storage.
|
||||
When certain no of data chunks are created (defaultBranches), a signal is sent to create a tree
|
||||
entry. When the level 0 tree entries reaches certain threshold (defaultBranches), another signal
|
||||
is sent to a tree entry one level up.. and so on... until only the data is exhausted AND only one
|
||||
tree entry is present in certain level. The key of tree entry is given out as the rootKey of the file.
|
||||
|
||||
*/
|
||||
|
||||
var (
|
||||
errLoadingTreeRootChunk = errors.New("LoadTree Error: Could not load root chunk")
|
||||
errLoadingTreeChunk = errors.New("LoadTree Error: Could not load chunk")
|
||||
)
|
||||
|
||||
const (
|
||||
processors = 8
|
||||
ChunkProcessors = 8
|
||||
DefaultBranches int64 = 128
|
||||
splitTimeout = time.Minute * 5
|
||||
)
|
||||
|
||||
type Tree struct {
|
||||
Chunks int64
|
||||
Levels []map[int64]*Node
|
||||
Lock sync.RWMutex
|
||||
const (
|
||||
DataChunk = 0
|
||||
TreeChunk = 1
|
||||
)
|
||||
|
||||
type ChunkerParams struct {
|
||||
Branches int64
|
||||
Hash string
|
||||
}
|
||||
|
||||
type Node struct {
|
||||
Pending int64
|
||||
Size uint64
|
||||
Children []common.Hash
|
||||
Last bool
|
||||
func NewChunkerParams() *ChunkerParams {
|
||||
return &ChunkerParams{
|
||||
Branches: DefaultBranches,
|
||||
Hash: SHA3Hash,
|
||||
}
|
||||
}
|
||||
|
||||
func (self *Node) String() string {
|
||||
var children []string
|
||||
for _, node := range self.Children {
|
||||
children = append(children, node.Hex())
|
||||
}
|
||||
return fmt.Sprintf("pending: %v, size: %v, last :%v, children: %v", self.Pending, self.Size, self.Last, strings.Join(children, ", "))
|
||||
// Entry to create a tree node
|
||||
type TreeEntry struct {
|
||||
level int
|
||||
branchCount int64
|
||||
subtreeSize uint64
|
||||
chunk []byte
|
||||
key []byte
|
||||
index int // used in append to indicate the index of existing tree entry
|
||||
updatePending bool // indicates if the entry is loaded from existing tree
|
||||
}
|
||||
|
||||
type Task struct {
|
||||
Index int64 // Index of the chunk being processed
|
||||
Size uint64
|
||||
Data []byte // Binary blob of the chunk
|
||||
Last bool
|
||||
func NewTreeEntry(pyramid *PyramidChunker) *TreeEntry {
|
||||
return &TreeEntry{
|
||||
level: 0,
|
||||
branchCount: 0,
|
||||
subtreeSize: 0,
|
||||
chunk: make([]byte, pyramid.chunkSize+8),
|
||||
key: make([]byte, pyramid.hashSize),
|
||||
index: 0,
|
||||
updatePending: false,
|
||||
}
|
||||
}
|
||||
|
||||
// Used by the hash processor to create a data/tree chunk and send to storage
|
||||
type chunkJob struct {
|
||||
key Key
|
||||
chunk []byte
|
||||
size int64
|
||||
parentWg *sync.WaitGroup
|
||||
chunkType int // used to identify the tree related chunks for debugging
|
||||
chunkLvl int // leaf-1 is level 0 and goes upwards until it reaches root
|
||||
}
|
||||
|
||||
type PyramidChunker struct {
|
||||
hashFunc Hasher
|
||||
hashFunc SwarmHasher
|
||||
chunkSize int64
|
||||
hashSize int64
|
||||
branches int64
|
||||
workerCount int
|
||||
workerCount int64
|
||||
workerLock sync.RWMutex
|
||||
}
|
||||
|
||||
func NewPyramidChunker(params *ChunkerParams) (self *PyramidChunker) {
|
||||
@ -73,128 +132,506 @@ func NewPyramidChunker(params *ChunkerParams) (self *PyramidChunker) {
|
||||
self.branches = params.Branches
|
||||
self.hashSize = int64(self.hashFunc().Size())
|
||||
self.chunkSize = self.hashSize * self.branches
|
||||
self.workerCount = 1
|
||||
self.workerCount = 0
|
||||
return
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
|
||||
func (self *PyramidChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader {
|
||||
return &LazyChunkReader{
|
||||
key: key,
|
||||
chunkC: chunkC,
|
||||
chunkSize: self.chunkSize,
|
||||
branches: self.branches,
|
||||
hashSize: self.hashSize,
|
||||
}
|
||||
}
|
||||
|
||||
chunks := (size + self.chunkSize - 1) / self.chunkSize
|
||||
depth := int(math.Ceil(math.Log(float64(chunks))/math.Log(float64(self.branches)))) + 1
|
||||
func (self *PyramidChunker) incrementWorkerCount() {
|
||||
self.workerLock.Lock()
|
||||
defer self.workerLock.Unlock()
|
||||
self.workerCount += 1
|
||||
}
|
||||
|
||||
results := Tree{
|
||||
Chunks: chunks,
|
||||
Levels: make([]map[int64]*Node, depth),
|
||||
func (self *PyramidChunker) getWorkerCount() int64 {
|
||||
self.workerLock.Lock()
|
||||
defer self.workerLock.Unlock()
|
||||
return self.workerCount
|
||||
}
|
||||
for i := 0; i < depth; i++ {
|
||||
results.Levels[i] = make(map[int64]*Node)
|
||||
|
||||
func (self *PyramidChunker) decrementWorkerCount() {
|
||||
self.workerLock.Lock()
|
||||
defer self.workerLock.Unlock()
|
||||
self.workerCount -= 1
|
||||
}
|
||||
// Create a pool of workers to crunch through the file
|
||||
tasks := make(chan *Task, 2*processors)
|
||||
pend := new(sync.WaitGroup)
|
||||
abortC := make(chan bool)
|
||||
for i := 0; i < processors; i++ {
|
||||
pend.Add(1)
|
||||
go self.processor(pend, swg, tasks, chunkC, &results)
|
||||
|
||||
func (self *PyramidChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) {
|
||||
jobC := make(chan *chunkJob, 2*ChunkProcessors)
|
||||
wg := &sync.WaitGroup{}
|
||||
errC := make(chan error)
|
||||
quitC := make(chan bool)
|
||||
rootKey := make([]byte, self.hashSize)
|
||||
chunkLevel := make([][]*TreeEntry, self.branches)
|
||||
|
||||
wg.Add(1)
|
||||
go self.prepareChunks(false, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG)
|
||||
|
||||
// closes internal error channel if all subprocesses in the workgroup finished
|
||||
go func() {
|
||||
|
||||
// waiting for all chunks to finish
|
||||
wg.Wait()
|
||||
|
||||
// if storage waitgroup is non-nil, we wait for storage to finish too
|
||||
if storageWG != nil {
|
||||
storageWG.Wait()
|
||||
}
|
||||
// Feed the chunks into the task pool
|
||||
read := 0
|
||||
for index := 0; ; index++ {
|
||||
buffer := make([]byte, self.chunkSize+8)
|
||||
n, err := data.Read(buffer[8:])
|
||||
read += n
|
||||
last := int64(read) == size || err == io.ErrUnexpectedEOF || err == io.EOF
|
||||
if err != nil && !last {
|
||||
close(abortC)
|
||||
break
|
||||
}
|
||||
binary.LittleEndian.PutUint64(buffer[:8], uint64(n))
|
||||
pend.Add(1)
|
||||
//We close errC here because this is passed down to 8 parallel routines underneath.
|
||||
// if a error happens in one of them.. that particular routine raises error...
|
||||
// once they all complete successfully, the control comes back and we can safely close this here.
|
||||
close(errC)
|
||||
}()
|
||||
|
||||
defer close(quitC)
|
||||
|
||||
select {
|
||||
case tasks <- &Task{Index: int64(index), Size: uint64(n), Data: buffer[:n+8], Last: last}:
|
||||
case <-abortC:
|
||||
case err := <-errC:
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if last {
|
||||
break
|
||||
case <-time.NewTimer(splitTimeout).C:
|
||||
}
|
||||
}
|
||||
// Wait for the workers and return
|
||||
close(tasks)
|
||||
pend.Wait()
|
||||
return rootKey, nil
|
||||
|
||||
key := results.Levels[0][0].Children[0][:]
|
||||
return key, nil
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) processor(pend, swg *sync.WaitGroup, tasks chan *Task, chunkC chan *Chunk, results *Tree) {
|
||||
defer pend.Done()
|
||||
func (self *PyramidChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) {
|
||||
quitC := make(chan bool)
|
||||
rootKey := make([]byte, self.hashSize)
|
||||
chunkLevel := make([][]*TreeEntry, self.branches)
|
||||
|
||||
// Load the right most unfinished tree chunks in every level
|
||||
self.loadTree(chunkLevel, key, chunkC, quitC)
|
||||
|
||||
jobC := make(chan *chunkJob, 2*ChunkProcessors)
|
||||
wg := &sync.WaitGroup{}
|
||||
errC := make(chan error)
|
||||
|
||||
wg.Add(1)
|
||||
go self.prepareChunks(true, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG)
|
||||
|
||||
// closes internal error channel if all subprocesses in the workgroup finished
|
||||
go func() {
|
||||
|
||||
// waiting for all chunks to finish
|
||||
wg.Wait()
|
||||
|
||||
// if storage waitgroup is non-nil, we wait for storage to finish too
|
||||
if storageWG != nil {
|
||||
storageWG.Wait()
|
||||
}
|
||||
close(errC)
|
||||
}()
|
||||
|
||||
defer close(quitC)
|
||||
|
||||
select {
|
||||
case err := <-errC:
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
case <-time.NewTimer(splitTimeout).C:
|
||||
}
|
||||
return rootKey, nil
|
||||
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) processor(id int64, jobC chan *chunkJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) {
|
||||
defer self.decrementWorkerCount()
|
||||
|
||||
// Start processing leaf chunks ad infinitum
|
||||
hasher := self.hashFunc()
|
||||
for task := range tasks {
|
||||
depth, pow := len(results.Levels)-1, self.branches
|
||||
size := task.Size
|
||||
data := task.Data
|
||||
var node *Node
|
||||
for depth >= 0 {
|
||||
// New chunk received, reset the hasher and start processing
|
||||
hasher.Reset()
|
||||
if node == nil { // Leaf node, hash the data chunk
|
||||
hasher.Write(task.Data)
|
||||
} else { // Internal node, hash the children
|
||||
size = node.Size
|
||||
data = make([]byte, hasher.Size()*len(node.Children)+8)
|
||||
binary.LittleEndian.PutUint64(data[:8], size)
|
||||
if wwg != nil {
|
||||
defer wwg.Done()
|
||||
}
|
||||
for {
|
||||
select {
|
||||
|
||||
hasher.Write(data[:8])
|
||||
for i, hash := range node.Children {
|
||||
copy(data[i*hasher.Size()+8:], hash[:])
|
||||
hasher.Write(hash[:])
|
||||
case job, ok := <-jobC:
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
self.processChunk(id, hasher, job, chunkC, swg)
|
||||
case <-quitC:
|
||||
return
|
||||
}
|
||||
}
|
||||
hash := hasher.Sum(nil)
|
||||
last := task.Last || (node != nil) && node.Last
|
||||
// Insert the subresult into the memoization tree
|
||||
results.Lock.Lock()
|
||||
if node = results.Levels[depth][task.Index/pow]; node == nil {
|
||||
// Figure out the pending tasks
|
||||
pending := self.branches
|
||||
if task.Index/pow == results.Chunks/pow {
|
||||
pending = (results.Chunks + pow/self.branches - 1) / (pow / self.branches) % self.branches
|
||||
}
|
||||
node = &Node{pending, 0, make([]common.Hash, pending), last}
|
||||
results.Levels[depth][task.Index/pow] = node
|
||||
|
||||
func (self *PyramidChunker) processChunk(id int64, hasher SwarmHash, job *chunkJob, chunkC chan *Chunk, swg *sync.WaitGroup) {
|
||||
hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length
|
||||
hasher.Write(job.chunk[8:]) // minus 8 []byte length
|
||||
h := hasher.Sum(nil)
|
||||
|
||||
newChunk := &Chunk{
|
||||
Key: h,
|
||||
SData: job.chunk,
|
||||
Size: job.size,
|
||||
wg: swg,
|
||||
}
|
||||
node.Pending--
|
||||
i := task.Index / (pow / self.branches) % self.branches
|
||||
if last {
|
||||
node.Last = true
|
||||
}
|
||||
copy(node.Children[i][:], hash)
|
||||
node.Size += size
|
||||
left := node.Pending
|
||||
|
||||
// report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk)
|
||||
copy(job.key, h)
|
||||
|
||||
// send off new chunk to storage
|
||||
if chunkC != nil {
|
||||
if swg != nil {
|
||||
swg.Add(1)
|
||||
}
|
||||
|
||||
chunkC <- &Chunk{Key: hash, SData: data, wg: swg}
|
||||
// TODO: consider selecting on self.quitC to avoid blocking forever on shutdown
|
||||
}
|
||||
if depth+1 < len(results.Levels) {
|
||||
delete(results.Levels[depth+1], task.Index/(pow/self.branches))
|
||||
job.parentWg.Done()
|
||||
|
||||
if chunkC != nil {
|
||||
chunkC <- newChunk
|
||||
}
|
||||
}
|
||||
|
||||
results.Lock.Unlock()
|
||||
// If there's more work to be done, leave for others
|
||||
if left > 0 {
|
||||
func (self *PyramidChunker) loadTree(chunkLevel [][]*TreeEntry, key Key, chunkC chan *Chunk, quitC chan bool) error {
|
||||
// Get the root chunk to get the total size
|
||||
chunk := retrieve(key, chunkC, quitC)
|
||||
if chunk == nil {
|
||||
return errLoadingTreeRootChunk
|
||||
}
|
||||
|
||||
//if data size is less than a chunk... add a parent with update as pending
|
||||
if chunk.Size <= self.chunkSize {
|
||||
newEntry := &TreeEntry{
|
||||
level: 0,
|
||||
branchCount: 1,
|
||||
subtreeSize: uint64(chunk.Size),
|
||||
chunk: make([]byte, self.chunkSize+8),
|
||||
key: make([]byte, self.hashSize),
|
||||
index: 0,
|
||||
updatePending: true,
|
||||
}
|
||||
copy(newEntry.chunk[8:], chunk.Key)
|
||||
chunkLevel[0] = append(chunkLevel[0], newEntry)
|
||||
return nil
|
||||
}
|
||||
|
||||
var treeSize int64
|
||||
var depth int
|
||||
treeSize = self.chunkSize
|
||||
for ; treeSize < chunk.Size; treeSize *= self.branches {
|
||||
depth++
|
||||
}
|
||||
|
||||
// Add the root chunk entry
|
||||
branchCount := int64(len(chunk.SData)-8) / self.hashSize
|
||||
newEntry := &TreeEntry{
|
||||
level: int(depth - 1),
|
||||
branchCount: branchCount,
|
||||
subtreeSize: uint64(chunk.Size),
|
||||
chunk: chunk.SData,
|
||||
key: key,
|
||||
index: 0,
|
||||
updatePending: true,
|
||||
}
|
||||
chunkLevel[depth-1] = append(chunkLevel[depth-1], newEntry)
|
||||
|
||||
// Add the rest of the tree
|
||||
for lvl := (depth - 1); lvl >= 1; lvl-- {
|
||||
|
||||
//TODO(jmozah): instead of loading finished branches and then trim in the end,
|
||||
//avoid loading them in the first place
|
||||
for _, ent := range chunkLevel[lvl] {
|
||||
branchCount = int64(len(ent.chunk)-8) / self.hashSize
|
||||
for i := int64(0); i < branchCount; i++ {
|
||||
key := ent.chunk[8+(i*self.hashSize) : 8+((i+1)*self.hashSize)]
|
||||
newChunk := retrieve(key, chunkC, quitC)
|
||||
if newChunk == nil {
|
||||
return errLoadingTreeChunk
|
||||
}
|
||||
bewBranchCount := int64(len(newChunk.SData)-8) / self.hashSize
|
||||
newEntry := &TreeEntry{
|
||||
level: int(lvl - 1),
|
||||
branchCount: bewBranchCount,
|
||||
subtreeSize: uint64(newChunk.Size),
|
||||
chunk: newChunk.SData,
|
||||
key: key,
|
||||
index: 0,
|
||||
updatePending: true,
|
||||
}
|
||||
chunkLevel[lvl-1] = append(chunkLevel[lvl-1], newEntry)
|
||||
|
||||
}
|
||||
|
||||
// We need to get only the right most unfinished branch.. so trim all finished branches
|
||||
if int64(len(chunkLevel[lvl-1])) >= self.branches {
|
||||
chunkLevel[lvl-1] = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) prepareChunks(isAppend bool, chunkLevel [][]*TreeEntry, data io.Reader, rootKey []byte, quitC chan bool, wg *sync.WaitGroup, jobC chan *chunkJob, processorWG *sync.WaitGroup, chunkC chan *Chunk, errC chan error, storageWG *sync.WaitGroup) {
|
||||
defer wg.Done()
|
||||
|
||||
chunkWG := &sync.WaitGroup{}
|
||||
totalDataSize := 0
|
||||
|
||||
// processorWG keeps track of workers spawned for hashing chunks
|
||||
if processorWG != nil {
|
||||
processorWG.Add(1)
|
||||
}
|
||||
|
||||
self.incrementWorkerCount()
|
||||
go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG)
|
||||
|
||||
parent := NewTreeEntry(self)
|
||||
var unFinishedChunk *Chunk
|
||||
|
||||
if isAppend == true && len(chunkLevel[0]) != 0 {
|
||||
|
||||
lastIndex := len(chunkLevel[0]) - 1
|
||||
ent := chunkLevel[0][lastIndex]
|
||||
|
||||
if ent.branchCount < self.branches {
|
||||
parent = &TreeEntry{
|
||||
level: 0,
|
||||
branchCount: ent.branchCount,
|
||||
subtreeSize: ent.subtreeSize,
|
||||
chunk: ent.chunk,
|
||||
key: ent.key,
|
||||
index: lastIndex,
|
||||
updatePending: true,
|
||||
}
|
||||
|
||||
lastBranch := parent.branchCount - 1
|
||||
lastKey := parent.chunk[8+lastBranch*self.hashSize : 8+(lastBranch+1)*self.hashSize]
|
||||
|
||||
unFinishedChunk = retrieve(lastKey, chunkC, quitC)
|
||||
if unFinishedChunk.Size < self.chunkSize {
|
||||
|
||||
parent.subtreeSize = parent.subtreeSize - uint64(unFinishedChunk.Size)
|
||||
parent.branchCount = parent.branchCount - 1
|
||||
} else {
|
||||
unFinishedChunk = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for index := 0; ; index++ {
|
||||
|
||||
var n int
|
||||
var err error
|
||||
chunkData := make([]byte, self.chunkSize+8)
|
||||
if unFinishedChunk != nil {
|
||||
copy(chunkData, unFinishedChunk.SData)
|
||||
n, err = data.Read(chunkData[8+unFinishedChunk.Size:])
|
||||
n += int(unFinishedChunk.Size)
|
||||
unFinishedChunk = nil
|
||||
} else {
|
||||
n, err = data.Read(chunkData[8:])
|
||||
}
|
||||
|
||||
totalDataSize += n
|
||||
if err != nil {
|
||||
if err == io.EOF || err == io.ErrUnexpectedEOF {
|
||||
if parent.branchCount == 1 {
|
||||
// Data is exactly one chunk.. pick the last chunk key as root
|
||||
chunkWG.Wait()
|
||||
lastChunksKey := parent.chunk[8 : 8+self.hashSize]
|
||||
copy(rootKey, lastChunksKey)
|
||||
break
|
||||
}
|
||||
// We're the last ones in this batch, merge the children together
|
||||
depth--
|
||||
pow *= self.branches
|
||||
}
|
||||
pend.Done()
|
||||
} else {
|
||||
close(quitC)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// Data ended in chunk boundry.. just signal to start bulding tree
|
||||
if n == 0 {
|
||||
self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey)
|
||||
break
|
||||
} else {
|
||||
|
||||
pkey := self.enqueueDataChunk(chunkData, uint64(n), parent, chunkWG, jobC, quitC)
|
||||
|
||||
// update tree related parent data structures
|
||||
parent.subtreeSize += uint64(n)
|
||||
parent.branchCount++
|
||||
|
||||
// Data got exhausted... signal to send any parent tree related chunks
|
||||
if int64(n) < self.chunkSize {
|
||||
|
||||
// only one data chunk .. so dont add any parent chunk
|
||||
if parent.branchCount <= 1 {
|
||||
chunkWG.Wait()
|
||||
copy(rootKey, pkey)
|
||||
break
|
||||
}
|
||||
|
||||
self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey)
|
||||
break
|
||||
}
|
||||
|
||||
if parent.branchCount == self.branches {
|
||||
self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, false, rootKey)
|
||||
parent = NewTreeEntry(self)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
workers := self.getWorkerCount()
|
||||
if int64(len(jobC)) > workers && workers < ChunkProcessors {
|
||||
if processorWG != nil {
|
||||
processorWG.Add(1)
|
||||
}
|
||||
self.incrementWorkerCount()
|
||||
go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) buildTree(isAppend bool, chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool, rootKey []byte) {
|
||||
chunkWG.Wait()
|
||||
self.enqueueTreeChunk(chunkLevel, ent, chunkWG, jobC, quitC, last)
|
||||
|
||||
compress := false
|
||||
endLvl := self.branches
|
||||
for lvl := int64(0); lvl < self.branches; lvl++ {
|
||||
lvlCount := int64(len(chunkLevel[lvl]))
|
||||
if lvlCount >= self.branches {
|
||||
endLvl = lvl + 1
|
||||
compress = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if compress == false && last == false {
|
||||
return
|
||||
}
|
||||
|
||||
// Wait for all the keys to be processed before compressing the tree
|
||||
chunkWG.Wait()
|
||||
|
||||
for lvl := int64(ent.level); lvl < endLvl; lvl++ {
|
||||
|
||||
lvlCount := int64(len(chunkLevel[lvl]))
|
||||
if lvlCount == 1 && last == true {
|
||||
copy(rootKey, chunkLevel[lvl][0].key)
|
||||
return
|
||||
}
|
||||
|
||||
for startCount := int64(0); startCount < lvlCount; startCount += self.branches {
|
||||
|
||||
endCount := startCount + self.branches
|
||||
if endCount > lvlCount {
|
||||
endCount = lvlCount
|
||||
}
|
||||
|
||||
var nextLvlCount int64
|
||||
var tempEntry *TreeEntry
|
||||
if len(chunkLevel[lvl+1]) > 0 {
|
||||
nextLvlCount = int64(len(chunkLevel[lvl+1]) - 1)
|
||||
tempEntry = chunkLevel[lvl+1][nextLvlCount]
|
||||
}
|
||||
if isAppend == true && tempEntry != nil && tempEntry.updatePending == true {
|
||||
updateEntry := &TreeEntry{
|
||||
level: int(lvl + 1),
|
||||
branchCount: 0,
|
||||
subtreeSize: 0,
|
||||
chunk: make([]byte, self.chunkSize+8),
|
||||
key: make([]byte, self.hashSize),
|
||||
index: int(nextLvlCount),
|
||||
updatePending: true,
|
||||
}
|
||||
for index := int64(0); index < lvlCount; index++ {
|
||||
updateEntry.branchCount++
|
||||
updateEntry.subtreeSize += chunkLevel[lvl][index].subtreeSize
|
||||
copy(updateEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], chunkLevel[lvl][index].key[:self.hashSize])
|
||||
}
|
||||
|
||||
self.enqueueTreeChunk(chunkLevel, updateEntry, chunkWG, jobC, quitC, last)
|
||||
|
||||
} else {
|
||||
|
||||
noOfBranches := endCount - startCount
|
||||
newEntry := &TreeEntry{
|
||||
level: int(lvl + 1),
|
||||
branchCount: noOfBranches,
|
||||
subtreeSize: 0,
|
||||
chunk: make([]byte, (noOfBranches*self.hashSize)+8),
|
||||
key: make([]byte, self.hashSize),
|
||||
index: int(nextLvlCount),
|
||||
updatePending: false,
|
||||
}
|
||||
|
||||
index := int64(0)
|
||||
for i := startCount; i < endCount; i++ {
|
||||
entry := chunkLevel[lvl][i]
|
||||
newEntry.subtreeSize += entry.subtreeSize
|
||||
copy(newEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], entry.key[:self.hashSize])
|
||||
index++
|
||||
}
|
||||
|
||||
self.enqueueTreeChunk(chunkLevel, newEntry, chunkWG, jobC, quitC, last)
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if isAppend == false {
|
||||
chunkWG.Wait()
|
||||
if compress == true {
|
||||
chunkLevel[lvl] = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) enqueueTreeChunk(chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool) {
|
||||
if ent != nil {
|
||||
|
||||
// wait for data chunks to get over before processing the tree chunk
|
||||
if last == true {
|
||||
chunkWG.Wait()
|
||||
}
|
||||
|
||||
binary.LittleEndian.PutUint64(ent.chunk[:8], ent.subtreeSize)
|
||||
ent.key = make([]byte, self.hashSize)
|
||||
chunkWG.Add(1)
|
||||
select {
|
||||
case jobC <- &chunkJob{ent.key, ent.chunk[:ent.branchCount*self.hashSize+8], int64(ent.subtreeSize), chunkWG, TreeChunk, 0}:
|
||||
case <-quitC:
|
||||
}
|
||||
|
||||
// Update or append based on weather it is a new entry or being reused
|
||||
if ent.updatePending == true {
|
||||
chunkWG.Wait()
|
||||
chunkLevel[ent.level][ent.index] = ent
|
||||
} else {
|
||||
chunkLevel[ent.level] = append(chunkLevel[ent.level], ent)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
func (self *PyramidChunker) enqueueDataChunk(chunkData []byte, size uint64, parent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool) Key {
|
||||
binary.LittleEndian.PutUint64(chunkData[:8], size)
|
||||
pkey := parent.chunk[8+parent.branchCount*self.hashSize : 8+(parent.branchCount+1)*self.hashSize]
|
||||
|
||||
chunkWG.Add(1)
|
||||
select {
|
||||
case jobC <- &chunkJob{pkey, chunkData[:size+8], int64(size), chunkWG, DataChunk, -1}:
|
||||
case <-quitC:
|
||||
}
|
||||
|
||||
return pkey
|
||||
|
||||
}
|
40
swarm/storage/swarmhasher.go
Normal file
40
swarm/storage/swarmhasher.go
Normal file
@ -0,0 +1,40 @@
|
||||
// Copyright 2017 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package storage
|
||||
|
||||
import (
|
||||
"hash"
|
||||
)
|
||||
|
||||
const (
|
||||
BMTHash = "BMT"
|
||||
SHA3Hash = "SHA3" // http://golang.org/pkg/hash/#Hash
|
||||
)
|
||||
|
||||
type SwarmHash interface {
|
||||
hash.Hash
|
||||
ResetWithLength([]byte)
|
||||
}
|
||||
|
||||
type HashWithLength struct {
|
||||
hash.Hash
|
||||
}
|
||||
|
||||
func (self *HashWithLength) ResetWithLength(length []byte) {
|
||||
self.Reset()
|
||||
self.Write(length)
|
||||
}
|
@ -24,12 +24,13 @@ import (
|
||||
"io"
|
||||
"sync"
|
||||
|
||||
// "github.com/ethereum/go-ethereum/bmt"
|
||||
"github.com/ethereum/go-ethereum/bmt"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/crypto/sha3"
|
||||
)
|
||||
|
||||
type Hasher func() hash.Hash
|
||||
type SwarmHasher func() SwarmHash
|
||||
|
||||
// Peer is the recorded as Source on the chunk
|
||||
// should probably not be here? but network should wrap chunk object
|
||||
@ -78,12 +79,18 @@ func IsZeroKey(key Key) bool {
|
||||
|
||||
var ZeroKey = Key(common.Hash{}.Bytes())
|
||||
|
||||
func MakeHashFunc(hash string) Hasher {
|
||||
func MakeHashFunc(hash string) SwarmHasher {
|
||||
switch hash {
|
||||
case "SHA256":
|
||||
return crypto.SHA256.New
|
||||
return func() SwarmHash { return &HashWithLength{crypto.SHA256.New()} }
|
||||
case "SHA3":
|
||||
return sha3.NewKeccak256
|
||||
return func() SwarmHash { return &HashWithLength{sha3.NewKeccak256()} }
|
||||
case "BMT":
|
||||
return func() SwarmHash {
|
||||
hasher := sha3.NewKeccak256
|
||||
pool := bmt.NewTreePool(hasher, bmt.DefaultSegmentCount, bmt.DefaultPoolSize)
|
||||
return bmt.New(pool)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@ -192,6 +199,13 @@ type Splitter interface {
|
||||
A closed error signals process completion at which point the key can be considered final if there were no errors.
|
||||
*/
|
||||
Split(io.Reader, int64, chan *Chunk, *sync.WaitGroup, *sync.WaitGroup) (Key, error)
|
||||
|
||||
/* This is the first step in making files mutable (not chunks)..
|
||||
Append allows adding more data chunks to the end of the already existsing file.
|
||||
The key for the root chunk is supplied to load the respective tree.
|
||||
Rest of the parameters behave like Split.
|
||||
*/
|
||||
Append(Key, io.Reader, chan *Chunk, *sync.WaitGroup, *sync.WaitGroup) (Key, error)
|
||||
}
|
||||
|
||||
type Joiner interface {
|
||||
|
Loading…
Reference in New Issue
Block a user