accounts/usbwallet: recreate Trezor protocol, support old and new

This commit is contained in:
Péter Szilágyi 2019-05-28 23:17:00 +03:00
parent 4799b5abd4
commit b4cc7b660c
No known key found for this signature in database
GPG Key ID: E9AE538CEDF8293D
35 changed files with 13695 additions and 9131 deletions

View File

@ -194,7 +194,13 @@ func (w *trezorDriver) trezorDerive(derivationPath []uint32) (common.Address, er
if _, err := w.trezorExchange(&trezor.EthereumGetAddress{AddressN: derivationPath}, address); err != nil { if _, err := w.trezorExchange(&trezor.EthereumGetAddress{AddressN: derivationPath}, address); err != nil {
return common.Address{}, err return common.Address{}, err
} }
return common.BytesToAddress(address.GetAddress()), nil if addr := address.GetAddressBin(); len(addr) > 0 { // Older firmwares use binary fomats
return common.BytesToAddress(addr), nil
}
if addr := address.GetAddressHex(); len(addr) > 0 { // Newer firmwares use hexadecimal fomats
return common.HexToAddress(addr), nil
}
return common.Address{}, errors.New("missing derived address")
} }
// trezorSign sends the transaction to the Trezor wallet, and waits for the user // trezorSign sends the transaction to the Trezor wallet, and waits for the user
@ -213,7 +219,10 @@ func (w *trezorDriver) trezorSign(derivationPath []uint32, tx *types.Transaction
DataLength: &length, DataLength: &length,
} }
if to := tx.To(); to != nil { if to := tx.To(); to != nil {
request.To = (*to)[:] // Non contract deploy, set recipient explicitly // Non contract deploy, set recipient explicitly
hex := to.Hex()
request.ToHex = &hex // Newer firmwares (old will ignore)
request.ToBin = (*to)[:] // Older firmwares (new will ignore)
} }
if length > 1024 { // Send the data chunked if that was requested if length > 1024 { // Send the data chunked if that was requested
request.DataInitialChunk, data = data[:1024], data[1024:] request.DataInitialChunk, data = data[:1024], data[1024:]

View File

@ -0,0 +1,811 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: messages-common.proto
package trezor
import (
fmt "fmt"
math "math"
proto "github.com/golang/protobuf/proto"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
type Failure_FailureType int32
const (
Failure_Failure_UnexpectedMessage Failure_FailureType = 1
Failure_Failure_ButtonExpected Failure_FailureType = 2
Failure_Failure_DataError Failure_FailureType = 3
Failure_Failure_ActionCancelled Failure_FailureType = 4
Failure_Failure_PinExpected Failure_FailureType = 5
Failure_Failure_PinCancelled Failure_FailureType = 6
Failure_Failure_PinInvalid Failure_FailureType = 7
Failure_Failure_InvalidSignature Failure_FailureType = 8
Failure_Failure_ProcessError Failure_FailureType = 9
Failure_Failure_NotEnoughFunds Failure_FailureType = 10
Failure_Failure_NotInitialized Failure_FailureType = 11
Failure_Failure_PinMismatch Failure_FailureType = 12
Failure_Failure_FirmwareError Failure_FailureType = 99
)
var Failure_FailureType_name = map[int32]string{
1: "Failure_UnexpectedMessage",
2: "Failure_ButtonExpected",
3: "Failure_DataError",
4: "Failure_ActionCancelled",
5: "Failure_PinExpected",
6: "Failure_PinCancelled",
7: "Failure_PinInvalid",
8: "Failure_InvalidSignature",
9: "Failure_ProcessError",
10: "Failure_NotEnoughFunds",
11: "Failure_NotInitialized",
12: "Failure_PinMismatch",
99: "Failure_FirmwareError",
}
var Failure_FailureType_value = map[string]int32{
"Failure_UnexpectedMessage": 1,
"Failure_ButtonExpected": 2,
"Failure_DataError": 3,
"Failure_ActionCancelled": 4,
"Failure_PinExpected": 5,
"Failure_PinCancelled": 6,
"Failure_PinInvalid": 7,
"Failure_InvalidSignature": 8,
"Failure_ProcessError": 9,
"Failure_NotEnoughFunds": 10,
"Failure_NotInitialized": 11,
"Failure_PinMismatch": 12,
"Failure_FirmwareError": 99,
}
func (x Failure_FailureType) Enum() *Failure_FailureType {
p := new(Failure_FailureType)
*p = x
return p
}
func (x Failure_FailureType) String() string {
return proto.EnumName(Failure_FailureType_name, int32(x))
}
func (x *Failure_FailureType) UnmarshalJSON(data []byte) error {
value, err := proto.UnmarshalJSONEnum(Failure_FailureType_value, data, "Failure_FailureType")
if err != nil {
return err
}
*x = Failure_FailureType(value)
return nil
}
func (Failure_FailureType) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{1, 0}
}
//*
// Type of button request
type ButtonRequest_ButtonRequestType int32
const (
ButtonRequest_ButtonRequest_Other ButtonRequest_ButtonRequestType = 1
ButtonRequest_ButtonRequest_FeeOverThreshold ButtonRequest_ButtonRequestType = 2
ButtonRequest_ButtonRequest_ConfirmOutput ButtonRequest_ButtonRequestType = 3
ButtonRequest_ButtonRequest_ResetDevice ButtonRequest_ButtonRequestType = 4
ButtonRequest_ButtonRequest_ConfirmWord ButtonRequest_ButtonRequestType = 5
ButtonRequest_ButtonRequest_WipeDevice ButtonRequest_ButtonRequestType = 6
ButtonRequest_ButtonRequest_ProtectCall ButtonRequest_ButtonRequestType = 7
ButtonRequest_ButtonRequest_SignTx ButtonRequest_ButtonRequestType = 8
ButtonRequest_ButtonRequest_FirmwareCheck ButtonRequest_ButtonRequestType = 9
ButtonRequest_ButtonRequest_Address ButtonRequest_ButtonRequestType = 10
ButtonRequest_ButtonRequest_PublicKey ButtonRequest_ButtonRequestType = 11
ButtonRequest_ButtonRequest_MnemonicWordCount ButtonRequest_ButtonRequestType = 12
ButtonRequest_ButtonRequest_MnemonicInput ButtonRequest_ButtonRequestType = 13
ButtonRequest_ButtonRequest_PassphraseType ButtonRequest_ButtonRequestType = 14
ButtonRequest_ButtonRequest_UnknownDerivationPath ButtonRequest_ButtonRequestType = 15
)
var ButtonRequest_ButtonRequestType_name = map[int32]string{
1: "ButtonRequest_Other",
2: "ButtonRequest_FeeOverThreshold",
3: "ButtonRequest_ConfirmOutput",
4: "ButtonRequest_ResetDevice",
5: "ButtonRequest_ConfirmWord",
6: "ButtonRequest_WipeDevice",
7: "ButtonRequest_ProtectCall",
8: "ButtonRequest_SignTx",
9: "ButtonRequest_FirmwareCheck",
10: "ButtonRequest_Address",
11: "ButtonRequest_PublicKey",
12: "ButtonRequest_MnemonicWordCount",
13: "ButtonRequest_MnemonicInput",
14: "ButtonRequest_PassphraseType",
15: "ButtonRequest_UnknownDerivationPath",
}
var ButtonRequest_ButtonRequestType_value = map[string]int32{
"ButtonRequest_Other": 1,
"ButtonRequest_FeeOverThreshold": 2,
"ButtonRequest_ConfirmOutput": 3,
"ButtonRequest_ResetDevice": 4,
"ButtonRequest_ConfirmWord": 5,
"ButtonRequest_WipeDevice": 6,
"ButtonRequest_ProtectCall": 7,
"ButtonRequest_SignTx": 8,
"ButtonRequest_FirmwareCheck": 9,
"ButtonRequest_Address": 10,
"ButtonRequest_PublicKey": 11,
"ButtonRequest_MnemonicWordCount": 12,
"ButtonRequest_MnemonicInput": 13,
"ButtonRequest_PassphraseType": 14,
"ButtonRequest_UnknownDerivationPath": 15,
}
func (x ButtonRequest_ButtonRequestType) Enum() *ButtonRequest_ButtonRequestType {
p := new(ButtonRequest_ButtonRequestType)
*p = x
return p
}
func (x ButtonRequest_ButtonRequestType) String() string {
return proto.EnumName(ButtonRequest_ButtonRequestType_name, int32(x))
}
func (x *ButtonRequest_ButtonRequestType) UnmarshalJSON(data []byte) error {
value, err := proto.UnmarshalJSONEnum(ButtonRequest_ButtonRequestType_value, data, "ButtonRequest_ButtonRequestType")
if err != nil {
return err
}
*x = ButtonRequest_ButtonRequestType(value)
return nil
}
func (ButtonRequest_ButtonRequestType) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{2, 0}
}
//*
// Type of PIN request
type PinMatrixRequest_PinMatrixRequestType int32
const (
PinMatrixRequest_PinMatrixRequestType_Current PinMatrixRequest_PinMatrixRequestType = 1
PinMatrixRequest_PinMatrixRequestType_NewFirst PinMatrixRequest_PinMatrixRequestType = 2
PinMatrixRequest_PinMatrixRequestType_NewSecond PinMatrixRequest_PinMatrixRequestType = 3
)
var PinMatrixRequest_PinMatrixRequestType_name = map[int32]string{
1: "PinMatrixRequestType_Current",
2: "PinMatrixRequestType_NewFirst",
3: "PinMatrixRequestType_NewSecond",
}
var PinMatrixRequest_PinMatrixRequestType_value = map[string]int32{
"PinMatrixRequestType_Current": 1,
"PinMatrixRequestType_NewFirst": 2,
"PinMatrixRequestType_NewSecond": 3,
}
func (x PinMatrixRequest_PinMatrixRequestType) Enum() *PinMatrixRequest_PinMatrixRequestType {
p := new(PinMatrixRequest_PinMatrixRequestType)
*p = x
return p
}
func (x PinMatrixRequest_PinMatrixRequestType) String() string {
return proto.EnumName(PinMatrixRequest_PinMatrixRequestType_name, int32(x))
}
func (x *PinMatrixRequest_PinMatrixRequestType) UnmarshalJSON(data []byte) error {
value, err := proto.UnmarshalJSONEnum(PinMatrixRequest_PinMatrixRequestType_value, data, "PinMatrixRequest_PinMatrixRequestType")
if err != nil {
return err
}
*x = PinMatrixRequest_PinMatrixRequestType(value)
return nil
}
func (PinMatrixRequest_PinMatrixRequestType) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{4, 0}
}
//*
// Response: Success of the previous request
// @end
type Success struct {
Message *string `protobuf:"bytes,1,opt,name=message" json:"message,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Success) Reset() { *m = Success{} }
func (m *Success) String() string { return proto.CompactTextString(m) }
func (*Success) ProtoMessage() {}
func (*Success) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{0}
}
func (m *Success) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Success.Unmarshal(m, b)
}
func (m *Success) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Success.Marshal(b, m, deterministic)
}
func (m *Success) XXX_Merge(src proto.Message) {
xxx_messageInfo_Success.Merge(m, src)
}
func (m *Success) XXX_Size() int {
return xxx_messageInfo_Success.Size(m)
}
func (m *Success) XXX_DiscardUnknown() {
xxx_messageInfo_Success.DiscardUnknown(m)
}
var xxx_messageInfo_Success proto.InternalMessageInfo
func (m *Success) GetMessage() string {
if m != nil && m.Message != nil {
return *m.Message
}
return ""
}
//*
// Response: Failure of the previous request
// @end
type Failure struct {
Code *Failure_FailureType `protobuf:"varint,1,opt,name=code,enum=hw.trezor.messages.common.Failure_FailureType" json:"code,omitempty"`
Message *string `protobuf:"bytes,2,opt,name=message" json:"message,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Failure) Reset() { *m = Failure{} }
func (m *Failure) String() string { return proto.CompactTextString(m) }
func (*Failure) ProtoMessage() {}
func (*Failure) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{1}
}
func (m *Failure) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Failure.Unmarshal(m, b)
}
func (m *Failure) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Failure.Marshal(b, m, deterministic)
}
func (m *Failure) XXX_Merge(src proto.Message) {
xxx_messageInfo_Failure.Merge(m, src)
}
func (m *Failure) XXX_Size() int {
return xxx_messageInfo_Failure.Size(m)
}
func (m *Failure) XXX_DiscardUnknown() {
xxx_messageInfo_Failure.DiscardUnknown(m)
}
var xxx_messageInfo_Failure proto.InternalMessageInfo
func (m *Failure) GetCode() Failure_FailureType {
if m != nil && m.Code != nil {
return *m.Code
}
return Failure_Failure_UnexpectedMessage
}
func (m *Failure) GetMessage() string {
if m != nil && m.Message != nil {
return *m.Message
}
return ""
}
//*
// Response: Device is waiting for HW button press.
// @auxstart
// @next ButtonAck
type ButtonRequest struct {
Code *ButtonRequest_ButtonRequestType `protobuf:"varint,1,opt,name=code,enum=hw.trezor.messages.common.ButtonRequest_ButtonRequestType" json:"code,omitempty"`
Data *string `protobuf:"bytes,2,opt,name=data" json:"data,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *ButtonRequest) Reset() { *m = ButtonRequest{} }
func (m *ButtonRequest) String() string { return proto.CompactTextString(m) }
func (*ButtonRequest) ProtoMessage() {}
func (*ButtonRequest) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{2}
}
func (m *ButtonRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_ButtonRequest.Unmarshal(m, b)
}
func (m *ButtonRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_ButtonRequest.Marshal(b, m, deterministic)
}
func (m *ButtonRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_ButtonRequest.Merge(m, src)
}
func (m *ButtonRequest) XXX_Size() int {
return xxx_messageInfo_ButtonRequest.Size(m)
}
func (m *ButtonRequest) XXX_DiscardUnknown() {
xxx_messageInfo_ButtonRequest.DiscardUnknown(m)
}
var xxx_messageInfo_ButtonRequest proto.InternalMessageInfo
func (m *ButtonRequest) GetCode() ButtonRequest_ButtonRequestType {
if m != nil && m.Code != nil {
return *m.Code
}
return ButtonRequest_ButtonRequest_Other
}
func (m *ButtonRequest) GetData() string {
if m != nil && m.Data != nil {
return *m.Data
}
return ""
}
//*
// Request: Computer agrees to wait for HW button press
// @auxend
type ButtonAck struct {
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *ButtonAck) Reset() { *m = ButtonAck{} }
func (m *ButtonAck) String() string { return proto.CompactTextString(m) }
func (*ButtonAck) ProtoMessage() {}
func (*ButtonAck) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{3}
}
func (m *ButtonAck) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_ButtonAck.Unmarshal(m, b)
}
func (m *ButtonAck) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_ButtonAck.Marshal(b, m, deterministic)
}
func (m *ButtonAck) XXX_Merge(src proto.Message) {
xxx_messageInfo_ButtonAck.Merge(m, src)
}
func (m *ButtonAck) XXX_Size() int {
return xxx_messageInfo_ButtonAck.Size(m)
}
func (m *ButtonAck) XXX_DiscardUnknown() {
xxx_messageInfo_ButtonAck.DiscardUnknown(m)
}
var xxx_messageInfo_ButtonAck proto.InternalMessageInfo
//*
// Response: Device is asking computer to show PIN matrix and awaits PIN encoded using this matrix scheme
// @auxstart
// @next PinMatrixAck
type PinMatrixRequest struct {
Type *PinMatrixRequest_PinMatrixRequestType `protobuf:"varint,1,opt,name=type,enum=hw.trezor.messages.common.PinMatrixRequest_PinMatrixRequestType" json:"type,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *PinMatrixRequest) Reset() { *m = PinMatrixRequest{} }
func (m *PinMatrixRequest) String() string { return proto.CompactTextString(m) }
func (*PinMatrixRequest) ProtoMessage() {}
func (*PinMatrixRequest) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{4}
}
func (m *PinMatrixRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_PinMatrixRequest.Unmarshal(m, b)
}
func (m *PinMatrixRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_PinMatrixRequest.Marshal(b, m, deterministic)
}
func (m *PinMatrixRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_PinMatrixRequest.Merge(m, src)
}
func (m *PinMatrixRequest) XXX_Size() int {
return xxx_messageInfo_PinMatrixRequest.Size(m)
}
func (m *PinMatrixRequest) XXX_DiscardUnknown() {
xxx_messageInfo_PinMatrixRequest.DiscardUnknown(m)
}
var xxx_messageInfo_PinMatrixRequest proto.InternalMessageInfo
func (m *PinMatrixRequest) GetType() PinMatrixRequest_PinMatrixRequestType {
if m != nil && m.Type != nil {
return *m.Type
}
return PinMatrixRequest_PinMatrixRequestType_Current
}
//*
// Request: Computer responds with encoded PIN
// @auxend
type PinMatrixAck struct {
Pin *string `protobuf:"bytes,1,req,name=pin" json:"pin,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *PinMatrixAck) Reset() { *m = PinMatrixAck{} }
func (m *PinMatrixAck) String() string { return proto.CompactTextString(m) }
func (*PinMatrixAck) ProtoMessage() {}
func (*PinMatrixAck) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{5}
}
func (m *PinMatrixAck) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_PinMatrixAck.Unmarshal(m, b)
}
func (m *PinMatrixAck) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_PinMatrixAck.Marshal(b, m, deterministic)
}
func (m *PinMatrixAck) XXX_Merge(src proto.Message) {
xxx_messageInfo_PinMatrixAck.Merge(m, src)
}
func (m *PinMatrixAck) XXX_Size() int {
return xxx_messageInfo_PinMatrixAck.Size(m)
}
func (m *PinMatrixAck) XXX_DiscardUnknown() {
xxx_messageInfo_PinMatrixAck.DiscardUnknown(m)
}
var xxx_messageInfo_PinMatrixAck proto.InternalMessageInfo
func (m *PinMatrixAck) GetPin() string {
if m != nil && m.Pin != nil {
return *m.Pin
}
return ""
}
//*
// Response: Device awaits encryption passphrase
// @auxstart
// @next PassphraseAck
type PassphraseRequest struct {
OnDevice *bool `protobuf:"varint,1,opt,name=on_device,json=onDevice" json:"on_device,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *PassphraseRequest) Reset() { *m = PassphraseRequest{} }
func (m *PassphraseRequest) String() string { return proto.CompactTextString(m) }
func (*PassphraseRequest) ProtoMessage() {}
func (*PassphraseRequest) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{6}
}
func (m *PassphraseRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_PassphraseRequest.Unmarshal(m, b)
}
func (m *PassphraseRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_PassphraseRequest.Marshal(b, m, deterministic)
}
func (m *PassphraseRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_PassphraseRequest.Merge(m, src)
}
func (m *PassphraseRequest) XXX_Size() int {
return xxx_messageInfo_PassphraseRequest.Size(m)
}
func (m *PassphraseRequest) XXX_DiscardUnknown() {
xxx_messageInfo_PassphraseRequest.DiscardUnknown(m)
}
var xxx_messageInfo_PassphraseRequest proto.InternalMessageInfo
func (m *PassphraseRequest) GetOnDevice() bool {
if m != nil && m.OnDevice != nil {
return *m.OnDevice
}
return false
}
//*
// Request: Send passphrase back
// @next PassphraseStateRequest
type PassphraseAck struct {
Passphrase *string `protobuf:"bytes,1,opt,name=passphrase" json:"passphrase,omitempty"`
State []byte `protobuf:"bytes,2,opt,name=state" json:"state,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *PassphraseAck) Reset() { *m = PassphraseAck{} }
func (m *PassphraseAck) String() string { return proto.CompactTextString(m) }
func (*PassphraseAck) ProtoMessage() {}
func (*PassphraseAck) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{7}
}
func (m *PassphraseAck) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_PassphraseAck.Unmarshal(m, b)
}
func (m *PassphraseAck) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_PassphraseAck.Marshal(b, m, deterministic)
}
func (m *PassphraseAck) XXX_Merge(src proto.Message) {
xxx_messageInfo_PassphraseAck.Merge(m, src)
}
func (m *PassphraseAck) XXX_Size() int {
return xxx_messageInfo_PassphraseAck.Size(m)
}
func (m *PassphraseAck) XXX_DiscardUnknown() {
xxx_messageInfo_PassphraseAck.DiscardUnknown(m)
}
var xxx_messageInfo_PassphraseAck proto.InternalMessageInfo
func (m *PassphraseAck) GetPassphrase() string {
if m != nil && m.Passphrase != nil {
return *m.Passphrase
}
return ""
}
func (m *PassphraseAck) GetState() []byte {
if m != nil {
return m.State
}
return nil
}
//*
// Response: Device awaits passphrase state
// @next PassphraseStateAck
type PassphraseStateRequest struct {
State []byte `protobuf:"bytes,1,opt,name=state" json:"state,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *PassphraseStateRequest) Reset() { *m = PassphraseStateRequest{} }
func (m *PassphraseStateRequest) String() string { return proto.CompactTextString(m) }
func (*PassphraseStateRequest) ProtoMessage() {}
func (*PassphraseStateRequest) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{8}
}
func (m *PassphraseStateRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_PassphraseStateRequest.Unmarshal(m, b)
}
func (m *PassphraseStateRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_PassphraseStateRequest.Marshal(b, m, deterministic)
}
func (m *PassphraseStateRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_PassphraseStateRequest.Merge(m, src)
}
func (m *PassphraseStateRequest) XXX_Size() int {
return xxx_messageInfo_PassphraseStateRequest.Size(m)
}
func (m *PassphraseStateRequest) XXX_DiscardUnknown() {
xxx_messageInfo_PassphraseStateRequest.DiscardUnknown(m)
}
var xxx_messageInfo_PassphraseStateRequest proto.InternalMessageInfo
func (m *PassphraseStateRequest) GetState() []byte {
if m != nil {
return m.State
}
return nil
}
//*
// Request: Send passphrase state back
// @auxend
type PassphraseStateAck struct {
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *PassphraseStateAck) Reset() { *m = PassphraseStateAck{} }
func (m *PassphraseStateAck) String() string { return proto.CompactTextString(m) }
func (*PassphraseStateAck) ProtoMessage() {}
func (*PassphraseStateAck) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{9}
}
func (m *PassphraseStateAck) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_PassphraseStateAck.Unmarshal(m, b)
}
func (m *PassphraseStateAck) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_PassphraseStateAck.Marshal(b, m, deterministic)
}
func (m *PassphraseStateAck) XXX_Merge(src proto.Message) {
xxx_messageInfo_PassphraseStateAck.Merge(m, src)
}
func (m *PassphraseStateAck) XXX_Size() int {
return xxx_messageInfo_PassphraseStateAck.Size(m)
}
func (m *PassphraseStateAck) XXX_DiscardUnknown() {
xxx_messageInfo_PassphraseStateAck.DiscardUnknown(m)
}
var xxx_messageInfo_PassphraseStateAck proto.InternalMessageInfo
//*
// Structure representing BIP32 (hierarchical deterministic) node
// Used for imports of private key into the device and exporting public key out of device
// @embed
type HDNodeType struct {
Depth *uint32 `protobuf:"varint,1,req,name=depth" json:"depth,omitempty"`
Fingerprint *uint32 `protobuf:"varint,2,req,name=fingerprint" json:"fingerprint,omitempty"`
ChildNum *uint32 `protobuf:"varint,3,req,name=child_num,json=childNum" json:"child_num,omitempty"`
ChainCode []byte `protobuf:"bytes,4,req,name=chain_code,json=chainCode" json:"chain_code,omitempty"`
PrivateKey []byte `protobuf:"bytes,5,opt,name=private_key,json=privateKey" json:"private_key,omitempty"`
PublicKey []byte `protobuf:"bytes,6,opt,name=public_key,json=publicKey" json:"public_key,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *HDNodeType) Reset() { *m = HDNodeType{} }
func (m *HDNodeType) String() string { return proto.CompactTextString(m) }
func (*HDNodeType) ProtoMessage() {}
func (*HDNodeType) Descriptor() ([]byte, []int) {
return fileDescriptor_aaf30d059fdbc38d, []int{10}
}
func (m *HDNodeType) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_HDNodeType.Unmarshal(m, b)
}
func (m *HDNodeType) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_HDNodeType.Marshal(b, m, deterministic)
}
func (m *HDNodeType) XXX_Merge(src proto.Message) {
xxx_messageInfo_HDNodeType.Merge(m, src)
}
func (m *HDNodeType) XXX_Size() int {
return xxx_messageInfo_HDNodeType.Size(m)
}
func (m *HDNodeType) XXX_DiscardUnknown() {
xxx_messageInfo_HDNodeType.DiscardUnknown(m)
}
var xxx_messageInfo_HDNodeType proto.InternalMessageInfo
func (m *HDNodeType) GetDepth() uint32 {
if m != nil && m.Depth != nil {
return *m.Depth
}
return 0
}
func (m *HDNodeType) GetFingerprint() uint32 {
if m != nil && m.Fingerprint != nil {
return *m.Fingerprint
}
return 0
}
func (m *HDNodeType) GetChildNum() uint32 {
if m != nil && m.ChildNum != nil {
return *m.ChildNum
}
return 0
}
func (m *HDNodeType) GetChainCode() []byte {
if m != nil {
return m.ChainCode
}
return nil
}
func (m *HDNodeType) GetPrivateKey() []byte {
if m != nil {
return m.PrivateKey
}
return nil
}
func (m *HDNodeType) GetPublicKey() []byte {
if m != nil {
return m.PublicKey
}
return nil
}
func init() {
proto.RegisterEnum("hw.trezor.messages.common.Failure_FailureType", Failure_FailureType_name, Failure_FailureType_value)
proto.RegisterEnum("hw.trezor.messages.common.ButtonRequest_ButtonRequestType", ButtonRequest_ButtonRequestType_name, ButtonRequest_ButtonRequestType_value)
proto.RegisterEnum("hw.trezor.messages.common.PinMatrixRequest_PinMatrixRequestType", PinMatrixRequest_PinMatrixRequestType_name, PinMatrixRequest_PinMatrixRequestType_value)
proto.RegisterType((*Success)(nil), "hw.trezor.messages.common.Success")
proto.RegisterType((*Failure)(nil), "hw.trezor.messages.common.Failure")
proto.RegisterType((*ButtonRequest)(nil), "hw.trezor.messages.common.ButtonRequest")
proto.RegisterType((*ButtonAck)(nil), "hw.trezor.messages.common.ButtonAck")
proto.RegisterType((*PinMatrixRequest)(nil), "hw.trezor.messages.common.PinMatrixRequest")
proto.RegisterType((*PinMatrixAck)(nil), "hw.trezor.messages.common.PinMatrixAck")
proto.RegisterType((*PassphraseRequest)(nil), "hw.trezor.messages.common.PassphraseRequest")
proto.RegisterType((*PassphraseAck)(nil), "hw.trezor.messages.common.PassphraseAck")
proto.RegisterType((*PassphraseStateRequest)(nil), "hw.trezor.messages.common.PassphraseStateRequest")
proto.RegisterType((*PassphraseStateAck)(nil), "hw.trezor.messages.common.PassphraseStateAck")
proto.RegisterType((*HDNodeType)(nil), "hw.trezor.messages.common.HDNodeType")
}
func init() { proto.RegisterFile("messages-common.proto", fileDescriptor_aaf30d059fdbc38d) }
var fileDescriptor_aaf30d059fdbc38d = []byte{
// 846 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x7c, 0x54, 0xcd, 0x52, 0x23, 0x37,
0x10, 0x2e, 0xff, 0x80, 0xed, 0xb6, 0xd9, 0x08, 0xc5, 0x80, 0x09, 0xb0, 0x38, 0xc3, 0x21, 0x5c,
0xe2, 0x4a, 0xe5, 0x98, 0x53, 0x58, 0x83, 0x2b, 0xd4, 0x16, 0x86, 0x1a, 0xd8, 0xda, 0xa3, 0x4b,
0xd1, 0xf4, 0x32, 0x2a, 0xcf, 0x48, 0x13, 0x8d, 0x06, 0xf0, 0x5e, 0xf2, 0x6a, 0x79, 0x89, 0xbc,
0x42, 0xaa, 0x52, 0xb9, 0xe4, 0x11, 0xb6, 0x34, 0x3f, 0x78, 0xc6, 0x66, 0x39, 0xcd, 0xe8, 0xfb,
0xbe, 0xee, 0x96, 0xba, 0x3f, 0x09, 0x76, 0x42, 0x8c, 0x63, 0x76, 0x8f, 0xf1, 0x8f, 0x5c, 0x85,
0xa1, 0x92, 0xa3, 0x48, 0x2b, 0xa3, 0xe8, 0xbe, 0xff, 0x38, 0x32, 0x1a, 0x3f, 0x2b, 0x3d, 0x2a,
0x04, 0xa3, 0x4c, 0xe0, 0x9c, 0x40, 0xeb, 0x36, 0xe1, 0x1c, 0xe3, 0x98, 0x0e, 0xa0, 0x95, 0xb3,
0x83, 0xda, 0xb0, 0x76, 0xda, 0x71, 0x8b, 0xa5, 0xf3, 0x77, 0x03, 0x5a, 0x13, 0x26, 0x82, 0x44,
0x23, 0x7d, 0x07, 0x4d, 0xae, 0xbc, 0x4c, 0xf2, 0xe6, 0xe7, 0xd1, 0xe8, 0xab, 0xa9, 0x47, 0x79,
0x44, 0xf1, 0xbd, 0x5b, 0x44, 0xe8, 0xa6, 0xb1, 0xe5, 0x4a, 0xf5, 0x6a, 0xa5, 0xff, 0xea, 0xd0,
0x2d, 0xe9, 0xe9, 0x11, 0xec, 0xe7, 0xcb, 0xd9, 0x07, 0x89, 0x4f, 0x11, 0x72, 0x83, 0xde, 0x55,
0x26, 0x26, 0x35, 0xfa, 0x1d, 0xec, 0x16, 0xf4, 0xbb, 0xc4, 0x18, 0x25, 0x2f, 0x72, 0x09, 0xa9,
0xd3, 0x1d, 0xd8, 0x2e, 0xb8, 0x73, 0x66, 0xd8, 0x85, 0xd6, 0x4a, 0x93, 0x06, 0x3d, 0x80, 0xbd,
0x02, 0x3e, 0xe3, 0x46, 0x28, 0x39, 0x66, 0x92, 0x63, 0x10, 0xa0, 0x47, 0x9a, 0x74, 0x0f, 0xbe,
0x2d, 0xc8, 0x1b, 0xb1, 0x4c, 0xb6, 0x41, 0x07, 0xd0, 0x2f, 0x11, 0xcb, 0x90, 0x4d, 0xba, 0x0b,
0xb4, 0xc4, 0x5c, 0xca, 0x07, 0x16, 0x08, 0x8f, 0xb4, 0xe8, 0x21, 0x0c, 0x0a, 0x3c, 0x07, 0x6f,
0xc5, 0xbd, 0x64, 0x26, 0xd1, 0x48, 0xda, 0x95, 0x7c, 0x5a, 0xd9, 0xf6, 0x67, 0xfb, 0xeb, 0x94,
0x8f, 0x34, 0x55, 0xe6, 0x42, 0xaa, 0xe4, 0xde, 0x9f, 0x24, 0xd2, 0x8b, 0x09, 0xac, 0x70, 0x97,
0x52, 0x18, 0xc1, 0x02, 0xf1, 0x19, 0x3d, 0xd2, 0x5d, 0xd9, 0xfa, 0x95, 0x88, 0x43, 0x66, 0xb8,
0x4f, 0x7a, 0x74, 0x1f, 0x76, 0x0a, 0x62, 0x22, 0x74, 0xf8, 0xc8, 0x34, 0x66, 0xb5, 0xb8, 0xf3,
0x4f, 0x13, 0xb6, 0xb2, 0xbe, 0xb9, 0xf8, 0x47, 0x82, 0xb1, 0xa1, 0xd3, 0xca, 0x74, 0x7f, 0x79,
0x65, 0xba, 0x95, 0xb8, 0xea, 0xaa, 0x34, 0x69, 0x0a, 0x4d, 0x8f, 0x19, 0x96, 0x8f, 0x39, 0xfd,
0x77, 0xfe, 0x6f, 0xc0, 0xf6, 0x9a, 0xde, 0xee, 0xbf, 0x02, 0xce, 0xae, 0x8d, 0x8f, 0x9a, 0xd4,
0xa8, 0x03, 0x6f, 0xab, 0xc4, 0x04, 0xf1, 0xfa, 0x01, 0xf5, 0x9d, 0xaf, 0x31, 0xf6, 0x55, 0x60,
0x67, 0x7d, 0x0c, 0x07, 0x55, 0xcd, 0x58, 0xc9, 0x4f, 0x42, 0x87, 0xd7, 0x89, 0x89, 0x12, 0x43,
0x1a, 0xd6, 0x47, 0x55, 0x81, 0x8b, 0x31, 0x9a, 0x73, 0x7c, 0x10, 0x1c, 0x49, 0x73, 0x9d, 0xce,
0xe3, 0x3f, 0x2a, 0x6d, 0xa7, 0x7f, 0x08, 0x83, 0x2a, 0xfd, 0x51, 0x44, 0x98, 0x07, 0x6f, 0xae,
0x07, 0xdf, 0x68, 0x65, 0x90, 0x9b, 0x31, 0x0b, 0x02, 0xd2, 0xb2, 0xa3, 0xae, 0xd2, 0xd6, 0x07,
0x77, 0x4f, 0xa4, 0xbd, 0xbe, 0xeb, 0x62, 0x3e, 0x63, 0x1f, 0xf9, 0x9c, 0x74, 0xec, 0xe8, 0xaa,
0x82, 0x33, 0xcf, 0xd3, 0x18, 0x5b, 0x2b, 0x1c, 0xc0, 0xde, 0x4a, 0xd1, 0xe4, 0xf7, 0x40, 0xf0,
0xf7, 0xb8, 0x20, 0x5d, 0x7a, 0x02, 0xc7, 0x55, 0xf2, 0x4a, 0x62, 0xa8, 0xa4, 0xe0, 0xf6, 0x3c,
0x63, 0x95, 0x48, 0x43, 0x7a, 0xeb, 0xd5, 0x0b, 0xd1, 0xa5, 0xb4, 0x3d, 0xdb, 0xa2, 0x43, 0x38,
0x5c, 0x29, 0xc1, 0xe2, 0x38, 0xf2, 0x35, 0x8b, 0xd3, 0xbb, 0x49, 0xde, 0xd0, 0x1f, 0xe0, 0xa4,
0xaa, 0xf8, 0x20, 0xe7, 0x52, 0x3d, 0xca, 0x73, 0xd4, 0xe2, 0x81, 0xd9, 0xcb, 0x75, 0xc3, 0x8c,
0x4f, 0xbe, 0x71, 0xba, 0xd0, 0xc9, 0x84, 0x67, 0x7c, 0xee, 0xfc, 0x5b, 0x03, 0x62, 0x2d, 0xca,
0x8c, 0x16, 0x4f, 0x85, 0xf1, 0xee, 0xa0, 0x69, 0x16, 0x51, 0x61, 0xbc, 0x5f, 0x5f, 0x31, 0xde,
0x6a, 0xe8, 0x1a, 0x90, 0xd9, 0xcf, 0x66, 0x73, 0xfe, 0x84, 0xfe, 0x4b, 0xac, 0x3d, 0xda, 0x4b,
0xf8, 0x6c, 0x9c, 0x68, 0x8d, 0xd2, 0x90, 0x1a, 0xfd, 0x1e, 0x8e, 0x5e, 0x54, 0x4c, 0xf1, 0x71,
0x22, 0x74, 0x6c, 0x48, 0xdd, 0x1a, 0xf3, 0x6b, 0x92, 0x5b, 0xe4, 0x4a, 0x7a, 0xa4, 0xe1, 0x0c,
0xa1, 0xf7, 0xac, 0x39, 0xe3, 0x73, 0x4a, 0xa0, 0x11, 0x09, 0x39, 0xa8, 0x0d, 0xeb, 0xa7, 0x1d,
0xd7, 0xfe, 0x3a, 0x3f, 0xc1, 0xf6, 0xb2, 0xaf, 0x45, 0x37, 0x0e, 0xa0, 0xa3, 0xe4, 0xcc, 0x4b,
0x1d, 0x96, 0xb6, 0xa4, 0xed, 0xb6, 0x95, 0xcc, 0x1c, 0xe7, 0x5c, 0xc0, 0xd6, 0x32, 0xc2, 0x26,
0x7d, 0x0b, 0x10, 0x3d, 0x03, 0xf9, 0xdb, 0x5d, 0x42, 0x68, 0x1f, 0x36, 0x62, 0xc3, 0x4c, 0xf6,
0xd8, 0xf6, 0xdc, 0x6c, 0xe1, 0x8c, 0x60, 0x77, 0x99, 0xe6, 0xd6, 0x42, 0x45, 0xf5, 0x67, 0x7d,
0xad, 0xac, 0xef, 0x03, 0x5d, 0xd1, 0xdb, 0x61, 0xfe, 0x55, 0x03, 0xf8, 0xed, 0x7c, 0xaa, 0xbc,
0xec, 0xbd, 0xee, 0xc3, 0x86, 0x87, 0x91, 0xf1, 0xd3, 0x13, 0x6e, 0xb9, 0xd9, 0x82, 0x0e, 0xa1,
0xfb, 0x49, 0xc8, 0x7b, 0xd4, 0x91, 0x16, 0xd2, 0x0c, 0xea, 0x29, 0x57, 0x86, 0xec, 0x81, 0xb9,
0x2f, 0x02, 0x6f, 0x26, 0x93, 0x70, 0xd0, 0x48, 0xf9, 0x76, 0x0a, 0x4c, 0x93, 0x90, 0x1e, 0x01,
0x70, 0x9f, 0x09, 0x39, 0x4b, 0x9f, 0xa6, 0xe6, 0xb0, 0x7e, 0xda, 0x73, 0x3b, 0x29, 0x32, 0xb6,
0x6f, 0xcc, 0x31, 0x74, 0xa3, 0xd4, 0x6f, 0x38, 0x9b, 0xe3, 0x62, 0xb0, 0x91, 0x6e, 0x1a, 0x72,
0xe8, 0x3d, 0x2e, 0x6c, 0x7c, 0x94, 0xde, 0x8e, 0x94, 0xdf, 0x4c, 0xf9, 0x4e, 0x54, 0xdc, 0x97,
0x2f, 0x01, 0x00, 0x00, 0xff, 0xff, 0xb2, 0x7d, 0x20, 0xa6, 0x35, 0x07, 0x00, 0x00,
}

View File

@ -0,0 +1,147 @@
// This file originates from the SatoshiLabs Trezor `common` repository at:
// https://github.com/trezor/trezor-common/blob/master/protob/messages-common.proto
// dated 28.05.2019, commit 893fd219d4a01bcffa0cd9cfa631856371ec5aa9.
syntax = "proto2";
package hw.trezor.messages.common;
/**
* Response: Success of the previous request
* @end
*/
message Success {
optional string message = 1; // human readable description of action or request-specific payload
}
/**
* Response: Failure of the previous request
* @end
*/
message Failure {
optional FailureType code = 1; // computer-readable definition of the error state
optional string message = 2; // human-readable message of the error state
enum FailureType {
Failure_UnexpectedMessage = 1;
Failure_ButtonExpected = 2;
Failure_DataError = 3;
Failure_ActionCancelled = 4;
Failure_PinExpected = 5;
Failure_PinCancelled = 6;
Failure_PinInvalid = 7;
Failure_InvalidSignature = 8;
Failure_ProcessError = 9;
Failure_NotEnoughFunds = 10;
Failure_NotInitialized = 11;
Failure_PinMismatch = 12;
Failure_FirmwareError = 99;
}
}
/**
* Response: Device is waiting for HW button press.
* @auxstart
* @next ButtonAck
*/
message ButtonRequest {
optional ButtonRequestType code = 1;
optional string data = 2;
/**
* Type of button request
*/
enum ButtonRequestType {
ButtonRequest_Other = 1;
ButtonRequest_FeeOverThreshold = 2;
ButtonRequest_ConfirmOutput = 3;
ButtonRequest_ResetDevice = 4;
ButtonRequest_ConfirmWord = 5;
ButtonRequest_WipeDevice = 6;
ButtonRequest_ProtectCall = 7;
ButtonRequest_SignTx = 8;
ButtonRequest_FirmwareCheck = 9;
ButtonRequest_Address = 10;
ButtonRequest_PublicKey = 11;
ButtonRequest_MnemonicWordCount = 12;
ButtonRequest_MnemonicInput = 13;
ButtonRequest_PassphraseType = 14;
ButtonRequest_UnknownDerivationPath = 15;
}
}
/**
* Request: Computer agrees to wait for HW button press
* @auxend
*/
message ButtonAck {
}
/**
* Response: Device is asking computer to show PIN matrix and awaits PIN encoded using this matrix scheme
* @auxstart
* @next PinMatrixAck
*/
message PinMatrixRequest {
optional PinMatrixRequestType type = 1;
/**
* Type of PIN request
*/
enum PinMatrixRequestType {
PinMatrixRequestType_Current = 1;
PinMatrixRequestType_NewFirst = 2;
PinMatrixRequestType_NewSecond = 3;
}
}
/**
* Request: Computer responds with encoded PIN
* @auxend
*/
message PinMatrixAck {
required string pin = 1; // matrix encoded PIN entered by user
}
/**
* Response: Device awaits encryption passphrase
* @auxstart
* @next PassphraseAck
*/
message PassphraseRequest {
optional bool on_device = 1; // passphrase is being entered on the device
}
/**
* Request: Send passphrase back
* @next PassphraseStateRequest
*/
message PassphraseAck {
optional string passphrase = 1;
optional bytes state = 2; // expected device state
}
/**
* Response: Device awaits passphrase state
* @next PassphraseStateAck
*/
message PassphraseStateRequest {
optional bytes state = 1; // actual device state
}
/**
* Request: Send passphrase state back
* @auxend
*/
message PassphraseStateAck {
}
/**
* Structure representing BIP32 (hierarchical deterministic) node
* Used for imports of private key into the device and exporting public key out of device
* @embed
*/
message HDNodeType {
required uint32 depth = 1;
required uint32 fingerprint = 2;
required uint32 child_num = 3;
required bytes chain_code = 4;
optional bytes private_key = 5;
optional bytes public_key = 6;
}

View File

@ -0,0 +1,698 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: messages-ethereum.proto
package trezor
import (
fmt "fmt"
math "math"
proto "github.com/golang/protobuf/proto"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
//*
// Request: Ask device for public key corresponding to address_n path
// @start
// @next EthereumPublicKey
// @next Failure
type EthereumGetPublicKey struct {
AddressN []uint32 `protobuf:"varint,1,rep,name=address_n,json=addressN" json:"address_n,omitempty"`
ShowDisplay *bool `protobuf:"varint,2,opt,name=show_display,json=showDisplay" json:"show_display,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumGetPublicKey) Reset() { *m = EthereumGetPublicKey{} }
func (m *EthereumGetPublicKey) String() string { return proto.CompactTextString(m) }
func (*EthereumGetPublicKey) ProtoMessage() {}
func (*EthereumGetPublicKey) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{0}
}
func (m *EthereumGetPublicKey) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumGetPublicKey.Unmarshal(m, b)
}
func (m *EthereumGetPublicKey) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumGetPublicKey.Marshal(b, m, deterministic)
}
func (m *EthereumGetPublicKey) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumGetPublicKey.Merge(m, src)
}
func (m *EthereumGetPublicKey) XXX_Size() int {
return xxx_messageInfo_EthereumGetPublicKey.Size(m)
}
func (m *EthereumGetPublicKey) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumGetPublicKey.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumGetPublicKey proto.InternalMessageInfo
func (m *EthereumGetPublicKey) GetAddressN() []uint32 {
if m != nil {
return m.AddressN
}
return nil
}
func (m *EthereumGetPublicKey) GetShowDisplay() bool {
if m != nil && m.ShowDisplay != nil {
return *m.ShowDisplay
}
return false
}
//*
// Response: Contains public key derived from device private seed
// @end
type EthereumPublicKey struct {
Node *HDNodeType `protobuf:"bytes,1,opt,name=node" json:"node,omitempty"`
Xpub *string `protobuf:"bytes,2,opt,name=xpub" json:"xpub,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumPublicKey) Reset() { *m = EthereumPublicKey{} }
func (m *EthereumPublicKey) String() string { return proto.CompactTextString(m) }
func (*EthereumPublicKey) ProtoMessage() {}
func (*EthereumPublicKey) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{1}
}
func (m *EthereumPublicKey) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumPublicKey.Unmarshal(m, b)
}
func (m *EthereumPublicKey) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumPublicKey.Marshal(b, m, deterministic)
}
func (m *EthereumPublicKey) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumPublicKey.Merge(m, src)
}
func (m *EthereumPublicKey) XXX_Size() int {
return xxx_messageInfo_EthereumPublicKey.Size(m)
}
func (m *EthereumPublicKey) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumPublicKey.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumPublicKey proto.InternalMessageInfo
func (m *EthereumPublicKey) GetNode() *HDNodeType {
if m != nil {
return m.Node
}
return nil
}
func (m *EthereumPublicKey) GetXpub() string {
if m != nil && m.Xpub != nil {
return *m.Xpub
}
return ""
}
//*
// Request: Ask device for Ethereum address corresponding to address_n path
// @start
// @next EthereumAddress
// @next Failure
type EthereumGetAddress struct {
AddressN []uint32 `protobuf:"varint,1,rep,name=address_n,json=addressN" json:"address_n,omitempty"`
ShowDisplay *bool `protobuf:"varint,2,opt,name=show_display,json=showDisplay" json:"show_display,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumGetAddress) Reset() { *m = EthereumGetAddress{} }
func (m *EthereumGetAddress) String() string { return proto.CompactTextString(m) }
func (*EthereumGetAddress) ProtoMessage() {}
func (*EthereumGetAddress) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{2}
}
func (m *EthereumGetAddress) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumGetAddress.Unmarshal(m, b)
}
func (m *EthereumGetAddress) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumGetAddress.Marshal(b, m, deterministic)
}
func (m *EthereumGetAddress) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumGetAddress.Merge(m, src)
}
func (m *EthereumGetAddress) XXX_Size() int {
return xxx_messageInfo_EthereumGetAddress.Size(m)
}
func (m *EthereumGetAddress) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumGetAddress.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumGetAddress proto.InternalMessageInfo
func (m *EthereumGetAddress) GetAddressN() []uint32 {
if m != nil {
return m.AddressN
}
return nil
}
func (m *EthereumGetAddress) GetShowDisplay() bool {
if m != nil && m.ShowDisplay != nil {
return *m.ShowDisplay
}
return false
}
//*
// Response: Contains an Ethereum address derived from device private seed
// @end
type EthereumAddress struct {
AddressBin []byte `protobuf:"bytes,1,opt,name=addressBin" json:"addressBin,omitempty"`
AddressHex *string `protobuf:"bytes,2,opt,name=addressHex" json:"addressHex,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumAddress) Reset() { *m = EthereumAddress{} }
func (m *EthereumAddress) String() string { return proto.CompactTextString(m) }
func (*EthereumAddress) ProtoMessage() {}
func (*EthereumAddress) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{3}
}
func (m *EthereumAddress) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumAddress.Unmarshal(m, b)
}
func (m *EthereumAddress) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumAddress.Marshal(b, m, deterministic)
}
func (m *EthereumAddress) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumAddress.Merge(m, src)
}
func (m *EthereumAddress) XXX_Size() int {
return xxx_messageInfo_EthereumAddress.Size(m)
}
func (m *EthereumAddress) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumAddress.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumAddress proto.InternalMessageInfo
func (m *EthereumAddress) GetAddressBin() []byte {
if m != nil {
return m.AddressBin
}
return nil
}
func (m *EthereumAddress) GetAddressHex() string {
if m != nil && m.AddressHex != nil {
return *m.AddressHex
}
return ""
}
//*
// Request: Ask device to sign transaction
// All fields are optional from the protocol's point of view. Each field defaults to value `0` if missing.
// Note: the first at most 1024 bytes of data MUST be transmitted as part of this message.
// @start
// @next EthereumTxRequest
// @next Failure
type EthereumSignTx struct {
AddressN []uint32 `protobuf:"varint,1,rep,name=address_n,json=addressN" json:"address_n,omitempty"`
Nonce []byte `protobuf:"bytes,2,opt,name=nonce" json:"nonce,omitempty"`
GasPrice []byte `protobuf:"bytes,3,opt,name=gas_price,json=gasPrice" json:"gas_price,omitempty"`
GasLimit []byte `protobuf:"bytes,4,opt,name=gas_limit,json=gasLimit" json:"gas_limit,omitempty"`
ToBin []byte `protobuf:"bytes,5,opt,name=toBin" json:"toBin,omitempty"`
ToHex *string `protobuf:"bytes,11,opt,name=toHex" json:"toHex,omitempty"`
Value []byte `protobuf:"bytes,6,opt,name=value" json:"value,omitempty"`
DataInitialChunk []byte `protobuf:"bytes,7,opt,name=data_initial_chunk,json=dataInitialChunk" json:"data_initial_chunk,omitempty"`
DataLength *uint32 `protobuf:"varint,8,opt,name=data_length,json=dataLength" json:"data_length,omitempty"`
ChainId *uint32 `protobuf:"varint,9,opt,name=chain_id,json=chainId" json:"chain_id,omitempty"`
TxType *uint32 `protobuf:"varint,10,opt,name=tx_type,json=txType" json:"tx_type,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumSignTx) Reset() { *m = EthereumSignTx{} }
func (m *EthereumSignTx) String() string { return proto.CompactTextString(m) }
func (*EthereumSignTx) ProtoMessage() {}
func (*EthereumSignTx) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{4}
}
func (m *EthereumSignTx) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumSignTx.Unmarshal(m, b)
}
func (m *EthereumSignTx) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumSignTx.Marshal(b, m, deterministic)
}
func (m *EthereumSignTx) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumSignTx.Merge(m, src)
}
func (m *EthereumSignTx) XXX_Size() int {
return xxx_messageInfo_EthereumSignTx.Size(m)
}
func (m *EthereumSignTx) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumSignTx.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumSignTx proto.InternalMessageInfo
func (m *EthereumSignTx) GetAddressN() []uint32 {
if m != nil {
return m.AddressN
}
return nil
}
func (m *EthereumSignTx) GetNonce() []byte {
if m != nil {
return m.Nonce
}
return nil
}
func (m *EthereumSignTx) GetGasPrice() []byte {
if m != nil {
return m.GasPrice
}
return nil
}
func (m *EthereumSignTx) GetGasLimit() []byte {
if m != nil {
return m.GasLimit
}
return nil
}
func (m *EthereumSignTx) GetToBin() []byte {
if m != nil {
return m.ToBin
}
return nil
}
func (m *EthereumSignTx) GetToHex() string {
if m != nil && m.ToHex != nil {
return *m.ToHex
}
return ""
}
func (m *EthereumSignTx) GetValue() []byte {
if m != nil {
return m.Value
}
return nil
}
func (m *EthereumSignTx) GetDataInitialChunk() []byte {
if m != nil {
return m.DataInitialChunk
}
return nil
}
func (m *EthereumSignTx) GetDataLength() uint32 {
if m != nil && m.DataLength != nil {
return *m.DataLength
}
return 0
}
func (m *EthereumSignTx) GetChainId() uint32 {
if m != nil && m.ChainId != nil {
return *m.ChainId
}
return 0
}
func (m *EthereumSignTx) GetTxType() uint32 {
if m != nil && m.TxType != nil {
return *m.TxType
}
return 0
}
//*
// Response: Device asks for more data from transaction payload, or returns the signature.
// If data_length is set, device awaits that many more bytes of payload.
// Otherwise, the signature_* fields contain the computed transaction signature. All three fields will be present.
// @end
// @next EthereumTxAck
type EthereumTxRequest struct {
DataLength *uint32 `protobuf:"varint,1,opt,name=data_length,json=dataLength" json:"data_length,omitempty"`
SignatureV *uint32 `protobuf:"varint,2,opt,name=signature_v,json=signatureV" json:"signature_v,omitempty"`
SignatureR []byte `protobuf:"bytes,3,opt,name=signature_r,json=signatureR" json:"signature_r,omitempty"`
SignatureS []byte `protobuf:"bytes,4,opt,name=signature_s,json=signatureS" json:"signature_s,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumTxRequest) Reset() { *m = EthereumTxRequest{} }
func (m *EthereumTxRequest) String() string { return proto.CompactTextString(m) }
func (*EthereumTxRequest) ProtoMessage() {}
func (*EthereumTxRequest) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{5}
}
func (m *EthereumTxRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumTxRequest.Unmarshal(m, b)
}
func (m *EthereumTxRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumTxRequest.Marshal(b, m, deterministic)
}
func (m *EthereumTxRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumTxRequest.Merge(m, src)
}
func (m *EthereumTxRequest) XXX_Size() int {
return xxx_messageInfo_EthereumTxRequest.Size(m)
}
func (m *EthereumTxRequest) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumTxRequest.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumTxRequest proto.InternalMessageInfo
func (m *EthereumTxRequest) GetDataLength() uint32 {
if m != nil && m.DataLength != nil {
return *m.DataLength
}
return 0
}
func (m *EthereumTxRequest) GetSignatureV() uint32 {
if m != nil && m.SignatureV != nil {
return *m.SignatureV
}
return 0
}
func (m *EthereumTxRequest) GetSignatureR() []byte {
if m != nil {
return m.SignatureR
}
return nil
}
func (m *EthereumTxRequest) GetSignatureS() []byte {
if m != nil {
return m.SignatureS
}
return nil
}
//*
// Request: Transaction payload data.
// @next EthereumTxRequest
type EthereumTxAck struct {
DataChunk []byte `protobuf:"bytes,1,opt,name=data_chunk,json=dataChunk" json:"data_chunk,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumTxAck) Reset() { *m = EthereumTxAck{} }
func (m *EthereumTxAck) String() string { return proto.CompactTextString(m) }
func (*EthereumTxAck) ProtoMessage() {}
func (*EthereumTxAck) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{6}
}
func (m *EthereumTxAck) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumTxAck.Unmarshal(m, b)
}
func (m *EthereumTxAck) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumTxAck.Marshal(b, m, deterministic)
}
func (m *EthereumTxAck) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumTxAck.Merge(m, src)
}
func (m *EthereumTxAck) XXX_Size() int {
return xxx_messageInfo_EthereumTxAck.Size(m)
}
func (m *EthereumTxAck) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumTxAck.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumTxAck proto.InternalMessageInfo
func (m *EthereumTxAck) GetDataChunk() []byte {
if m != nil {
return m.DataChunk
}
return nil
}
//*
// Request: Ask device to sign message
// @start
// @next EthereumMessageSignature
// @next Failure
type EthereumSignMessage struct {
AddressN []uint32 `protobuf:"varint,1,rep,name=address_n,json=addressN" json:"address_n,omitempty"`
Message []byte `protobuf:"bytes,2,opt,name=message" json:"message,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumSignMessage) Reset() { *m = EthereumSignMessage{} }
func (m *EthereumSignMessage) String() string { return proto.CompactTextString(m) }
func (*EthereumSignMessage) ProtoMessage() {}
func (*EthereumSignMessage) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{7}
}
func (m *EthereumSignMessage) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumSignMessage.Unmarshal(m, b)
}
func (m *EthereumSignMessage) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumSignMessage.Marshal(b, m, deterministic)
}
func (m *EthereumSignMessage) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumSignMessage.Merge(m, src)
}
func (m *EthereumSignMessage) XXX_Size() int {
return xxx_messageInfo_EthereumSignMessage.Size(m)
}
func (m *EthereumSignMessage) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumSignMessage.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumSignMessage proto.InternalMessageInfo
func (m *EthereumSignMessage) GetAddressN() []uint32 {
if m != nil {
return m.AddressN
}
return nil
}
func (m *EthereumSignMessage) GetMessage() []byte {
if m != nil {
return m.Message
}
return nil
}
//*
// Response: Signed message
// @end
type EthereumMessageSignature struct {
AddressBin []byte `protobuf:"bytes,1,opt,name=addressBin" json:"addressBin,omitempty"`
Signature []byte `protobuf:"bytes,2,opt,name=signature" json:"signature,omitempty"`
AddressHex *string `protobuf:"bytes,3,opt,name=addressHex" json:"addressHex,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumMessageSignature) Reset() { *m = EthereumMessageSignature{} }
func (m *EthereumMessageSignature) String() string { return proto.CompactTextString(m) }
func (*EthereumMessageSignature) ProtoMessage() {}
func (*EthereumMessageSignature) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{8}
}
func (m *EthereumMessageSignature) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumMessageSignature.Unmarshal(m, b)
}
func (m *EthereumMessageSignature) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumMessageSignature.Marshal(b, m, deterministic)
}
func (m *EthereumMessageSignature) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumMessageSignature.Merge(m, src)
}
func (m *EthereumMessageSignature) XXX_Size() int {
return xxx_messageInfo_EthereumMessageSignature.Size(m)
}
func (m *EthereumMessageSignature) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumMessageSignature.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumMessageSignature proto.InternalMessageInfo
func (m *EthereumMessageSignature) GetAddressBin() []byte {
if m != nil {
return m.AddressBin
}
return nil
}
func (m *EthereumMessageSignature) GetSignature() []byte {
if m != nil {
return m.Signature
}
return nil
}
func (m *EthereumMessageSignature) GetAddressHex() string {
if m != nil && m.AddressHex != nil {
return *m.AddressHex
}
return ""
}
//*
// Request: Ask device to verify message
// @start
// @next Success
// @next Failure
type EthereumVerifyMessage struct {
AddressBin []byte `protobuf:"bytes,1,opt,name=addressBin" json:"addressBin,omitempty"`
Signature []byte `protobuf:"bytes,2,opt,name=signature" json:"signature,omitempty"`
Message []byte `protobuf:"bytes,3,opt,name=message" json:"message,omitempty"`
AddressHex *string `protobuf:"bytes,4,opt,name=addressHex" json:"addressHex,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *EthereumVerifyMessage) Reset() { *m = EthereumVerifyMessage{} }
func (m *EthereumVerifyMessage) String() string { return proto.CompactTextString(m) }
func (*EthereumVerifyMessage) ProtoMessage() {}
func (*EthereumVerifyMessage) Descriptor() ([]byte, []int) {
return fileDescriptor_cb33f46ba915f15c, []int{9}
}
func (m *EthereumVerifyMessage) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_EthereumVerifyMessage.Unmarshal(m, b)
}
func (m *EthereumVerifyMessage) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_EthereumVerifyMessage.Marshal(b, m, deterministic)
}
func (m *EthereumVerifyMessage) XXX_Merge(src proto.Message) {
xxx_messageInfo_EthereumVerifyMessage.Merge(m, src)
}
func (m *EthereumVerifyMessage) XXX_Size() int {
return xxx_messageInfo_EthereumVerifyMessage.Size(m)
}
func (m *EthereumVerifyMessage) XXX_DiscardUnknown() {
xxx_messageInfo_EthereumVerifyMessage.DiscardUnknown(m)
}
var xxx_messageInfo_EthereumVerifyMessage proto.InternalMessageInfo
func (m *EthereumVerifyMessage) GetAddressBin() []byte {
if m != nil {
return m.AddressBin
}
return nil
}
func (m *EthereumVerifyMessage) GetSignature() []byte {
if m != nil {
return m.Signature
}
return nil
}
func (m *EthereumVerifyMessage) GetMessage() []byte {
if m != nil {
return m.Message
}
return nil
}
func (m *EthereumVerifyMessage) GetAddressHex() string {
if m != nil && m.AddressHex != nil {
return *m.AddressHex
}
return ""
}
func init() {
proto.RegisterType((*EthereumGetPublicKey)(nil), "hw.trezor.messages.ethereum.EthereumGetPublicKey")
proto.RegisterType((*EthereumPublicKey)(nil), "hw.trezor.messages.ethereum.EthereumPublicKey")
proto.RegisterType((*EthereumGetAddress)(nil), "hw.trezor.messages.ethereum.EthereumGetAddress")
proto.RegisterType((*EthereumAddress)(nil), "hw.trezor.messages.ethereum.EthereumAddress")
proto.RegisterType((*EthereumSignTx)(nil), "hw.trezor.messages.ethereum.EthereumSignTx")
proto.RegisterType((*EthereumTxRequest)(nil), "hw.trezor.messages.ethereum.EthereumTxRequest")
proto.RegisterType((*EthereumTxAck)(nil), "hw.trezor.messages.ethereum.EthereumTxAck")
proto.RegisterType((*EthereumSignMessage)(nil), "hw.trezor.messages.ethereum.EthereumSignMessage")
proto.RegisterType((*EthereumMessageSignature)(nil), "hw.trezor.messages.ethereum.EthereumMessageSignature")
proto.RegisterType((*EthereumVerifyMessage)(nil), "hw.trezor.messages.ethereum.EthereumVerifyMessage")
}
func init() { proto.RegisterFile("messages-ethereum.proto", fileDescriptor_cb33f46ba915f15c) }
var fileDescriptor_cb33f46ba915f15c = []byte{
// 593 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xa4, 0x54, 0x4d, 0x6f, 0xd3, 0x40,
0x10, 0x95, 0x9b, 0xb4, 0x49, 0x26, 0x0d, 0x1f, 0xa6, 0x55, 0x17, 0x0a, 0x34, 0x18, 0x21, 0xe5,
0x00, 0x3e, 0x70, 0x43, 0xe2, 0xd2, 0x52, 0x44, 0x2b, 0x4a, 0x55, 0xdc, 0xa8, 0x57, 0x6b, 0x63,
0x6f, 0xe3, 0x55, 0x9d, 0xdd, 0xe0, 0x5d, 0xb7, 0x0e, 0x7f, 0x82, 0x23, 0xff, 0x87, 0x5f, 0x86,
0xf6, 0x2b, 0x71, 0x52, 0x54, 0x0e, 0xbd, 0x65, 0xde, 0xbc, 0x7d, 0xf3, 0x66, 0xf4, 0x62, 0xd8,
0x99, 0x10, 0x21, 0xf0, 0x98, 0x88, 0x77, 0x44, 0x66, 0xa4, 0x20, 0xe5, 0x24, 0x9c, 0x16, 0x5c,
0x72, 0x7f, 0x37, 0xbb, 0x09, 0x65, 0x41, 0x7e, 0xf2, 0x22, 0x74, 0x94, 0xd0, 0x51, 0x9e, 0x6d,
0xcf, 0x5f, 0x25, 0x7c, 0x32, 0xe1, 0xcc, 0xbc, 0x09, 0x2e, 0x60, 0xeb, 0xb3, 0xa5, 0x7c, 0x21,
0xf2, 0xac, 0x1c, 0xe5, 0x34, 0xf9, 0x4a, 0x66, 0xfe, 0x2e, 0x74, 0x70, 0x9a, 0x16, 0x44, 0x88,
0x98, 0x21, 0xaf, 0xdf, 0x18, 0xf4, 0xa2, 0xb6, 0x05, 0x4e, 0xfd, 0x57, 0xb0, 0x29, 0x32, 0x7e,
0x13, 0xa7, 0x54, 0x4c, 0x73, 0x3c, 0x43, 0x6b, 0x7d, 0x6f, 0xd0, 0x8e, 0xba, 0x0a, 0x3b, 0x34,
0x50, 0x30, 0x82, 0xc7, 0x4e, 0x77, 0x21, 0xfa, 0x01, 0x9a, 0x8c, 0xa7, 0x04, 0x79, 0x7d, 0x6f,
0xd0, 0x7d, 0xff, 0x26, 0xfc, 0x87, 0x5f, 0x6b, 0xee, 0xe8, 0xf0, 0x94, 0xa7, 0x64, 0x38, 0x9b,
0x92, 0x48, 0x3f, 0xf1, 0x7d, 0x68, 0x56, 0xd3, 0x72, 0xa4, 0x47, 0x75, 0x22, 0xfd, 0x3b, 0x18,
0x82, 0x5f, 0xf3, 0xbe, 0x6f, 0xdc, 0xdd, 0xdb, 0xf9, 0x77, 0x78, 0xe8, 0x54, 0x9d, 0xe4, 0x4b,
0x00, 0xab, 0x70, 0x40, 0x99, 0x76, 0xbf, 0x19, 0xd5, 0x90, 0x5a, 0xff, 0x88, 0x54, 0xd6, 0x62,
0x0d, 0x09, 0xfe, 0xac, 0xc1, 0x03, 0xa7, 0x79, 0x4e, 0xc7, 0x6c, 0x58, 0xdd, 0xed, 0x72, 0x0b,
0xd6, 0x19, 0x67, 0x09, 0xd1, 0x52, 0x9b, 0x91, 0x29, 0xd4, 0x93, 0x31, 0x16, 0xf1, 0xb4, 0xa0,
0x09, 0x41, 0x0d, 0xdd, 0x69, 0x8f, 0xb1, 0x38, 0x53, 0xb5, 0x6b, 0xe6, 0x74, 0x42, 0x25, 0x6a,
0xce, 0x9b, 0x27, 0xaa, 0x56, 0x7a, 0x92, 0x2b, 0xeb, 0xeb, 0x46, 0x4f, 0x17, 0x06, 0x55, 0x86,
0xbb, 0xda, 0xb0, 0x29, 0x14, 0x7a, 0x8d, 0xf3, 0x92, 0xa0, 0x0d, 0xc3, 0xd5, 0x85, 0xff, 0x16,
0xfc, 0x14, 0x4b, 0x1c, 0x53, 0x46, 0x25, 0xc5, 0x79, 0x9c, 0x64, 0x25, 0xbb, 0x42, 0x2d, 0x4d,
0x79, 0xa4, 0x3a, 0xc7, 0xa6, 0xf1, 0x49, 0xe1, 0xfe, 0x1e, 0x74, 0x35, 0x3b, 0x27, 0x6c, 0x2c,
0x33, 0xd4, 0xee, 0x7b, 0x83, 0x5e, 0x04, 0x0a, 0x3a, 0xd1, 0x88, 0xff, 0x14, 0xda, 0x49, 0x86,
0x29, 0x8b, 0x69, 0x8a, 0x3a, 0xba, 0xdb, 0xd2, 0xf5, 0x71, 0xea, 0xef, 0x40, 0x4b, 0x56, 0xb1,
0x9c, 0x4d, 0x09, 0x02, 0xdd, 0xd9, 0x90, 0x95, 0xca, 0x41, 0xf0, 0xdb, 0x5b, 0x44, 0x6a, 0x58,
0x45, 0xe4, 0x47, 0x49, 0x84, 0x5c, 0x1d, 0xe5, 0xdd, 0x1a, 0xb5, 0x07, 0x5d, 0x41, 0xc7, 0x0c,
0xcb, 0xb2, 0x20, 0xf1, 0xb5, 0xbe, 0x68, 0x2f, 0x82, 0x39, 0x74, 0xb1, 0x4c, 0x28, 0xec, 0x61,
0x17, 0x84, 0x68, 0x99, 0x20, 0xec, 0x71, 0x17, 0x84, 0xf3, 0x20, 0x84, 0xde, 0xc2, 0xd8, 0x7e,
0x72, 0xe5, 0xbf, 0x00, 0xed, 0xc0, 0x5e, 0xc9, 0xe4, 0xa5, 0xa3, 0x10, 0x7d, 0x9e, 0xe0, 0x04,
0x9e, 0xd4, 0xd3, 0xf0, 0xcd, 0x64, 0xff, 0xee, 0x48, 0x20, 0x68, 0xd9, 0xff, 0x88, 0x0d, 0x85,
0x2b, 0x83, 0x0a, 0x90, 0x53, 0xb3, 0x4a, 0xe7, 0xce, 0xda, 0x7f, 0x83, 0xfb, 0x1c, 0x3a, 0xf3,
0x3d, 0xac, 0xee, 0x02, 0x58, 0x89, 0x75, 0xe3, 0x56, 0xac, 0x7f, 0x79, 0xb0, 0xed, 0x46, 0x5f,
0x90, 0x82, 0x5e, 0xce, 0xdc, 0x2a, 0xf7, 0x9b, 0x5b, 0xdb, 0xb5, 0xb1, 0xb4, 0xeb, 0x8a, 0xa3,
0xe6, 0xaa, 0xa3, 0x83, 0x8f, 0xf0, 0x3a, 0xe1, 0x93, 0x50, 0x60, 0xc9, 0x45, 0x46, 0x73, 0x3c,
0x12, 0xee, 0x03, 0x93, 0xd3, 0x91, 0xf9, 0xe2, 0x8d, 0xca, 0xcb, 0x83, 0xed, 0xa1, 0x06, 0xad,
0x5b, 0xb7, 0xc2, 0xdf, 0x00, 0x00, 0x00, 0xff, 0xff, 0x8a, 0xce, 0x81, 0xc8, 0x59, 0x05, 0x00,
0x00,
}

View File

@ -0,0 +1,131 @@
// This file originates from the SatoshiLabs Trezor `common` repository at:
// https://github.com/trezor/trezor-common/blob/master/protob/messages-ethereum.proto
// dated 28.05.2019, commit 893fd219d4a01bcffa0cd9cfa631856371ec5aa9.
syntax = "proto2";
package hw.trezor.messages.ethereum;
// Sugar for easier handling in Java
option java_package = "com.satoshilabs.trezor.lib.protobuf";
option java_outer_classname = "TrezorMessageEthereum";
import "messages-common.proto";
/**
* Request: Ask device for public key corresponding to address_n path
* @start
* @next EthereumPublicKey
* @next Failure
*/
message EthereumGetPublicKey {
repeated uint32 address_n = 1; // BIP-32 path to derive the key from master node
optional bool show_display = 2; // optionally show on display before sending the result
}
/**
* Response: Contains public key derived from device private seed
* @end
*/
message EthereumPublicKey {
optional hw.trezor.messages.common.HDNodeType node = 1; // BIP32 public node
optional string xpub = 2; // serialized form of public node
}
/**
* Request: Ask device for Ethereum address corresponding to address_n path
* @start
* @next EthereumAddress
* @next Failure
*/
message EthereumGetAddress {
repeated uint32 address_n = 1; // BIP-32 path to derive the key from master node
optional bool show_display = 2; // optionally show on display before sending the result
}
/**
* Response: Contains an Ethereum address derived from device private seed
* @end
*/
message EthereumAddress {
optional bytes addressBin = 1; // Ethereum address as 20 bytes (legacy firmwares)
optional string addressHex = 2; // Ethereum address as hex string (newer firmwares)
}
/**
* Request: Ask device to sign transaction
* All fields are optional from the protocol's point of view. Each field defaults to value `0` if missing.
* Note: the first at most 1024 bytes of data MUST be transmitted as part of this message.
* @start
* @next EthereumTxRequest
* @next Failure
*/
message EthereumSignTx {
repeated uint32 address_n = 1; // BIP-32 path to derive the key from master node
optional bytes nonce = 2; // <=256 bit unsigned big endian
optional bytes gas_price = 3; // <=256 bit unsigned big endian (in wei)
optional bytes gas_limit = 4; // <=256 bit unsigned big endian
optional bytes toBin = 5; // recipient address (20 bytes, legacy firmware)
optional string toHex = 11; // recipient address (hex string, newer firmware)
optional bytes value = 6; // <=256 bit unsigned big endian (in wei)
optional bytes data_initial_chunk = 7; // The initial data chunk (<= 1024 bytes)
optional uint32 data_length = 8; // Length of transaction payload
optional uint32 chain_id = 9; // Chain Id for EIP 155
optional uint32 tx_type = 10; // (only for Wanchain)
}
/**
* Response: Device asks for more data from transaction payload, or returns the signature.
* If data_length is set, device awaits that many more bytes of payload.
* Otherwise, the signature_* fields contain the computed transaction signature. All three fields will be present.
* @end
* @next EthereumTxAck
*/
message EthereumTxRequest {
optional uint32 data_length = 1; // Number of bytes being requested (<= 1024)
optional uint32 signature_v = 2; // Computed signature (recovery parameter, limited to 27 or 28)
optional bytes signature_r = 3; // Computed signature R component (256 bit)
optional bytes signature_s = 4; // Computed signature S component (256 bit)
}
/**
* Request: Transaction payload data.
* @next EthereumTxRequest
*/
message EthereumTxAck {
optional bytes data_chunk = 1; // Bytes from transaction payload (<= 1024 bytes)
}
/**
* Request: Ask device to sign message
* @start
* @next EthereumMessageSignature
* @next Failure
*/
message EthereumSignMessage {
repeated uint32 address_n = 1; // BIP-32 path to derive the key from master node
optional bytes message = 2; // message to be signed
}
/**
* Response: Signed message
* @end
*/
message EthereumMessageSignature {
optional bytes addressBin = 1; // address used to sign the message (20 bytes, legacy firmware)
optional bytes signature = 2; // signature of the message
optional string addressHex = 3; // address used to sign the message (hex string, newer firmware)
}
/**
* Request: Ask device to verify message
* @start
* @next Success
* @next Failure
*/
message EthereumVerifyMessage {
optional bytes addressBin = 1; // address to verify (20 bytes, legacy firmware)
optional bytes signature = 2; // signature to verify
optional bytes message = 3; // message to verify
optional string addressHex = 4; // address to verify (hex string, newer firmware)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,289 @@
// This file originates from the SatoshiLabs Trezor `common` repository at:
// https://github.com/trezor/trezor-common/blob/master/protob/messages-management.proto
// dated 28.05.2019, commit 893fd219d4a01bcffa0cd9cfa631856371ec5aa9.
syntax = "proto2";
package hw.trezor.messages.management;
// Sugar for easier handling in Java
option java_package = "com.satoshilabs.trezor.lib.protobuf";
option java_outer_classname = "TrezorMessageManagement";
import "messages-common.proto";
/**
* Request: Reset device to default state and ask for device details
* @start
* @next Features
*/
message Initialize {
optional bytes state = 1; // assumed device state, clear session if set and different
optional bool skip_passphrase = 2; // this session should always assume empty passphrase
}
/**
* Request: Ask for device details (no device reset)
* @start
* @next Features
*/
message GetFeatures {
}
/**
* Response: Reports various information about the device
* @end
*/
message Features {
optional string vendor = 1; // name of the manufacturer, e.g. "trezor.io"
optional uint32 major_version = 2; // major version of the firmware/bootloader, e.g. 1
optional uint32 minor_version = 3; // minor version of the firmware/bootloader, e.g. 0
optional uint32 patch_version = 4; // patch version of the firmware/bootloader, e.g. 0
optional bool bootloader_mode = 5; // is device in bootloader mode?
optional string device_id = 6; // device's unique identifier
optional bool pin_protection = 7; // is device protected by PIN?
optional bool passphrase_protection = 8; // is node/mnemonic encrypted using passphrase?
optional string language = 9; // device language
optional string label = 10; // device description label
optional bool initialized = 12; // does device contain seed?
optional bytes revision = 13; // SCM revision of firmware
optional bytes bootloader_hash = 14; // hash of the bootloader
optional bool imported = 15; // was storage imported from an external source?
optional bool pin_cached = 16; // is PIN already cached in session?
optional bool passphrase_cached = 17; // is passphrase already cached in session?
optional bool firmware_present = 18; // is valid firmware loaded?
optional bool needs_backup = 19; // does storage need backup? (equals to Storage.needs_backup)
optional uint32 flags = 20; // device flags (equals to Storage.flags)
optional string model = 21; // device hardware model
optional uint32 fw_major = 22; // reported firmware version if in bootloader mode
optional uint32 fw_minor = 23; // reported firmware version if in bootloader mode
optional uint32 fw_patch = 24; // reported firmware version if in bootloader mode
optional string fw_vendor = 25; // reported firmware vendor if in bootloader mode
optional bytes fw_vendor_keys = 26; // reported firmware vendor keys (their hash)
optional bool unfinished_backup = 27; // report unfinished backup (equals to Storage.unfinished_backup)
optional bool no_backup = 28; // report no backup (equals to Storage.no_backup)
}
/**
* Request: clear session (removes cached PIN, passphrase, etc).
* @start
* @next Success
*/
message ClearSession {
}
/**
* Request: change language and/or label of the device
* @start
* @next Success
* @next Failure
*/
message ApplySettings {
optional string language = 1;
optional string label = 2;
optional bool use_passphrase = 3;
optional bytes homescreen = 4;
optional PassphraseSourceType passphrase_source = 5;
optional uint32 auto_lock_delay_ms = 6;
optional uint32 display_rotation = 7; // in degrees from North
/**
* Structure representing passphrase source
*/
enum PassphraseSourceType {
ASK = 0;
DEVICE = 1;
HOST = 2;
}
}
/**
* Request: set flags of the device
* @start
* @next Success
* @next Failure
*/
message ApplyFlags {
optional uint32 flags = 1; // bitmask, can only set bits, not unset
}
/**
* Request: Starts workflow for setting/changing/removing the PIN
* @start
* @next Success
* @next Failure
*/
message ChangePin {
optional bool remove = 1; // is PIN removal requested?
}
/**
* Request: Test if the device is alive, device sends back the message in Success response
* @start
* @next Success
*/
message Ping {
optional string message = 1; // message to send back in Success message
optional bool button_protection = 2; // ask for button press
optional bool pin_protection = 3; // ask for PIN if set in device
optional bool passphrase_protection = 4; // ask for passphrase if set in device
}
/**
* Request: Abort last operation that required user interaction
* @start
* @next Failure
*/
message Cancel {
}
/**
* Request: Request a sample of random data generated by hardware RNG. May be used for testing.
* @start
* @next Entropy
* @next Failure
*/
message GetEntropy {
required uint32 size = 1; // size of requested entropy
}
/**
* Response: Reply with random data generated by internal RNG
* @end
*/
message Entropy {
required bytes entropy = 1; // chunk of random generated bytes
}
/**
* Request: Request device to wipe all sensitive data and settings
* @start
* @next Success
* @next Failure
*/
message WipeDevice {
}
/**
* Request: Load seed and related internal settings from the computer
* @start
* @next Success
* @next Failure
*/
message LoadDevice {
optional string mnemonic = 1; // seed encoded as BIP-39 mnemonic (12, 18 or 24 words)
optional hw.trezor.messages.common.HDNodeType node = 2; // BIP-32 node
optional string pin = 3; // set PIN protection
optional bool passphrase_protection = 4; // enable master node encryption using passphrase
optional string language = 5 [default='english']; // device language
optional string label = 6; // device label
optional bool skip_checksum = 7; // do not test mnemonic for valid BIP-39 checksum
optional uint32 u2f_counter = 8; // U2F counter
}
/**
* Request: Ask device to do initialization involving user interaction
* @start
* @next EntropyRequest
* @next Failure
*/
message ResetDevice {
optional bool display_random = 1; // display entropy generated by the device before asking for additional entropy
optional uint32 strength = 2 [default=256]; // strength of seed in bits
optional bool passphrase_protection = 3; // enable master node encryption using passphrase
optional bool pin_protection = 4; // enable PIN protection
optional string language = 5 [default='english']; // device language
optional string label = 6; // device label
optional uint32 u2f_counter = 7; // U2F counter
optional bool skip_backup = 8; // postpone seed backup to BackupDevice workflow
optional bool no_backup = 9; // indicate that no backup is going to be made
}
/**
* Request: Perform backup of the device seed if not backed up using ResetDevice
* @start
* @next Success
*/
message BackupDevice {
}
/**
* Response: Ask for additional entropy from host computer
* @next EntropyAck
*/
message EntropyRequest {
}
/**
* Request: Provide additional entropy for seed generation function
* @next Success
*/
message EntropyAck {
optional bytes entropy = 1; // 256 bits (32 bytes) of random data
}
/**
* Request: Start recovery workflow asking user for specific words of mnemonic
* Used to recovery device safely even on untrusted computer.
* @start
* @next WordRequest
*/
message RecoveryDevice {
optional uint32 word_count = 1; // number of words in BIP-39 mnemonic
optional bool passphrase_protection = 2; // enable master node encryption using passphrase
optional bool pin_protection = 3; // enable PIN protection
optional string language = 4 [default='english']; // device language
optional string label = 5; // device label
optional bool enforce_wordlist = 6; // enforce BIP-39 wordlist during the process
// 7 reserved for unused recovery method
optional RecoveryDeviceType type = 8; // supported recovery type
optional uint32 u2f_counter = 9; // U2F counter
optional bool dry_run = 10; // perform dry-run recovery workflow (for safe mnemonic validation)
/**
* Type of recovery procedure. These should be used as bitmask, e.g.,
* `RecoveryDeviceType_ScrambledWords | RecoveryDeviceType_Matrix`
* listing every method supported by the host computer.
*
* Note that ScrambledWords must be supported by every implementation
* for backward compatibility; there is no way to not support it.
*/
enum RecoveryDeviceType {
// use powers of two when extending this field
RecoveryDeviceType_ScrambledWords = 0; // words in scrambled order
RecoveryDeviceType_Matrix = 1; // matrix recovery type
}
}
/**
* Response: Device is waiting for user to enter word of the mnemonic
* Its position is shown only on device's internal display.
* @next WordAck
*/
message WordRequest {
optional WordRequestType type = 1;
/**
* Type of Recovery Word request
*/
enum WordRequestType {
WordRequestType_Plain = 0;
WordRequestType_Matrix9 = 1;
WordRequestType_Matrix6 = 2;
}
}
/**
* Request: Computer replies with word from the mnemonic
* @next WordRequest
* @next Success
* @next Failure
*/
message WordAck {
required string word = 1; // one word of mnemonic on asked position
}
/**
* Request: Set U2F counter
* @start
* @next Success
*/
message SetU2FCounter {
optional uint32 u2f_counter = 1; // counter
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
// Copyright 2017 The go-ethereum Authors // Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library. // This file is part of the go-ethereum library.
// //
// The go-ethereum library is free software: you can redistribute it and/or modify // The go-ethereum library is free software: you can redistribute it and/or modify
@ -16,11 +16,35 @@
// This file contains the implementation for interacting with the Trezor hardware // This file contains the implementation for interacting with the Trezor hardware
// wallets. The wire protocol spec can be found on the SatoshiLabs website: // wallets. The wire protocol spec can be found on the SatoshiLabs website:
// https://doc.satoshilabs.com/trezor-tech/api-protobuf.html // https://wiki.trezor.io/Developers_guide-Message_Workflows
//go:generate protoc --go_out=import_path=trezor:. types.proto messages.proto // !!! STAHP !!!
//
// Before you touch the protocol files, you need to be aware of a breaking change
// that occurred between firmware versions 1.7.3->1.8.0 (Model One) and 2.0.10->
// 2.1.0 (Model T). The Ethereum address representation was changed from the 20
// byte binary blob to a 42 byte hex string. The upstream protocol buffer files
// only support the new format, so blindly pulling in a new spec will break old
// devices!
//
// The Trezor devs had the foresight to add the string version as a new message
// code instead of replacing the binary one. This means that the proto file can
// actually define both the old and the new versions as optional. Please ensure
// that you add back the old addresses everywhere (to avoid name clash. use the
// addressBin and addressHex names).
//
// If in doubt, reach out to @karalabe.
// Package trezor contains the wire protocol wrapper in Go. // To regenerate the protocol files in this package:
// - Download the latest protoc https://github.com/protocolbuffers/protobuf/releases
// - Build with the usual `./configure && make` and ensure it's on your $PATH
// - Delete all the .proto and .pb.go files, pull in fresh ones from Trezor
// - Grab the latest Go plugin `go get -u github.com/golang/protobuf/protoc-gen-go`
// - Vendor in the latest Go plugin `govendor fetch github.com/golang/protobuf/...`
//go:generate protoc -I/usr/local/include:. --go_out=import_path=trezor:. messages.proto messages-common.proto messages-management.proto messages-ethereum.proto
// Package trezor contains the wire protocol.
package trezor package trezor
import ( import (

File diff suppressed because it is too large Load Diff

View File

@ -1,278 +0,0 @@
// This file originates from the SatoshiLabs Trezor `common` repository at:
// https://github.com/trezor/trezor-common/blob/master/protob/types.proto
// dated 28.07.2017, commit dd8ec3231fb5f7992360aff9bdfe30bb58130f4b.
syntax = "proto2";
/**
* Types for TREZOR communication
*
* @author Marek Palatinus <slush@satoshilabs.com>
* @version 1.2
*/
// Sugar for easier handling in Java
option java_package = "com.satoshilabs.trezor.lib.protobuf";
option java_outer_classname = "TrezorType";
import "google/protobuf/descriptor.proto";
/**
* Options for specifying message direction and type of wire (normal/debug)
*/
extend google.protobuf.EnumValueOptions {
optional bool wire_in = 50002; // message can be transmitted via wire from PC to TREZOR
optional bool wire_out = 50003; // message can be transmitted via wire from TREZOR to PC
optional bool wire_debug_in = 50004; // message can be transmitted via debug wire from PC to TREZOR
optional bool wire_debug_out = 50005; // message can be transmitted via debug wire from TREZOR to PC
optional bool wire_tiny = 50006; // message is handled by TREZOR when the USB stack is in tiny mode
optional bool wire_bootloader = 50007; // message is only handled by TREZOR Bootloader
}
/**
* Type of failures returned by Failure message
* @used_in Failure
*/
enum FailureType {
Failure_UnexpectedMessage = 1;
Failure_ButtonExpected = 2;
Failure_DataError = 3;
Failure_ActionCancelled = 4;
Failure_PinExpected = 5;
Failure_PinCancelled = 6;
Failure_PinInvalid = 7;
Failure_InvalidSignature = 8;
Failure_ProcessError = 9;
Failure_NotEnoughFunds = 10;
Failure_NotInitialized = 11;
Failure_FirmwareError = 99;
}
/**
* Type of script which will be used for transaction output
* @used_in TxOutputType
*/
enum OutputScriptType {
PAYTOADDRESS = 0; // used for all addresses (bitcoin, p2sh, witness)
PAYTOSCRIPTHASH = 1; // p2sh address (deprecated; use PAYTOADDRESS)
PAYTOMULTISIG = 2; // only for change output
PAYTOOPRETURN = 3; // op_return
PAYTOWITNESS = 4; // only for change output
PAYTOP2SHWITNESS = 5; // only for change output
}
/**
* Type of script which will be used for transaction output
* @used_in TxInputType
*/
enum InputScriptType {
SPENDADDRESS = 0; // standard p2pkh address
SPENDMULTISIG = 1; // p2sh multisig address
EXTERNAL = 2; // reserved for external inputs (coinjoin)
SPENDWITNESS = 3; // native segwit
SPENDP2SHWITNESS = 4; // segwit over p2sh (backward compatible)
}
/**
* Type of information required by transaction signing process
* @used_in TxRequest
*/
enum RequestType {
TXINPUT = 0;
TXOUTPUT = 1;
TXMETA = 2;
TXFINISHED = 3;
TXEXTRADATA = 4;
}
/**
* Type of button request
* @used_in ButtonRequest
*/
enum ButtonRequestType {
ButtonRequest_Other = 1;
ButtonRequest_FeeOverThreshold = 2;
ButtonRequest_ConfirmOutput = 3;
ButtonRequest_ResetDevice = 4;
ButtonRequest_ConfirmWord = 5;
ButtonRequest_WipeDevice = 6;
ButtonRequest_ProtectCall = 7;
ButtonRequest_SignTx = 8;
ButtonRequest_FirmwareCheck = 9;
ButtonRequest_Address = 10;
ButtonRequest_PublicKey = 11;
}
/**
* Type of PIN request
* @used_in PinMatrixRequest
*/
enum PinMatrixRequestType {
PinMatrixRequestType_Current = 1;
PinMatrixRequestType_NewFirst = 2;
PinMatrixRequestType_NewSecond = 3;
}
/**
* Type of recovery procedure. These should be used as bitmask, e.g.,
* `RecoveryDeviceType_ScrambledWords | RecoveryDeviceType_Matrix`
* listing every method supported by the host computer.
*
* Note that ScrambledWords must be supported by every implementation
* for backward compatibility; there is no way to not support it.
*
* @used_in RecoveryDevice
*/
enum RecoveryDeviceType {
// use powers of two when extending this field
RecoveryDeviceType_ScrambledWords = 0; // words in scrambled order
RecoveryDeviceType_Matrix = 1; // matrix recovery type
}
/**
* Type of Recovery Word request
* @used_in WordRequest
*/
enum WordRequestType {
WordRequestType_Plain = 0;
WordRequestType_Matrix9 = 1;
WordRequestType_Matrix6 = 2;
}
/**
* Structure representing BIP32 (hierarchical deterministic) node
* Used for imports of private key into the device and exporting public key out of device
* @used_in PublicKey
* @used_in LoadDevice
* @used_in DebugLinkState
* @used_in Storage
*/
message HDNodeType {
required uint32 depth = 1;
required uint32 fingerprint = 2;
required uint32 child_num = 3;
required bytes chain_code = 4;
optional bytes private_key = 5;
optional bytes public_key = 6;
}
message HDNodePathType {
required HDNodeType node = 1; // BIP-32 node in deserialized form
repeated uint32 address_n = 2; // BIP-32 path to derive the key from node
}
/**
* Structure representing Coin
* @used_in Features
*/
message CoinType {
optional string coin_name = 1;
optional string coin_shortcut = 2;
optional uint32 address_type = 3 [default=0];
optional uint64 maxfee_kb = 4;
optional uint32 address_type_p2sh = 5 [default=5];
optional string signed_message_header = 8;
optional uint32 xpub_magic = 9 [default=76067358]; // default=0x0488b21e
optional uint32 xprv_magic = 10 [default=76066276]; // default=0x0488ade4
optional bool segwit = 11;
optional uint32 forkid = 12;
}
/**
* Type of redeem script used in input
* @used_in TxInputType
*/
message MultisigRedeemScriptType {
repeated HDNodePathType pubkeys = 1; // pubkeys from multisig address (sorted lexicographically)
repeated bytes signatures = 2; // existing signatures for partially signed input
optional uint32 m = 3; // "m" from n, how many valid signatures is necessary for spending
}
/**
* Structure representing transaction input
* @used_in SimpleSignTx
* @used_in TransactionType
*/
message TxInputType {
repeated uint32 address_n = 1; // BIP-32 path to derive the key from master node
required bytes prev_hash = 2; // hash of previous transaction output to spend by this input
required uint32 prev_index = 3; // index of previous output to spend
optional bytes script_sig = 4; // script signature, unset for tx to sign
optional uint32 sequence = 5 [default=4294967295]; // sequence (default=0xffffffff)
optional InputScriptType script_type = 6 [default=SPENDADDRESS]; // defines template of input script
optional MultisigRedeemScriptType multisig = 7; // Filled if input is going to spend multisig tx
optional uint64 amount = 8; // amount of previous transaction output (for segwit only)
}
/**
* Structure representing transaction output
* @used_in SimpleSignTx
* @used_in TransactionType
*/
message TxOutputType {
optional string address = 1; // target coin address in Base58 encoding
repeated uint32 address_n = 2; // BIP-32 path to derive the key from master node; has higher priority than "address"
required uint64 amount = 3; // amount to spend in satoshis
required OutputScriptType script_type = 4; // output script type
optional MultisigRedeemScriptType multisig = 5; // defines multisig address; script_type must be PAYTOMULTISIG
optional bytes op_return_data = 6; // defines op_return data; script_type must be PAYTOOPRETURN, amount must be 0
}
/**
* Structure representing compiled transaction output
* @used_in TransactionType
*/
message TxOutputBinType {
required uint64 amount = 1;
required bytes script_pubkey = 2;
}
/**
* Structure representing transaction
* @used_in SimpleSignTx
*/
message TransactionType {
optional uint32 version = 1;
repeated TxInputType inputs = 2;
repeated TxOutputBinType bin_outputs = 3;
repeated TxOutputType outputs = 5;
optional uint32 lock_time = 4;
optional uint32 inputs_cnt = 6;
optional uint32 outputs_cnt = 7;
optional bytes extra_data = 8;
optional uint32 extra_data_len = 9;
}
/**
* Structure representing request details
* @used_in TxRequest
*/
message TxRequestDetailsType {
optional uint32 request_index = 1; // device expects TxAck message from the computer
optional bytes tx_hash = 2; // tx_hash of requested transaction
optional uint32 extra_data_len = 3; // length of requested extra data
optional uint32 extra_data_offset = 4; // offset of requested extra data
}
/**
* Structure representing serialized data
* @used_in TxRequest
*/
message TxRequestSerializedType {
optional uint32 signature_index = 1; // 'signature' field contains signed input of this index
optional bytes signature = 2; // signature of the signature_index input
optional bytes serialized_tx = 3; // part of serialized and signed transaction
}
/**
* Structure representing identity data
* @used_in IdentityType
*/
message IdentityType {
optional string proto = 1; // proto part of URI
optional string user = 2; // user part of URI
optional string host = 3; // host part of URI
optional string port = 4; // port part of URI
optional string path = 5; // path part of URI
optional uint32 index = 6 [default=0]; // identity index
}

View File

@ -1,7 +1,4 @@
Go support for Protocol Buffers - Google's data interchange format
Copyright 2010 The Go Authors. All rights reserved. Copyright 2010 The Go Authors. All rights reserved.
https://github.com/golang/protobuf
Redistribution and use in source and binary forms, with or without Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are modification, are permitted provided that the following conditions are

View File

@ -1,43 +0,0 @@
# Go support for Protocol Buffers - Google's data interchange format
#
# Copyright 2010 The Go Authors. All rights reserved.
# https://github.com/golang/protobuf
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
install:
go install
test: install generate-test-pbs
go test
generate-test-pbs:
make install
make -C testdata
protoc --go_out=Mtestdata/test.proto=github.com/golang/protobuf/proto/testdata,Mgoogle/protobuf/any.proto=github.com/golang/protobuf/ptypes/any:. proto3_proto/proto3.proto
make

View File

@ -35,22 +35,39 @@
package proto package proto
import ( import (
"fmt"
"log" "log"
"reflect" "reflect"
"strings" "strings"
) )
// Clone returns a deep copy of a protocol buffer. // Clone returns a deep copy of a protocol buffer.
func Clone(pb Message) Message { func Clone(src Message) Message {
in := reflect.ValueOf(pb) in := reflect.ValueOf(src)
if in.IsNil() { if in.IsNil() {
return pb return src
} }
out := reflect.New(in.Type().Elem()) out := reflect.New(in.Type().Elem())
// out is empty so a merge is a deep copy. dst := out.Interface().(Message)
mergeStruct(out.Elem(), in.Elem()) Merge(dst, src)
return out.Interface().(Message) return dst
}
// Merger is the interface representing objects that can merge messages of the same type.
type Merger interface {
// Merge merges src into this message.
// Required and optional fields that are set in src will be set to that value in dst.
// Elements of repeated fields will be appended.
//
// Merge may panic if called with a different argument type than the receiver.
Merge(src Message)
}
// generatedMerger is the custom merge method that generated protos will have.
// We must add this method since a generate Merge method will conflict with
// many existing protos that have a Merge data field already defined.
type generatedMerger interface {
XXX_Merge(src Message)
} }
// Merge merges src into dst. // Merge merges src into dst.
@ -58,17 +75,24 @@ func Clone(pb Message) Message {
// Elements of repeated fields will be appended. // Elements of repeated fields will be appended.
// Merge panics if src and dst are not the same type, or if dst is nil. // Merge panics if src and dst are not the same type, or if dst is nil.
func Merge(dst, src Message) { func Merge(dst, src Message) {
if m, ok := dst.(Merger); ok {
m.Merge(src)
return
}
in := reflect.ValueOf(src) in := reflect.ValueOf(src)
out := reflect.ValueOf(dst) out := reflect.ValueOf(dst)
if out.IsNil() { if out.IsNil() {
panic("proto: nil destination") panic("proto: nil destination")
} }
if in.Type() != out.Type() { if in.Type() != out.Type() {
// Explicit test prior to mergeStruct so that mistyped nils will fail panic(fmt.Sprintf("proto.Merge(%T, %T) type mismatch", dst, src))
panic("proto: type mismatch")
} }
if in.IsNil() { if in.IsNil() {
// Merging nil into non-nil is a quiet no-op return // Merge from nil src is a noop
}
if m, ok := dst.(generatedMerger); ok {
m.XXX_Merge(src)
return return
} }
mergeStruct(out.Elem(), in.Elem()) mergeStruct(out.Elem(), in.Elem())
@ -84,7 +108,7 @@ func mergeStruct(out, in reflect.Value) {
mergeAny(out.Field(i), in.Field(i), false, sprop.Prop[i]) mergeAny(out.Field(i), in.Field(i), false, sprop.Prop[i])
} }
if emIn, ok := extendable(in.Addr().Interface()); ok { if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface()) emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead() mIn, muIn := emIn.extensionsRead()
if mIn != nil { if mIn != nil {

View File

@ -39,8 +39,6 @@ import (
"errors" "errors"
"fmt" "fmt"
"io" "io"
"os"
"reflect"
) )
// errOverflow is returned when an integer is too large to be represented. // errOverflow is returned when an integer is too large to be represented.
@ -50,10 +48,6 @@ var errOverflow = errors.New("proto: integer overflow")
// wire type is encountered. It does not get returned to user code. // wire type is encountered. It does not get returned to user code.
var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof") var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
// The fundamental decoders that interpret bytes on the wire.
// Those that take integer types all return uint64 and are
// therefore of type valueDecoder.
// DecodeVarint reads a varint-encoded integer from the slice. // DecodeVarint reads a varint-encoded integer from the slice.
// It returns the integer and the number of bytes consumed, or // It returns the integer and the number of bytes consumed, or
// zero if there is not enough. // zero if there is not enough.
@ -192,7 +186,6 @@ func (p *Buffer) DecodeVarint() (x uint64, err error) {
if b&0x80 == 0 { if b&0x80 == 0 {
goto done goto done
} }
// x -= 0x80 << 63 // Always zero.
return 0, errOverflow return 0, errOverflow
@ -267,9 +260,6 @@ func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
return return
} }
// These are not ValueDecoders: they produce an array of bytes or a string.
// bytes, embedded messages
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer. // DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
// This is the format used for the bytes protocol buffer // This is the format used for the bytes protocol buffer
// type and for embedded messages. // type and for embedded messages.
@ -311,81 +301,29 @@ func (p *Buffer) DecodeStringBytes() (s string, err error) {
return string(buf), nil return string(buf), nil
} }
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
// If the protocol buffer has extensions, and the field matches, add it as an extension.
// Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
oi := o.index
err := o.skip(t, tag, wire)
if err != nil {
return err
}
if !unrecField.IsValid() {
return nil
}
ptr := structPointer_Bytes(base, unrecField)
// Add the skipped field to struct field
obuf := o.buf
o.buf = *ptr
o.EncodeVarint(uint64(tag<<3 | wire))
*ptr = append(o.buf, obuf[oi:o.index]...)
o.buf = obuf
return nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
var u uint64
var err error
switch wire {
case WireVarint:
_, err = o.DecodeVarint()
case WireFixed64:
_, err = o.DecodeFixed64()
case WireBytes:
_, err = o.DecodeRawBytes(false)
case WireFixed32:
_, err = o.DecodeFixed32()
case WireStartGroup:
for {
u, err = o.DecodeVarint()
if err != nil {
break
}
fwire := int(u & 0x7)
if fwire == WireEndGroup {
break
}
ftag := int(u >> 3)
err = o.skip(t, ftag, fwire)
if err != nil {
break
}
}
default:
err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
}
return err
}
// Unmarshaler is the interface representing objects that can // Unmarshaler is the interface representing objects that can
// unmarshal themselves. The method should reset the receiver before // unmarshal themselves. The argument points to data that may be
// decoding starts. The argument points to data that may be
// overwritten, so implementations should not keep references to the // overwritten, so implementations should not keep references to the
// buffer. // buffer.
// Unmarshal implementations should not clear the receiver.
// Any unmarshaled data should be merged into the receiver.
// Callers of Unmarshal that do not want to retain existing data
// should Reset the receiver before calling Unmarshal.
type Unmarshaler interface { type Unmarshaler interface {
Unmarshal([]byte) error Unmarshal([]byte) error
} }
// newUnmarshaler is the interface representing objects that can
// unmarshal themselves. The semantics are identical to Unmarshaler.
//
// This exists to support protoc-gen-go generated messages.
// The proto package will stop type-asserting to this interface in the future.
//
// DO NOT DEPEND ON THIS.
type newUnmarshaler interface {
XXX_Unmarshal([]byte) error
}
// Unmarshal parses the protocol buffer representation in buf and places the // Unmarshal parses the protocol buffer representation in buf and places the
// decoded result in pb. If the struct underlying pb does not match // decoded result in pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable. // the data in buf, the results can be unpredictable.
@ -395,7 +333,13 @@ type Unmarshaler interface {
// to preserve and append to existing data. // to preserve and append to existing data.
func Unmarshal(buf []byte, pb Message) error { func Unmarshal(buf []byte, pb Message) error {
pb.Reset() pb.Reset()
return UnmarshalMerge(buf, pb) if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
} }
// UnmarshalMerge parses the protocol buffer representation in buf and // UnmarshalMerge parses the protocol buffer representation in buf and
@ -405,8 +349,16 @@ func Unmarshal(buf []byte, pb Message) error {
// UnmarshalMerge merges into existing data in pb. // UnmarshalMerge merges into existing data in pb.
// Most code should use Unmarshal instead. // Most code should use Unmarshal instead.
func UnmarshalMerge(buf []byte, pb Message) error { func UnmarshalMerge(buf []byte, pb Message) error {
// If the object can unmarshal itself, let it. if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok { if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
return u.Unmarshal(buf) return u.Unmarshal(buf)
} }
return NewBuffer(buf).Unmarshal(pb) return NewBuffer(buf).Unmarshal(pb)
@ -422,12 +374,17 @@ func (p *Buffer) DecodeMessage(pb Message) error {
} }
// DecodeGroup reads a tag-delimited group from the Buffer. // DecodeGroup reads a tag-delimited group from the Buffer.
// StartGroup tag is already consumed. This function consumes
// EndGroup tag.
func (p *Buffer) DecodeGroup(pb Message) error { func (p *Buffer) DecodeGroup(pb Message) error {
typ, base, err := getbase(pb) b := p.buf[p.index:]
if err != nil { x, y := findEndGroup(b)
return err if x < 0 {
return io.ErrUnexpectedEOF
} }
return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base) err := Unmarshal(b[:x], pb)
p.index += y
return err
} }
// Unmarshal parses the protocol buffer representation in the // Unmarshal parses the protocol buffer representation in the
@ -438,533 +395,33 @@ func (p *Buffer) DecodeGroup(pb Message) error {
// Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal. // Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal.
func (p *Buffer) Unmarshal(pb Message) error { func (p *Buffer) Unmarshal(pb Message) error {
// If the object can unmarshal itself, let it. // If the object can unmarshal itself, let it.
if u, ok := pb.(newUnmarshaler); ok {
err := u.XXX_Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
if u, ok := pb.(Unmarshaler); ok { if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
err := u.Unmarshal(p.buf[p.index:]) err := u.Unmarshal(p.buf[p.index:])
p.index = len(p.buf) p.index = len(p.buf)
return err return err
} }
typ, base, err := getbase(pb) // Slow workaround for messages that aren't Unmarshalers.
if err != nil { // This includes some hand-coded .pb.go files and
return err // bootstrap protos.
} // TODO: fix all of those and then add Unmarshal to
// the Message interface. Then:
err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base) // The cast above and code below can be deleted.
// The old unmarshaler can be deleted.
if collectStats { // Clients can call Unmarshal directly (can already do that, actually).
stats.Decode++ var info InternalMessageInfo
} err := info.Unmarshal(pb, p.buf[p.index:])
p.index = len(p.buf)
return err
}
// unmarshalType does the work of unmarshaling a structure.
func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
var state errorState
required, reqFields := prop.reqCount, uint64(0)
var err error
for err == nil && o.index < len(o.buf) {
oi := o.index
var u uint64
u, err = o.DecodeVarint()
if err != nil {
break
}
wire := int(u & 0x7)
if wire == WireEndGroup {
if is_group {
if required > 0 {
// Not enough information to determine the exact field.
// (See below.)
return &RequiredNotSetError{"{Unknown}"}
}
return nil // input is satisfied
}
return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
}
tag := int(u >> 3)
if tag <= 0 {
return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
}
fieldnum, ok := prop.decoderTags.get(tag)
if !ok {
// Maybe it's an extension?
if prop.extendable {
if e, _ := extendable(structPointer_Interface(base, st)); isExtensionField(e, int32(tag)) {
if err = o.skip(st, tag, wire); err == nil {
extmap := e.extensionsWrite()
ext := extmap[int32(tag)] // may be missing
ext.enc = append(ext.enc, o.buf[oi:o.index]...)
extmap[int32(tag)] = ext
}
continue
}
}
// Maybe it's a oneof?
if prop.oneofUnmarshaler != nil {
m := structPointer_Interface(base, st).(Message)
// First return value indicates whether tag is a oneof field.
ok, err = prop.oneofUnmarshaler(m, tag, wire, o)
if err == ErrInternalBadWireType {
// Map the error to something more descriptive.
// Do the formatting here to save generated code space.
err = fmt.Errorf("bad wiretype for oneof field in %T", m)
}
if ok {
continue
}
}
err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
continue
}
p := prop.Prop[fieldnum]
if p.dec == nil {
fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
continue
}
dec := p.dec
if wire != WireStartGroup && wire != p.WireType {
if wire == WireBytes && p.packedDec != nil {
// a packable field
dec = p.packedDec
} else {
err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
continue
}
}
decErr := dec(o, p, base)
if decErr != nil && !state.shouldContinue(decErr, p) {
err = decErr
}
if err == nil && p.Required {
// Successfully decoded a required field.
if tag <= 64 {
// use bitmap for fields 1-64 to catch field reuse.
var mask uint64 = 1 << uint64(tag-1)
if reqFields&mask == 0 {
// new required field
reqFields |= mask
required--
}
} else {
// This is imprecise. It can be fooled by a required field
// with a tag > 64 that is encoded twice; that's very rare.
// A fully correct implementation would require allocating
// a data structure, which we would like to avoid.
required--
}
}
}
if err == nil {
if is_group {
return io.ErrUnexpectedEOF
}
if state.err != nil {
return state.err
}
if required > 0 {
// Not enough information to determine the exact field. If we use extra
// CPU, we could determine the field only if the missing required field
// has a tag <= 64 and we check reqFields.
return &RequiredNotSetError{"{Unknown}"}
}
}
return err
}
// Individual type decoders
// For each,
// u is the decoded value,
// v is a pointer to the field (pointer) in the struct
// Sizes of the pools to allocate inside the Buffer.
// The goal is modest amortization and allocation
// on at least 16-byte boundaries.
const (
boolPoolSize = 16
uint32PoolSize = 8
uint64PoolSize = 4
)
// Decode a bool.
func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
if len(o.bools) == 0 {
o.bools = make([]bool, boolPoolSize)
}
o.bools[0] = u != 0
*structPointer_Bool(base, p.field) = &o.bools[0]
o.bools = o.bools[1:]
return nil
}
func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
*structPointer_BoolVal(base, p.field) = u != 0
return nil
}
// Decode an int32.
func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
return nil
}
func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u))
return nil
}
// Decode an int64.
func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64_Set(structPointer_Word64(base, p.field), o, u)
return nil
}
func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64Val_Set(structPointer_Word64Val(base, p.field), o, u)
return nil
}
// Decode a string.
func (o *Buffer) dec_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
*structPointer_String(base, p.field) = &s
return nil
}
func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
*structPointer_StringVal(base, p.field) = s
return nil
}
// Decode a slice of bytes ([]byte).
func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
*structPointer_Bytes(base, p.field) = b
return nil
}
// Decode a slice of bools ([]bool).
func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
v := structPointer_BoolSlice(base, p.field)
*v = append(*v, u != 0)
return nil
}
// Decode a slice of bools ([]bool) in packed format.
func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
v := structPointer_BoolSlice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded bools
fin := o.index + nb
if fin < o.index {
return errOverflow
}
y := *v
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
y = append(y, u != 0)
}
*v = y
return nil
}
// Decode a slice of int32s ([]int32).
func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word32Slice(base, p.field).Append(uint32(u))
return nil
}
// Decode a slice of int32s ([]int32) in packed format.
func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
v := structPointer_Word32Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int32s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(uint32(u))
}
return nil
}
// Decode a slice of int64s ([]int64).
func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word64Slice(base, p.field).Append(u)
return nil
}
// Decode a slice of int64s ([]int64) in packed format.
func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
v := structPointer_Word64Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int64s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(u)
}
return nil
}
// Decode a slice of strings ([]string).
func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
v := structPointer_StringSlice(base, p.field)
*v = append(*v, s)
return nil
}
// Decode a slice of slice of bytes ([][]byte).
func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
v := structPointer_BytesSlice(base, p.field)
*v = append(*v, b)
return nil
}
// Decode a map field.
func (o *Buffer) dec_new_map(p *Properties, base structPointer) error {
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
oi := o.index // index at the end of this map entry
o.index -= len(raw) // move buffer back to start of map entry
mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V
if mptr.Elem().IsNil() {
mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem()))
}
v := mptr.Elem() // map[K]V
// Prepare addressable doubly-indirect placeholders for the key and value types.
// See enc_new_map for why.
keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K
keybase := toStructPointer(keyptr.Addr()) // **K
var valbase structPointer
var valptr reflect.Value
switch p.mtype.Elem().Kind() {
case reflect.Slice:
// []byte
var dummy []byte
valptr = reflect.ValueOf(&dummy) // *[]byte
valbase = toStructPointer(valptr) // *[]byte
case reflect.Ptr:
// message; valptr is **Msg; need to allocate the intermediate pointer
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
valptr.Set(reflect.New(valptr.Type().Elem()))
valbase = toStructPointer(valptr)
default:
// everything else
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
valbase = toStructPointer(valptr.Addr()) // **V
}
// Decode.
// This parses a restricted wire format, namely the encoding of a message
// with two fields. See enc_new_map for the format.
for o.index < oi {
// tagcode for key and value properties are always a single byte
// because they have tags 1 and 2.
tagcode := o.buf[o.index]
o.index++
switch tagcode {
case p.mkeyprop.tagcode[0]:
if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil {
return err
}
case p.mvalprop.tagcode[0]:
if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil {
return err
}
default:
// TODO: Should we silently skip this instead?
return fmt.Errorf("proto: bad map data tag %d", raw[0])
}
}
keyelem, valelem := keyptr.Elem(), valptr.Elem()
if !keyelem.IsValid() {
keyelem = reflect.Zero(p.mtype.Key())
}
if !valelem.IsValid() {
valelem = reflect.Zero(p.mtype.Elem())
}
v.SetMapIndex(keyelem, valelem)
return nil
}
// Decode a group.
func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
return o.unmarshalType(p.stype, p.sprop, true, bas)
}
// Decode an embedded message.
func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
raw, e := o.DecodeRawBytes(false)
if e != nil {
return e
}
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := structPointer_Interface(bas, p.stype)
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, false, bas)
o.buf = obuf
o.index = oi
return err
}
// Decode a slice of embedded messages.
func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, false, base)
}
// Decode a slice of embedded groups.
func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, true, base)
}
// Decode a slice of structs ([]*struct).
func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
v := reflect.New(p.stype)
bas := toStructPointer(v)
structPointer_StructPointerSlice(base, p.field).Append(bas)
if is_group {
err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
return err
}
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := v.Interface()
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
o.buf = obuf
o.index = oi
return err return err
} }

63
vendor/github.com/golang/protobuf/proto/deprecated.go generated vendored Normal file
View File

@ -0,0 +1,63 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2018 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import "errors"
// Deprecated: do not use.
type Stats struct{ Emalloc, Dmalloc, Encode, Decode, Chit, Cmiss, Size uint64 }
// Deprecated: do not use.
func GetStats() Stats { return Stats{} }
// Deprecated: do not use.
func MarshalMessageSet(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
func UnmarshalMessageSet([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
func MarshalMessageSetJSON(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
func UnmarshalMessageSetJSON([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
func RegisterMessageSetType(Message, int32, string) {}

350
vendor/github.com/golang/protobuf/proto/discard.go generated vendored Normal file
View File

@ -0,0 +1,350 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2017 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
type generatedDiscarder interface {
XXX_DiscardUnknown()
}
// DiscardUnknown recursively discards all unknown fields from this message
// and all embedded messages.
//
// When unmarshaling a message with unrecognized fields, the tags and values
// of such fields are preserved in the Message. This allows a later call to
// marshal to be able to produce a message that continues to have those
// unrecognized fields. To avoid this, DiscardUnknown is used to
// explicitly clear the unknown fields after unmarshaling.
//
// For proto2 messages, the unknown fields of message extensions are only
// discarded from messages that have been accessed via GetExtension.
func DiscardUnknown(m Message) {
if m, ok := m.(generatedDiscarder); ok {
m.XXX_DiscardUnknown()
return
}
// TODO: Dynamically populate a InternalMessageInfo for legacy messages,
// but the master branch has no implementation for InternalMessageInfo,
// so it would be more work to replicate that approach.
discardLegacy(m)
}
// DiscardUnknown recursively discards all unknown fields.
func (a *InternalMessageInfo) DiscardUnknown(m Message) {
di := atomicLoadDiscardInfo(&a.discard)
if di == nil {
di = getDiscardInfo(reflect.TypeOf(m).Elem())
atomicStoreDiscardInfo(&a.discard, di)
}
di.discard(toPointer(&m))
}
type discardInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []discardFieldInfo
unrecognized field
}
type discardFieldInfo struct {
field field // Offset of field, guaranteed to be valid
discard func(src pointer)
}
var (
discardInfoMap = map[reflect.Type]*discardInfo{}
discardInfoLock sync.Mutex
)
func getDiscardInfo(t reflect.Type) *discardInfo {
discardInfoLock.Lock()
defer discardInfoLock.Unlock()
di := discardInfoMap[t]
if di == nil {
di = &discardInfo{typ: t}
discardInfoMap[t] = di
}
return di
}
func (di *discardInfo) discard(src pointer) {
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&di.initialized) == 0 {
di.computeDiscardInfo()
}
for _, fi := range di.fields {
sfp := src.offset(fi.field)
fi.discard(sfp)
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(src.asPointerTo(di.typ).Interface()); err == nil {
// Ignore lock since DiscardUnknown is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
DiscardUnknown(m)
}
}
}
if di.unrecognized.IsValid() {
*src.offset(di.unrecognized).toBytes() = nil
}
}
func (di *discardInfo) computeDiscardInfo() {
di.lock.Lock()
defer di.lock.Unlock()
if di.initialized != 0 {
return
}
t := di.typ
n := t.NumField()
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
dfi := discardFieldInfo{field: toField(&f)}
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%v.%s cannot be a slice of pointers to primitive types", t, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%v.%s cannot be a direct struct value", t, f.Name))
case isSlice: // E.g., []*pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sps := src.getPointerSlice()
for _, sp := range sps {
if !sp.isNil() {
di.discard(sp)
}
}
}
default: // E.g., *pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sp := src.getPointer()
if !sp.isNil() {
di.discard(sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a map or a slice of map values", t, f.Name))
default: // E.g., map[K]V
if tf.Elem().Kind() == reflect.Ptr { // Proto struct (e.g., *T)
dfi.discard = func(src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
DiscardUnknown(val.Interface().(Message))
}
}
} else {
dfi.discard = func(pointer) {} // Noop
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a interface or a slice of interface values", t, f.Name))
default: // E.g., interface{}
// TODO: Make this faster?
dfi.discard = func(src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
DiscardUnknown(sv.Interface().(Message))
}
}
}
}
default:
continue
}
di.fields = append(di.fields, dfi)
}
di.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
di.unrecognized = toField(&f)
}
atomic.StoreInt32(&di.initialized, 1)
}
func discardLegacy(m Message) {
v := reflect.ValueOf(m)
if v.Kind() != reflect.Ptr || v.IsNil() {
return
}
v = v.Elem()
if v.Kind() != reflect.Struct {
return
}
t := v.Type()
for i := 0; i < v.NumField(); i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
vf := v.Field(i)
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T.%s cannot be a slice of pointers to primitive types", m, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%T.%s cannot be a direct struct value", m, f.Name))
case isSlice: // E.g., []*pb.T
for j := 0; j < vf.Len(); j++ {
discardLegacy(vf.Index(j).Interface().(Message))
}
default: // E.g., *pb.T
discardLegacy(vf.Interface().(Message))
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a map or a slice of map values", m, f.Name))
default: // E.g., map[K]V
tv := vf.Type().Elem()
if tv.Kind() == reflect.Ptr && tv.Implements(protoMessageType) { // Proto struct (e.g., *T)
for _, key := range vf.MapKeys() {
val := vf.MapIndex(key)
discardLegacy(val.Interface().(Message))
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a interface or a slice of interface values", m, f.Name))
default: // E.g., test_proto.isCommunique_Union interface
if !vf.IsNil() && f.Tag.Get("protobuf_oneof") != "" {
vf = vf.Elem() // E.g., *test_proto.Communique_Msg
if !vf.IsNil() {
vf = vf.Elem() // E.g., test_proto.Communique_Msg
vf = vf.Field(0) // E.g., Proto struct (e.g., *T) or primitive value
if vf.Kind() == reflect.Ptr {
discardLegacy(vf.Interface().(Message))
}
}
}
}
}
}
if vf := v.FieldByName("XXX_unrecognized"); vf.IsValid() {
if vf.Type() != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
vf.Set(reflect.ValueOf([]byte(nil)))
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(m); err == nil {
// Ignore lock since discardLegacy is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
discardLegacy(m)
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -109,15 +109,6 @@ func equalStruct(v1, v2 reflect.Value) bool {
// set/unset mismatch // set/unset mismatch
return false return false
} }
b1, ok := f1.Interface().(raw)
if ok {
b2 := f2.Interface().(raw)
// RawMessage
if !bytes.Equal(b1.Bytes(), b2.Bytes()) {
return false
}
continue
}
f1, f2 = f1.Elem(), f2.Elem() f1, f2 = f1.Elem(), f2.Elem()
} }
if !equalAny(f1, f2, sprop.Prop[i]) { if !equalAny(f1, f2, sprop.Prop[i]) {
@ -146,11 +137,7 @@ func equalStruct(v1, v2 reflect.Value) bool {
u1 := uf.Bytes() u1 := uf.Bytes()
u2 := v2.FieldByName("XXX_unrecognized").Bytes() u2 := v2.FieldByName("XXX_unrecognized").Bytes()
if !bytes.Equal(u1, u2) { return bytes.Equal(u1, u2)
return false
}
return true
} }
// v1 and v2 are known to have the same type. // v1 and v2 are known to have the same type.
@ -259,7 +246,17 @@ func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
return false return false
} }
m1, m2 := e1.value, e2.value m1 := extensionAsLegacyType(e1.value)
m2 := extensionAsLegacyType(e2.value)
if m1 == nil && m2 == nil {
// Both have only encoded form.
if bytes.Equal(e1.enc, e2.enc) {
continue
}
// The bytes are different, but the extensions might still be
// equal. We need to decode them to compare.
}
if m1 != nil && m2 != nil { if m1 != nil && m2 != nil {
// Both are unencoded. // Both are unencoded.
@ -276,8 +273,12 @@ func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
desc = m[extNum] desc = m[extNum]
} }
if desc == nil { if desc == nil {
// If both have only encoded form and the bytes are the same,
// it is handled above. We get here when the bytes are different.
// We don't know how to decode it, so just compare them as byte
// slices.
log.Printf("proto: don't know how to compare extension %d of %v", extNum, base) log.Printf("proto: don't know how to compare extension %d of %v", extNum, base)
continue return false
} }
var err error var err error
if m1 == nil { if m1 == nil {

View File

@ -38,6 +38,7 @@ package proto
import ( import (
"errors" "errors"
"fmt" "fmt"
"io"
"reflect" "reflect"
"strconv" "strconv"
"sync" "sync"
@ -91,14 +92,29 @@ func (n notLocker) Unlock() {}
// extendable returns the extendableProto interface for the given generated proto message. // extendable returns the extendableProto interface for the given generated proto message.
// If the proto message has the old extension format, it returns a wrapper that implements // If the proto message has the old extension format, it returns a wrapper that implements
// the extendableProto interface. // the extendableProto interface.
func extendable(p interface{}) (extendableProto, bool) { func extendable(p interface{}) (extendableProto, error) {
if ep, ok := p.(extendableProto); ok { switch p := p.(type) {
return ep, ok case extendableProto:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return p, nil
case extendableProtoV1:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return extensionAdapter{p}, nil
} }
if ep, ok := p.(extendableProtoV1); ok { // Don't allocate a specific error containing %T:
return extensionAdapter{ep}, ok // this is the hot path for Clone and MarshalText.
} return nil, errNotExtendable
return nil, false }
var errNotExtendable = errors.New("proto: not an extendable proto.Message")
func isNilPtr(x interface{}) bool {
v := reflect.ValueOf(x)
return v.Kind() == reflect.Ptr && v.IsNil()
} }
// XXX_InternalExtensions is an internal representation of proto extensions. // XXX_InternalExtensions is an internal representation of proto extensions.
@ -143,9 +159,6 @@ func (e *XXX_InternalExtensions) extensionsRead() (map[int32]Extension, sync.Loc
return e.p.extensionMap, &e.p.mu return e.p.extensionMap, &e.p.mu
} }
var extendableProtoType = reflect.TypeOf((*extendableProto)(nil)).Elem()
var extendableProtoV1Type = reflect.TypeOf((*extendableProtoV1)(nil)).Elem()
// ExtensionDesc represents an extension specification. // ExtensionDesc represents an extension specification.
// Used in generated code from the protocol compiler. // Used in generated code from the protocol compiler.
type ExtensionDesc struct { type ExtensionDesc struct {
@ -172,15 +185,31 @@ type Extension struct {
// extension will have only enc set. When such an extension is // extension will have only enc set. When such an extension is
// accessed using GetExtension (or GetExtensions) desc and value // accessed using GetExtension (or GetExtensions) desc and value
// will be set. // will be set.
desc *ExtensionDesc desc *ExtensionDesc
// value is a concrete value for the extension field. Let the type of
// desc.ExtensionType be the "API type" and the type of Extension.value
// be the "storage type". The API type and storage type are the same except:
// * For scalars (except []byte), the API type uses *T,
// while the storage type uses T.
// * For repeated fields, the API type uses []T, while the storage type
// uses *[]T.
//
// The reason for the divergence is so that the storage type more naturally
// matches what is expected of when retrieving the values through the
// protobuf reflection APIs.
//
// The value may only be populated if desc is also populated.
value interface{} value interface{}
enc []byte
// enc is the raw bytes for the extension field.
enc []byte
} }
// SetRawExtension is for testing only. // SetRawExtension is for testing only.
func SetRawExtension(base Message, id int32, b []byte) { func SetRawExtension(base Message, id int32, b []byte) {
epb, ok := extendable(base) epb, err := extendable(base)
if !ok { if err != nil {
return return
} }
extmap := epb.extensionsWrite() extmap := epb.extensionsWrite()
@ -205,7 +234,7 @@ func checkExtensionTypes(pb extendableProto, extension *ExtensionDesc) error {
pbi = ea.extendableProtoV1 pbi = ea.extendableProtoV1
} }
if a, b := reflect.TypeOf(pbi), reflect.TypeOf(extension.ExtendedType); a != b { if a, b := reflect.TypeOf(pbi), reflect.TypeOf(extension.ExtendedType); a != b {
return errors.New("proto: bad extended type; " + b.String() + " does not extend " + a.String()) return fmt.Errorf("proto: bad extended type; %v does not extend %v", b, a)
} }
// Check the range. // Check the range.
if !isExtensionField(pb, extension.Field) { if !isExtensionField(pb, extension.Field) {
@ -250,85 +279,11 @@ func extensionProperties(ed *ExtensionDesc) *Properties {
return prop return prop
} }
// encode encodes any unmarshaled (unencoded) extensions in e.
func encodeExtensions(e *XXX_InternalExtensions) error {
m, mu := e.extensionsRead()
if m == nil {
return nil // fast path
}
mu.Lock()
defer mu.Unlock()
return encodeExtensionsMap(m)
}
// encode encodes any unmarshaled (unencoded) extensions in e.
func encodeExtensionsMap(m map[int32]Extension) error {
for k, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
p := NewBuffer(nil)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
if err := props.enc(p, props, toStructPointer(x)); err != nil {
return err
}
e.enc = p.buf
m[k] = e
}
return nil
}
func extensionsSize(e *XXX_InternalExtensions) (n int) {
m, mu := e.extensionsRead()
if m == nil {
return 0
}
mu.Lock()
defer mu.Unlock()
return extensionsMapSize(m)
}
func extensionsMapSize(m map[int32]Extension) (n int) {
for _, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
n += len(e.enc)
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
n += props.size(props, toStructPointer(x))
}
return
}
// HasExtension returns whether the given extension is present in pb. // HasExtension returns whether the given extension is present in pb.
func HasExtension(pb Message, extension *ExtensionDesc) bool { func HasExtension(pb Message, extension *ExtensionDesc) bool {
// TODO: Check types, field numbers, etc.? // TODO: Check types, field numbers, etc.?
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return false return false
} }
extmap, mu := epb.extensionsRead() extmap, mu := epb.extensionsRead()
@ -336,15 +291,15 @@ func HasExtension(pb Message, extension *ExtensionDesc) bool {
return false return false
} }
mu.Lock() mu.Lock()
_, ok = extmap[extension.Field] _, ok := extmap[extension.Field]
mu.Unlock() mu.Unlock()
return ok return ok
} }
// ClearExtension removes the given extension from pb. // ClearExtension removes the given extension from pb.
func ClearExtension(pb Message, extension *ExtensionDesc) { func ClearExtension(pb Message, extension *ExtensionDesc) {
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return return
} }
// TODO: Check types, field numbers, etc.? // TODO: Check types, field numbers, etc.?
@ -352,16 +307,26 @@ func ClearExtension(pb Message, extension *ExtensionDesc) {
delete(extmap, extension.Field) delete(extmap, extension.Field)
} }
// GetExtension parses and returns the given extension of pb. // GetExtension retrieves a proto2 extended field from pb.
// If the extension is not present and has no default value it returns ErrMissingExtension. //
// If the descriptor is type complete (i.e., ExtensionDesc.ExtensionType is non-nil),
// then GetExtension parses the encoded field and returns a Go value of the specified type.
// If the field is not present, then the default value is returned (if one is specified),
// otherwise ErrMissingExtension is reported.
//
// If the descriptor is not type complete (i.e., ExtensionDesc.ExtensionType is nil),
// then GetExtension returns the raw encoded bytes of the field extension.
func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) { func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return nil, errors.New("proto: not an extendable proto") return nil, err
} }
if err := checkExtensionTypes(epb, extension); err != nil { if extension.ExtendedType != nil {
return nil, err // can only check type if this is a complete descriptor
if err := checkExtensionTypes(epb, extension); err != nil {
return nil, err
}
} }
emap, mu := epb.extensionsRead() emap, mu := epb.extensionsRead()
@ -385,7 +350,12 @@ func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
// descriptors with the same field number. // descriptors with the same field number.
return nil, errors.New("proto: descriptor conflict") return nil, errors.New("proto: descriptor conflict")
} }
return e.value, nil return extensionAsLegacyType(e.value), nil
}
if extension.ExtensionType == nil {
// incomplete descriptor
return e.enc, nil
} }
v, err := decodeExtension(e.enc, extension) v, err := decodeExtension(e.enc, extension)
@ -395,16 +365,21 @@ func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
// Remember the decoded version and drop the encoded version. // Remember the decoded version and drop the encoded version.
// That way it is safe to mutate what we return. // That way it is safe to mutate what we return.
e.value = v e.value = extensionAsStorageType(v)
e.desc = extension e.desc = extension
e.enc = nil e.enc = nil
emap[extension.Field] = e emap[extension.Field] = e
return e.value, nil return extensionAsLegacyType(e.value), nil
} }
// defaultExtensionValue returns the default value for extension. // defaultExtensionValue returns the default value for extension.
// If no default for an extension is defined ErrMissingExtension is returned. // If no default for an extension is defined ErrMissingExtension is returned.
func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) { func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
if extension.ExtensionType == nil {
// incomplete descriptor, so no default
return nil, ErrMissingExtension
}
t := reflect.TypeOf(extension.ExtensionType) t := reflect.TypeOf(extension.ExtensionType)
props := extensionProperties(extension) props := extensionProperties(extension)
@ -439,31 +414,28 @@ func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
// decodeExtension decodes an extension encoded in b. // decodeExtension decodes an extension encoded in b.
func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) { func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
o := NewBuffer(b)
t := reflect.TypeOf(extension.ExtensionType) t := reflect.TypeOf(extension.ExtensionType)
unmarshal := typeUnmarshaler(t, extension.Tag)
props := extensionProperties(extension)
// t is a pointer to a struct, pointer to basic type or a slice. // t is a pointer to a struct, pointer to basic type or a slice.
// Allocate a "field" to store the pointer/slice itself; the // Allocate space to store the pointer/slice.
// pointer/slice will be stored here. We pass
// the address of this field to props.dec.
// This passes a zero field and a *t and lets props.dec
// interpret it as a *struct{ x t }.
value := reflect.New(t).Elem() value := reflect.New(t).Elem()
var err error
for { for {
// Discard wire type and field number varint. It isn't needed. x, n := decodeVarint(b)
if _, err := o.DecodeVarint(); err != nil { if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
wire := int(x) & 7
b, err = unmarshal(b, valToPointer(value.Addr()), wire)
if err != nil {
return nil, err return nil, err
} }
if err := props.dec(o, props, toStructPointer(value.Addr())); err != nil { if len(b) == 0 {
return nil, err
}
if o.index >= len(o.buf) {
break break
} }
} }
@ -473,9 +445,9 @@ func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
// GetExtensions returns a slice of the extensions present in pb that are also listed in es. // GetExtensions returns a slice of the extensions present in pb that are also listed in es.
// The returned slice has the same length as es; missing extensions will appear as nil elements. // The returned slice has the same length as es; missing extensions will appear as nil elements.
func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) { func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) {
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return nil, errors.New("proto: not an extendable proto") return nil, err
} }
extensions = make([]interface{}, len(es)) extensions = make([]interface{}, len(es))
for i, e := range es { for i, e := range es {
@ -494,9 +466,9 @@ func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, e
// For non-registered extensions, ExtensionDescs returns an incomplete descriptor containing // For non-registered extensions, ExtensionDescs returns an incomplete descriptor containing
// just the Field field, which defines the extension's field number. // just the Field field, which defines the extension's field number.
func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) { func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return nil, fmt.Errorf("proto: %T is not an extendable proto.Message", pb) return nil, err
} }
registeredExtensions := RegisteredExtensions(pb) registeredExtensions := RegisteredExtensions(pb)
@ -523,16 +495,16 @@ func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
// SetExtension sets the specified extension of pb to the specified value. // SetExtension sets the specified extension of pb to the specified value.
func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error { func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error {
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return errors.New("proto: not an extendable proto") return err
} }
if err := checkExtensionTypes(epb, extension); err != nil { if err := checkExtensionTypes(epb, extension); err != nil {
return err return err
} }
typ := reflect.TypeOf(extension.ExtensionType) typ := reflect.TypeOf(extension.ExtensionType)
if typ != reflect.TypeOf(value) { if typ != reflect.TypeOf(value) {
return errors.New("proto: bad extension value type") return fmt.Errorf("proto: bad extension value type. got: %T, want: %T", value, extension.ExtensionType)
} }
// nil extension values need to be caught early, because the // nil extension values need to be caught early, because the
// encoder can't distinguish an ErrNil due to a nil extension // encoder can't distinguish an ErrNil due to a nil extension
@ -544,14 +516,14 @@ func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error
} }
extmap := epb.extensionsWrite() extmap := epb.extensionsWrite()
extmap[extension.Field] = Extension{desc: extension, value: value} extmap[extension.Field] = Extension{desc: extension, value: extensionAsStorageType(value)}
return nil return nil
} }
// ClearAllExtensions clears all extensions from pb. // ClearAllExtensions clears all extensions from pb.
func ClearAllExtensions(pb Message) { func ClearAllExtensions(pb Message) {
epb, ok := extendable(pb) epb, err := extendable(pb)
if !ok { if err != nil {
return return
} }
m := epb.extensionsWrite() m := epb.extensionsWrite()
@ -585,3 +557,51 @@ func RegisterExtension(desc *ExtensionDesc) {
func RegisteredExtensions(pb Message) map[int32]*ExtensionDesc { func RegisteredExtensions(pb Message) map[int32]*ExtensionDesc {
return extensionMaps[reflect.TypeOf(pb).Elem()] return extensionMaps[reflect.TypeOf(pb).Elem()]
} }
// extensionAsLegacyType converts an value in the storage type as the API type.
// See Extension.value.
func extensionAsLegacyType(v interface{}) interface{} {
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
// Represent primitive types as a pointer to the value.
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2.Interface()
case reflect.Ptr:
// Represent slice types as the value itself.
switch rv.Type().Elem().Kind() {
case reflect.Slice:
if rv.IsNil() {
v = reflect.Zero(rv.Type().Elem()).Interface()
} else {
v = rv.Elem().Interface()
}
}
}
return v
}
// extensionAsStorageType converts an value in the API type as the storage type.
// See Extension.value.
func extensionAsStorageType(v interface{}) interface{} {
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Ptr:
// Represent slice types as the value itself.
switch rv.Type().Elem().Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
if rv.IsNil() {
v = reflect.Zero(rv.Type().Elem()).Interface()
} else {
v = rv.Elem().Interface()
}
}
case reflect.Slice:
// Represent slice types as a pointer to the value.
if rv.Type().Elem().Kind() != reflect.Uint8 {
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2.Interface()
}
}
return v
}

View File

@ -273,6 +273,67 @@ import (
"sync" "sync"
) )
// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
// Marshal reports this when a required field is not initialized.
// Unmarshal reports this when a required field is missing from the wire data.
type RequiredNotSetError struct{ field string }
func (e *RequiredNotSetError) Error() string {
if e.field == "" {
return fmt.Sprintf("proto: required field not set")
}
return fmt.Sprintf("proto: required field %q not set", e.field)
}
func (e *RequiredNotSetError) RequiredNotSet() bool {
return true
}
type invalidUTF8Error struct{ field string }
func (e *invalidUTF8Error) Error() string {
if e.field == "" {
return "proto: invalid UTF-8 detected"
}
return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
}
func (e *invalidUTF8Error) InvalidUTF8() bool {
return true
}
// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
// This error should not be exposed to the external API as such errors should
// be recreated with the field information.
var errInvalidUTF8 = &invalidUTF8Error{}
// isNonFatal reports whether the error is either a RequiredNotSet error
// or a InvalidUTF8 error.
func isNonFatal(err error) bool {
if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
return true
}
if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
return true
}
return false
}
type nonFatal struct{ E error }
// Merge merges err into nf and reports whether it was successful.
// Otherwise it returns false for any fatal non-nil errors.
func (nf *nonFatal) Merge(err error) (ok bool) {
if err == nil {
return true // not an error
}
if !isNonFatal(err) {
return false // fatal error
}
if nf.E == nil {
nf.E = err // store first instance of non-fatal error
}
return true
}
// Message is implemented by generated protocol buffer messages. // Message is implemented by generated protocol buffer messages.
type Message interface { type Message interface {
Reset() Reset()
@ -280,26 +341,6 @@ type Message interface {
ProtoMessage() ProtoMessage()
} }
// Stats records allocation details about the protocol buffer encoders
// and decoders. Useful for tuning the library itself.
type Stats struct {
Emalloc uint64 // mallocs in encode
Dmalloc uint64 // mallocs in decode
Encode uint64 // number of encodes
Decode uint64 // number of decodes
Chit uint64 // number of cache hits
Cmiss uint64 // number of cache misses
Size uint64 // number of sizes
}
// Set to true to enable stats collection.
const collectStats = false
var stats Stats
// GetStats returns a copy of the global Stats structure.
func GetStats() Stats { return stats }
// A Buffer is a buffer manager for marshaling and unmarshaling // A Buffer is a buffer manager for marshaling and unmarshaling
// protocol buffers. It may be reused between invocations to // protocol buffers. It may be reused between invocations to
// reduce memory usage. It is not necessary to use a Buffer; // reduce memory usage. It is not necessary to use a Buffer;
@ -309,16 +350,7 @@ type Buffer struct {
buf []byte // encode/decode byte stream buf []byte // encode/decode byte stream
index int // read point index int // read point
// pools of basic types to amortize allocation. deterministic bool
bools []bool
uint32s []uint32
uint64s []uint64
// extra pools, only used with pointer_reflect.go
int32s []int32
int64s []int64
float32s []float32
float64s []float64
} }
// NewBuffer allocates a new Buffer and initializes its internal data to // NewBuffer allocates a new Buffer and initializes its internal data to
@ -343,6 +375,30 @@ func (p *Buffer) SetBuf(s []byte) {
// Bytes returns the contents of the Buffer. // Bytes returns the contents of the Buffer.
func (p *Buffer) Bytes() []byte { return p.buf } func (p *Buffer) Bytes() []byte { return p.buf }
// SetDeterministic sets whether to use deterministic serialization.
//
// Deterministic serialization guarantees that for a given binary, equal
// messages will always be serialized to the same bytes. This implies:
//
// - Repeated serialization of a message will return the same bytes.
// - Different processes of the same binary (which may be executing on
// different machines) will serialize equal messages to the same bytes.
//
// Note that the deterministic serialization is NOT canonical across
// languages. It is not guaranteed to remain stable over time. It is unstable
// across different builds with schema changes due to unknown fields.
// Users who need canonical serialization (e.g., persistent storage in a
// canonical form, fingerprinting, etc.) should define their own
// canonicalization specification and implement their own serializer rather
// than relying on this API.
//
// If deterministic serialization is requested, map entries will be sorted
// by keys in lexographical order. This is an implementation detail and
// subject to change.
func (p *Buffer) SetDeterministic(deterministic bool) {
p.deterministic = deterministic
}
/* /*
* Helper routines for simplifying the creation of optional fields of basic type. * Helper routines for simplifying the creation of optional fields of basic type.
*/ */
@ -831,22 +887,12 @@ func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMes
return sf, false, nil return sf, false, nil
} }
// mapKeys returns a sort.Interface to be used for sorting the map keys.
// Map fields may have key types of non-float scalars, strings and enums. // Map fields may have key types of non-float scalars, strings and enums.
// The easiest way to sort them in some deterministic order is to use fmt.
// If this turns out to be inefficient we can always consider other options,
// such as doing a Schwartzian transform.
func mapKeys(vs []reflect.Value) sort.Interface { func mapKeys(vs []reflect.Value) sort.Interface {
s := mapKeySorter{ s := mapKeySorter{vs: vs}
vs: vs,
// default Less function: textual comparison
less: func(a, b reflect.Value) bool {
return fmt.Sprint(a.Interface()) < fmt.Sprint(b.Interface())
},
}
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps; // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
// numeric keys are sorted numerically.
if len(vs) == 0 { if len(vs) == 0 {
return s return s
} }
@ -855,6 +901,12 @@ func mapKeys(vs []reflect.Value) sort.Interface {
s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() } s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
case reflect.Uint32, reflect.Uint64: case reflect.Uint32, reflect.Uint64:
s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() } s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
case reflect.Bool:
s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
case reflect.String:
s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
default:
panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
} }
return s return s
@ -888,10 +940,26 @@ func isProto3Zero(v reflect.Value) bool {
return false return false
} }
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files const (
// to assert that that code is compatible with this version of the proto package. // ProtoPackageIsVersion3 is referenced from generated protocol buffer files
const ProtoPackageIsVersion2 = true // to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion3 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files // ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package. // to assert that that code is compatible with this version of the proto package.
const ProtoPackageIsVersion1 = true ProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion1 = true
)
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.
// This type is not subject to any compatibility guarantee.
type InternalMessageInfo struct {
marshal *marshalInfo
unmarshal *unmarshalInfo
merge *mergeInfo
discard *discardInfo
}

View File

@ -36,12 +36,7 @@ package proto
*/ */
import ( import (
"bytes"
"encoding/json"
"errors" "errors"
"fmt"
"reflect"
"sort"
) )
// errNoMessageTypeID occurs when a protocol buffer does not have a message type ID. // errNoMessageTypeID occurs when a protocol buffer does not have a message type ID.
@ -94,10 +89,7 @@ func (ms *messageSet) find(pb Message) *_MessageSet_Item {
} }
func (ms *messageSet) Has(pb Message) bool { func (ms *messageSet) Has(pb Message) bool {
if ms.find(pb) != nil { return ms.find(pb) != nil
return true
}
return false
} }
func (ms *messageSet) Unmarshal(pb Message) error { func (ms *messageSet) Unmarshal(pb Message) error {
@ -147,50 +139,9 @@ func skipVarint(buf []byte) []byte {
return buf[i+1:] return buf[i+1:]
} }
// MarshalMessageSet encodes the extension map represented by m in the message set wire format. // unmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by generated Marshal methods on protocol buffer messages with the message_set_wire_format option. // It is called by Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSet(exts interface{}) ([]byte, error) { func unmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
if err := encodeExtensions(exts); err != nil {
return nil, err
}
m, _ = exts.extensionsRead()
case map[int32]Extension:
if err := encodeExtensionsMap(exts); err != nil {
return nil, err
}
m = exts
default:
return nil, errors.New("proto: not an extension map")
}
// Sort extension IDs to provide a deterministic encoding.
// See also enc_map in encode.go.
ids := make([]int, 0, len(m))
for id := range m {
ids = append(ids, int(id))
}
sort.Ints(ids)
ms := &messageSet{Item: make([]*_MessageSet_Item, 0, len(m))}
for _, id := range ids {
e := m[int32(id)]
// Remove the wire type and field number varint, as well as the length varint.
msg := skipVarint(skipVarint(e.enc))
ms.Item = append(ms.Item, &_MessageSet_Item{
TypeId: Int32(int32(id)),
Message: msg,
})
}
return Marshal(ms)
}
// UnmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by generated Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension var m map[int32]Extension
switch exts := exts.(type) { switch exts := exts.(type) {
case *XXX_InternalExtensions: case *XXX_InternalExtensions:
@ -228,84 +179,3 @@ func UnmarshalMessageSet(buf []byte, exts interface{}) error {
} }
return nil return nil
} }
// MarshalMessageSetJSON encodes the extension map represented by m in JSON format.
// It is called by generated MarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSetJSON(exts interface{}) ([]byte, error) {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
m, _ = exts.extensionsRead()
case map[int32]Extension:
m = exts
default:
return nil, errors.New("proto: not an extension map")
}
var b bytes.Buffer
b.WriteByte('{')
// Process the map in key order for deterministic output.
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids)) // int32Slice defined in text.go
for i, id := range ids {
ext := m[id]
if i > 0 {
b.WriteByte(',')
}
msd, ok := messageSetMap[id]
if !ok {
// Unknown type; we can't render it, so skip it.
continue
}
fmt.Fprintf(&b, `"[%s]":`, msd.name)
x := ext.value
if x == nil {
x = reflect.New(msd.t.Elem()).Interface()
if err := Unmarshal(ext.enc, x.(Message)); err != nil {
return nil, err
}
}
d, err := json.Marshal(x)
if err != nil {
return nil, err
}
b.Write(d)
}
b.WriteByte('}')
return b.Bytes(), nil
}
// UnmarshalMessageSetJSON decodes the extension map encoded in buf in JSON format.
// It is called by generated UnmarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSetJSON(buf []byte, exts interface{}) error {
// Common-case fast path.
if len(buf) == 0 || bytes.Equal(buf, []byte("{}")) {
return nil
}
// This is fairly tricky, and it's not clear that it is needed.
return errors.New("TODO: UnmarshalMessageSetJSON not yet implemented")
}
// A global registry of types that can be used in a MessageSet.
var messageSetMap = make(map[int32]messageSetDesc)
type messageSetDesc struct {
t reflect.Type // pointer to struct
name string
}
// RegisterMessageSetType is called from the generated code.
func RegisterMessageSetType(m Message, fieldNum int32, name string) {
messageSetMap[fieldNum] = messageSetDesc{
t: reflect.TypeOf(m),
name: name,
}
}

View File

@ -29,7 +29,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build appengine js // +build purego appengine js
// This file contains an implementation of proto field accesses using package reflect. // This file contains an implementation of proto field accesses using package reflect.
// It is slower than the code in pointer_unsafe.go but it avoids package unsafe and can // It is slower than the code in pointer_unsafe.go but it avoids package unsafe and can
@ -38,32 +38,13 @@
package proto package proto
import ( import (
"math"
"reflect" "reflect"
"sync"
) )
// A structPointer is a pointer to a struct. const unsafeAllowed = false
type structPointer struct {
v reflect.Value
}
// toStructPointer returns a structPointer equivalent to the given reflect value. // A field identifies a field in a struct, accessible from a pointer.
// The reflect value must itself be a pointer to a struct.
func toStructPointer(v reflect.Value) structPointer {
return structPointer{v}
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p.v.IsNil()
}
// Interface returns the struct pointer as an interface value.
func structPointer_Interface(p structPointer, _ reflect.Type) interface{} {
return p.v.Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// In this implementation, a field is identified by the sequence of field indices // In this implementation, a field is identified by the sequence of field indices
// passed to reflect's FieldByIndex. // passed to reflect's FieldByIndex.
type field []int type field []int
@ -76,409 +57,304 @@ func toField(f *reflect.StructField) field {
// invalidField is an invalid field identifier. // invalidField is an invalid field identifier.
var invalidField = field(nil) var invalidField = field(nil)
// zeroField is a noop when calling pointer.offset.
var zeroField = field([]int{})
// IsValid reports whether the field identifier is valid. // IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool { return f != nil } func (f field) IsValid() bool { return f != nil }
// field returns the given field in the struct as a reflect value. // The pointer type is for the table-driven decoder.
func structPointer_field(p structPointer, f field) reflect.Value { // The implementation here uses a reflect.Value of pointer type to
// Special case: an extension map entry with a value of type T // create a generic pointer. In pointer_unsafe.go we use unsafe
// passes a *T to the struct-handling code with a zero field, // instead of reflect to implement the same (but faster) interface.
// expecting that it will be treated as equivalent to *struct{ X T }, type pointer struct {
// which has the same memory layout. We have to handle that case v reflect.Value
// specially, because reflect will panic if we call FieldByIndex on a }
// non-struct.
if f == nil { // toPointer converts an interface of pointer type to a pointer
return p.v.Elem() // that points to the same target.
func toPointer(i *Message) pointer {
return pointer{v: reflect.ValueOf(*i)}
}
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr, deref bool) pointer {
v := reflect.ValueOf(*i)
u := reflect.New(v.Type())
u.Elem().Set(v)
if deref {
u = u.Elem()
} }
return pointer{v: u}
return p.v.Elem().FieldByIndex(f)
} }
// ifield returns the given field in the struct as an interface value. // valToPointer converts v to a pointer. v must be of pointer type.
func structPointer_ifield(p structPointer, f field) interface{} { func valToPointer(v reflect.Value) pointer {
return structPointer_field(p, f).Addr().Interface() return pointer{v: v}
} }
// Bytes returns the address of a []byte field in the struct. // offset converts from a pointer to a structure to a pointer to
func structPointer_Bytes(p structPointer, f field) *[]byte { // one of its fields.
return structPointer_ifield(p, f).(*[]byte) func (p pointer) offset(f field) pointer {
return pointer{v: p.v.Elem().FieldByIndex(f).Addr()}
} }
// BytesSlice returns the address of a [][]byte field in the struct. func (p pointer) isNil() bool {
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return structPointer_ifield(p, f).(*[][]byte)
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return structPointer_ifield(p, f).(**bool)
}
// BoolVal returns the address of a bool field in the struct.
func structPointer_BoolVal(p structPointer, f field) *bool {
return structPointer_ifield(p, f).(*bool)
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return structPointer_ifield(p, f).(*[]bool)
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return structPointer_ifield(p, f).(**string)
}
// StringVal returns the address of a string field in the struct.
func structPointer_StringVal(p structPointer, f field) *string {
return structPointer_ifield(p, f).(*string)
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return structPointer_ifield(p, f).(*[]string)
}
// Extensions returns the address of an extension map field in the struct.
func structPointer_Extensions(p structPointer, f field) *XXX_InternalExtensions {
return structPointer_ifield(p, f).(*XXX_InternalExtensions)
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return structPointer_ifield(p, f).(*map[int32]Extension)
}
// NewAt returns the reflect.Value for a pointer to a field in the struct.
func structPointer_NewAt(p structPointer, f field, typ reflect.Type) reflect.Value {
return structPointer_field(p, f).Addr()
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
structPointer_field(p, f).Set(q.v)
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return structPointer{structPointer_field(p, f)}
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) structPointerSlice {
return structPointerSlice{structPointer_field(p, f)}
}
// A structPointerSlice represents the address of a slice of pointers to structs
// (themselves messages or groups). That is, v.Type() is *[]*struct{...}.
type structPointerSlice struct {
v reflect.Value
}
func (p structPointerSlice) Len() int { return p.v.Len() }
func (p structPointerSlice) Index(i int) structPointer { return structPointer{p.v.Index(i)} }
func (p structPointerSlice) Append(q structPointer) {
p.v.Set(reflect.Append(p.v, q.v))
}
var (
int32Type = reflect.TypeOf(int32(0))
uint32Type = reflect.TypeOf(uint32(0))
float32Type = reflect.TypeOf(float32(0))
int64Type = reflect.TypeOf(int64(0))
uint64Type = reflect.TypeOf(uint64(0))
float64Type = reflect.TypeOf(float64(0))
)
// A word32 represents a field of type *int32, *uint32, *float32, or *enum.
// That is, v.Type() is *int32, *uint32, *float32, or *enum and v is assignable.
type word32 struct {
v reflect.Value
}
// IsNil reports whether p is nil.
func word32_IsNil(p word32) bool {
return p.v.IsNil() return p.v.IsNil()
} }
// Set sets p to point at a newly allocated word with bits set to x. // grow updates the slice s in place to make it one element longer.
func word32_Set(p word32, o *Buffer, x uint32) { // s must be addressable.
t := p.v.Type().Elem() // Returns the (addressable) new element.
switch t { func grow(s reflect.Value) reflect.Value {
case int32Type: n, m := s.Len(), s.Cap()
if len(o.int32s) == 0 {
o.int32s = make([]int32, uint32PoolSize)
}
o.int32s[0] = int32(x)
p.v.Set(reflect.ValueOf(&o.int32s[0]))
o.int32s = o.int32s[1:]
return
case uint32Type:
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
}
o.uint32s[0] = x
p.v.Set(reflect.ValueOf(&o.uint32s[0]))
o.uint32s = o.uint32s[1:]
return
case float32Type:
if len(o.float32s) == 0 {
o.float32s = make([]float32, uint32PoolSize)
}
o.float32s[0] = math.Float32frombits(x)
p.v.Set(reflect.ValueOf(&o.float32s[0]))
o.float32s = o.float32s[1:]
return
}
// must be enum
p.v.Set(reflect.New(t))
p.v.Elem().SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32_Get(p word32) uint32 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32 returns a reference to a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32{structPointer_field(p, f)}
}
// A word32Val represents a field of type int32, uint32, float32, or enum.
// That is, v.Type() is int32, uint32, float32, or enum and v is assignable.
type word32Val struct {
v reflect.Value
}
// Set sets *p to x.
func word32Val_Set(p word32Val, x uint32) {
switch p.v.Type() {
case int32Type:
p.v.SetInt(int64(x))
return
case uint32Type:
p.v.SetUint(uint64(x))
return
case float32Type:
p.v.SetFloat(float64(math.Float32frombits(x)))
return
}
// must be enum
p.v.SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32Val_Get(p word32Val) uint32 {
elem := p.v
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32Val returns a reference to a int32, uint32, float32, or enum field in the struct.
func structPointer_Word32Val(p structPointer, f field) word32Val {
return word32Val{structPointer_field(p, f)}
}
// A word32Slice is a slice of 32-bit values.
// That is, v.Type() is []int32, []uint32, []float32, or []enum.
type word32Slice struct {
v reflect.Value
}
func (p word32Slice) Append(x uint32) {
n, m := p.v.Len(), p.v.Cap()
if n < m { if n < m {
p.v.SetLen(n + 1) s.SetLen(n + 1)
} else { } else {
t := p.v.Type().Elem() s.Set(reflect.Append(s, reflect.Zero(s.Type().Elem())))
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
} }
elem := p.v.Index(n) return s.Index(n)
switch elem.Kind() { }
case reflect.Int32:
elem.SetInt(int64(int32(x))) func (p pointer) toInt64() *int64 {
case reflect.Uint32: return p.v.Interface().(*int64)
elem.SetUint(uint64(x)) }
case reflect.Float32: func (p pointer) toInt64Ptr() **int64 {
elem.SetFloat(float64(math.Float32frombits(x))) return p.v.Interface().(**int64)
}
func (p pointer) toInt64Slice() *[]int64 {
return p.v.Interface().(*[]int64)
}
var int32ptr = reflect.TypeOf((*int32)(nil))
func (p pointer) toInt32() *int32 {
return p.v.Convert(int32ptr).Interface().(*int32)
}
// The toInt32Ptr/Slice methods don't work because of enums.
// Instead, we must use set/get methods for the int32ptr/slice case.
/*
func (p pointer) toInt32Ptr() **int32 {
return p.v.Interface().(**int32)
}
func (p pointer) toInt32Slice() *[]int32 {
return p.v.Interface().(*[]int32)
}
*/
func (p pointer) getInt32Ptr() *int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().(*int32)
} }
// an enum
return p.v.Elem().Convert(int32PtrType).Interface().(*int32)
}
func (p pointer) setInt32Ptr(v int32) {
// Allocate value in a *int32. Possibly convert that to a *enum.
// Then assign it to a **int32 or **enum.
// Note: we can convert *int32 to *enum, but we can't convert
// **int32 to **enum!
p.v.Elem().Set(reflect.ValueOf(&v).Convert(p.v.Type().Elem()))
} }
func (p word32Slice) Len() int { // getInt32Slice copies []int32 from p as a new slice.
return p.v.Len() // This behavior differs from the implementation in pointer_unsafe.go.
} func (p pointer) getInt32Slice() []int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
func (p word32Slice) Index(i int) uint32 { // raw int32 type
elem := p.v.Index(i) return p.v.Elem().Interface().([]int32)
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
} }
panic("unreachable") // an enum
// Allocate a []int32, then assign []enum's values into it.
// Note: we can't convert []enum to []int32.
slice := p.v.Elem()
s := make([]int32, slice.Len())
for i := 0; i < slice.Len(); i++ {
s[i] = int32(slice.Index(i).Int())
}
return s
} }
// Word32Slice returns a reference to a []int32, []uint32, []float32, or []enum field in the struct. // setInt32Slice copies []int32 into p as a new slice.
func structPointer_Word32Slice(p structPointer, f field) word32Slice { // This behavior differs from the implementation in pointer_unsafe.go.
return word32Slice{structPointer_field(p, f)} func (p pointer) setInt32Slice(v []int32) {
} if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
// word64 is like word32 but for 64-bit values. p.v.Elem().Set(reflect.ValueOf(v))
type word64 struct {
v reflect.Value
}
func word64_Set(p word64, o *Buffer, x uint64) {
t := p.v.Type().Elem()
switch t {
case int64Type:
if len(o.int64s) == 0 {
o.int64s = make([]int64, uint64PoolSize)
}
o.int64s[0] = int64(x)
p.v.Set(reflect.ValueOf(&o.int64s[0]))
o.int64s = o.int64s[1:]
return
case uint64Type:
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
}
o.uint64s[0] = x
p.v.Set(reflect.ValueOf(&o.uint64s[0]))
o.uint64s = o.uint64s[1:]
return
case float64Type:
if len(o.float64s) == 0 {
o.float64s = make([]float64, uint64PoolSize)
}
o.float64s[0] = math.Float64frombits(x)
p.v.Set(reflect.ValueOf(&o.float64s[0]))
o.float64s = o.float64s[1:]
return return
} }
panic("unreachable") // an enum
} // Allocate a []enum, then assign []int32's values into it.
// Note: we can't convert []enum to []int32.
func word64_IsNil(p word64) bool { slice := reflect.MakeSlice(p.v.Type().Elem(), len(v), cap(v))
return p.v.IsNil() for i, x := range v {
} slice.Index(i).SetInt(int64(x))
func word64_Get(p word64) uint64 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
} }
panic("unreachable") p.v.Elem().Set(slice)
}
func (p pointer) appendInt32Slice(v int32) {
grow(p.v.Elem()).SetInt(int64(v))
} }
func structPointer_Word64(p structPointer, f field) word64 { func (p pointer) toUint64() *uint64 {
return word64{structPointer_field(p, f)} return p.v.Interface().(*uint64)
}
func (p pointer) toUint64Ptr() **uint64 {
return p.v.Interface().(**uint64)
}
func (p pointer) toUint64Slice() *[]uint64 {
return p.v.Interface().(*[]uint64)
}
func (p pointer) toUint32() *uint32 {
return p.v.Interface().(*uint32)
}
func (p pointer) toUint32Ptr() **uint32 {
return p.v.Interface().(**uint32)
}
func (p pointer) toUint32Slice() *[]uint32 {
return p.v.Interface().(*[]uint32)
}
func (p pointer) toBool() *bool {
return p.v.Interface().(*bool)
}
func (p pointer) toBoolPtr() **bool {
return p.v.Interface().(**bool)
}
func (p pointer) toBoolSlice() *[]bool {
return p.v.Interface().(*[]bool)
}
func (p pointer) toFloat64() *float64 {
return p.v.Interface().(*float64)
}
func (p pointer) toFloat64Ptr() **float64 {
return p.v.Interface().(**float64)
}
func (p pointer) toFloat64Slice() *[]float64 {
return p.v.Interface().(*[]float64)
}
func (p pointer) toFloat32() *float32 {
return p.v.Interface().(*float32)
}
func (p pointer) toFloat32Ptr() **float32 {
return p.v.Interface().(**float32)
}
func (p pointer) toFloat32Slice() *[]float32 {
return p.v.Interface().(*[]float32)
}
func (p pointer) toString() *string {
return p.v.Interface().(*string)
}
func (p pointer) toStringPtr() **string {
return p.v.Interface().(**string)
}
func (p pointer) toStringSlice() *[]string {
return p.v.Interface().(*[]string)
}
func (p pointer) toBytes() *[]byte {
return p.v.Interface().(*[]byte)
}
func (p pointer) toBytesSlice() *[][]byte {
return p.v.Interface().(*[][]byte)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return p.v.Interface().(*XXX_InternalExtensions)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return p.v.Interface().(*map[int32]Extension)
}
func (p pointer) getPointer() pointer {
return pointer{v: p.v.Elem()}
}
func (p pointer) setPointer(q pointer) {
p.v.Elem().Set(q.v)
}
func (p pointer) appendPointer(q pointer) {
grow(p.v.Elem()).Set(q.v)
} }
// word64Val is like word32Val but for 64-bit values. // getPointerSlice copies []*T from p as a new []pointer.
type word64Val struct { // This behavior differs from the implementation in pointer_unsafe.go.
v reflect.Value func (p pointer) getPointerSlice() []pointer {
if p.v.IsNil() {
return nil
}
n := p.v.Elem().Len()
s := make([]pointer, n)
for i := 0; i < n; i++ {
s[i] = pointer{v: p.v.Elem().Index(i)}
}
return s
} }
func word64Val_Set(p word64Val, o *Buffer, x uint64) { // setPointerSlice copies []pointer into p as a new []*T.
switch p.v.Type() { // This behavior differs from the implementation in pointer_unsafe.go.
case int64Type: func (p pointer) setPointerSlice(v []pointer) {
p.v.SetInt(int64(x)) if v == nil {
return p.v.Elem().Set(reflect.New(p.v.Elem().Type()).Elem())
case uint64Type:
p.v.SetUint(x)
return
case float64Type:
p.v.SetFloat(math.Float64frombits(x))
return return
} }
panic("unreachable") s := reflect.MakeSlice(p.v.Elem().Type(), 0, len(v))
} for _, p := range v {
s = reflect.Append(s, p.v)
func word64Val_Get(p word64Val) uint64 {
elem := p.v
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
} }
panic("unreachable") p.v.Elem().Set(s)
} }
func structPointer_Word64Val(p structPointer, f field) word64Val { // getInterfacePointer returns a pointer that points to the
return word64Val{structPointer_field(p, f)} // interface data of the interface pointed by p.
} func (p pointer) getInterfacePointer() pointer {
if p.v.Elem().IsNil() {
type word64Slice struct { return pointer{v: p.v.Elem()}
v reflect.Value
}
func (p word64Slice) Append(x uint64) {
n, m := p.v.Len(), p.v.Cap()
if n < m {
p.v.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int64:
elem.SetInt(int64(int64(x)))
case reflect.Uint64:
elem.SetUint(uint64(x))
case reflect.Float64:
elem.SetFloat(float64(math.Float64frombits(x)))
} }
return pointer{v: p.v.Elem().Elem().Elem().Field(0).Addr()} // *interface -> interface -> *struct -> struct
} }
func (p word64Slice) Len() int { func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
return p.v.Len() // TODO: check that p.v.Type().Elem() == t?
return p.v
} }
func (p word64Slice) Index(i int) uint64 { func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
elem := p.v.Index(i) atomicLock.Lock()
switch elem.Kind() { defer atomicLock.Unlock()
case reflect.Int64: return *p
return uint64(elem.Int()) }
case reflect.Uint64: func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
return uint64(elem.Uint()) atomicLock.Lock()
case reflect.Float64: defer atomicLock.Unlock()
return math.Float64bits(float64(elem.Float())) *p = v
} }
panic("unreachable") func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
} }
func structPointer_Word64Slice(p structPointer, f field) word64Slice { var atomicLock sync.Mutex
return word64Slice{structPointer_field(p, f)}
}

View File

@ -29,7 +29,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build !appengine,!js // +build !purego,!appengine,!js
// This file contains the implementation of the proto field accesses using package unsafe. // This file contains the implementation of the proto field accesses using package unsafe.
@ -37,38 +37,13 @@ package proto
import ( import (
"reflect" "reflect"
"sync/atomic"
"unsafe" "unsafe"
) )
// NOTE: These type_Foo functions would more idiomatically be methods, const unsafeAllowed = true
// but Go does not allow methods on pointer types, and we must preserve
// some pointer type for the garbage collector. We use these
// funcs with clunky names as our poor approximation to methods.
//
// An alternative would be
// type structPointer struct { p unsafe.Pointer }
// but that does not registerize as well.
// A structPointer is a pointer to a struct. // A field identifies a field in a struct, accessible from a pointer.
type structPointer unsafe.Pointer
// toStructPointer returns a structPointer equivalent to the given reflect value.
func toStructPointer(v reflect.Value) structPointer {
return structPointer(unsafe.Pointer(v.Pointer()))
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p == nil
}
// Interface returns the struct pointer, assumed to have element type t,
// as an interface value.
func structPointer_Interface(p structPointer, t reflect.Type) interface{} {
return reflect.NewAt(t, unsafe.Pointer(p)).Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// In this implementation, a field is identified by its byte offset from the start of the struct. // In this implementation, a field is identified by its byte offset from the start of the struct.
type field uintptr type field uintptr
@ -80,191 +55,259 @@ func toField(f *reflect.StructField) field {
// invalidField is an invalid field identifier. // invalidField is an invalid field identifier.
const invalidField = ^field(0) const invalidField = ^field(0)
// zeroField is a noop when calling pointer.offset.
const zeroField = field(0)
// IsValid reports whether the field identifier is valid. // IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool { func (f field) IsValid() bool {
return f != ^field(0) return f != invalidField
} }
// Bytes returns the address of a []byte field in the struct. // The pointer type below is for the new table-driven encoder/decoder.
func structPointer_Bytes(p structPointer, f field) *[]byte { // The implementation here uses unsafe.Pointer to create a generic pointer.
return (*[]byte)(unsafe.Pointer(uintptr(p) + uintptr(f))) // In pointer_reflect.go we use reflect instead of unsafe to implement
// the same (but slower) interface.
type pointer struct {
p unsafe.Pointer
} }
// BytesSlice returns the address of a [][]byte field in the struct. // size of pointer
func structPointer_BytesSlice(p structPointer, f field) *[][]byte { var ptrSize = unsafe.Sizeof(uintptr(0))
return (*[][]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
// Super-tricky - read pointer out of data word of interface value.
// Saves ~25ns over the equivalent:
// return valToPointer(reflect.ValueOf(*i))
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
} }
// Bool returns the address of a *bool field in the struct. // toAddrPointer converts an interface to a pointer that points to
func structPointer_Bool(p structPointer, f field) **bool { // the interface data.
return (**bool)(unsafe.Pointer(uintptr(p) + uintptr(f))) func toAddrPointer(i *interface{}, isptr, deref bool) (p pointer) {
} // Super-tricky - read or get the address of data word of interface value.
if isptr {
// BoolVal returns the address of a bool field in the struct. // The interface is of pointer type, thus it is a direct interface.
func structPointer_BoolVal(p structPointer, f field) *bool { // The data word is the pointer data itself. We take its address.
return (*bool)(unsafe.Pointer(uintptr(p) + uintptr(f))) p = pointer{p: unsafe.Pointer(uintptr(unsafe.Pointer(i)) + ptrSize)}
} } else {
// The interface is not of pointer type. The data word is the pointer
// BoolSlice returns the address of a []bool field in the struct. // to the data.
func structPointer_BoolSlice(p structPointer, f field) *[]bool { p = pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
return (*[]bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return (**string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringVal returns the address of a string field in the struct.
func structPointer_StringVal(p structPointer, f field) *string {
return (*string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return (*[]string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_Extensions(p structPointer, f field) *XXX_InternalExtensions {
return (*XXX_InternalExtensions)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return (*map[int32]Extension)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// NewAt returns the reflect.Value for a pointer to a field in the struct.
func structPointer_NewAt(p structPointer, f field, typ reflect.Type) reflect.Value {
return reflect.NewAt(typ, unsafe.Pointer(uintptr(p)+uintptr(f)))
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
*(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f))) = q
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return *(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) *structPointerSlice {
return (*structPointerSlice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// A structPointerSlice represents a slice of pointers to structs (themselves submessages or groups).
type structPointerSlice []structPointer
func (v *structPointerSlice) Len() int { return len(*v) }
func (v *structPointerSlice) Index(i int) structPointer { return (*v)[i] }
func (v *structPointerSlice) Append(p structPointer) { *v = append(*v, p) }
// A word32 is the address of a "pointer to 32-bit value" field.
type word32 **uint32
// IsNil reports whether *v is nil.
func word32_IsNil(p word32) bool {
return *p == nil
}
// Set sets *v to point at a newly allocated word set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
} }
o.uint32s[0] = x if deref {
*p = &o.uint32s[0] p.p = *(*unsafe.Pointer)(p.p)
o.uint32s = o.uint32s[1:]
}
// Get gets the value pointed at by *v.
func word32_Get(p word32) uint32 {
return **p
}
// Word32 returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32((**uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// A word32Val is the address of a 32-bit value field.
type word32Val *uint32
// Set sets *p to x.
func word32Val_Set(p word32Val, x uint32) {
*p = x
}
// Get gets the value pointed at by p.
func word32Val_Get(p word32Val) uint32 {
return *p
}
// Word32Val returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32Val(p structPointer, f field) word32Val {
return word32Val((*uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// A word32Slice is a slice of 32-bit values.
type word32Slice []uint32
func (v *word32Slice) Append(x uint32) { *v = append(*v, x) }
func (v *word32Slice) Len() int { return len(*v) }
func (v *word32Slice) Index(i int) uint32 { return (*v)[i] }
// Word32Slice returns the address of a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) *word32Slice {
return (*word32Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// word64 is like word32 but for 64-bit values.
type word64 **uint64
func word64_Set(p word64, o *Buffer, x uint64) {
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
} }
o.uint64s[0] = x return p
*p = &o.uint64s[0]
o.uint64s = o.uint64s[1:]
} }
func word64_IsNil(p word64) bool { // valToPointer converts v to a pointer. v must be of pointer type.
return *p == nil func valToPointer(v reflect.Value) pointer {
return pointer{p: unsafe.Pointer(v.Pointer())}
} }
func word64_Get(p word64) uint64 { // offset converts from a pointer to a structure to a pointer to
return **p // one of its fields.
func (p pointer) offset(f field) pointer {
// For safety, we should panic if !f.IsValid, however calling panic causes
// this to no longer be inlineable, which is a serious performance cost.
/*
if !f.IsValid() {
panic("invalid field")
}
*/
return pointer{p: unsafe.Pointer(uintptr(p.p) + uintptr(f))}
} }
func structPointer_Word64(p structPointer, f field) word64 { func (p pointer) isNil() bool {
return word64((**uint64)(unsafe.Pointer(uintptr(p) + uintptr(f)))) return p.p == nil
} }
// word64Val is like word32Val but for 64-bit values. func (p pointer) toInt64() *int64 {
type word64Val *uint64 return (*int64)(p.p)
}
func word64Val_Set(p word64Val, o *Buffer, x uint64) { func (p pointer) toInt64Ptr() **int64 {
*p = x return (**int64)(p.p)
}
func (p pointer) toInt64Slice() *[]int64 {
return (*[]int64)(p.p)
}
func (p pointer) toInt32() *int32 {
return (*int32)(p.p)
} }
func word64Val_Get(p word64Val) uint64 { // See pointer_reflect.go for why toInt32Ptr/Slice doesn't exist.
return *p /*
func (p pointer) toInt32Ptr() **int32 {
return (**int32)(p.p)
}
func (p pointer) toInt32Slice() *[]int32 {
return (*[]int32)(p.p)
}
*/
func (p pointer) getInt32Ptr() *int32 {
return *(**int32)(p.p)
}
func (p pointer) setInt32Ptr(v int32) {
*(**int32)(p.p) = &v
} }
func structPointer_Word64Val(p structPointer, f field) word64Val { // getInt32Slice loads a []int32 from p.
return word64Val((*uint64)(unsafe.Pointer(uintptr(p) + uintptr(f)))) // The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getInt32Slice() []int32 {
return *(*[]int32)(p.p)
} }
// word64Slice is like word32Slice but for 64-bit values. // setInt32Slice stores a []int32 to p.
type word64Slice []uint64 // The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (v *word64Slice) Append(x uint64) { *v = append(*v, x) } func (p pointer) setInt32Slice(v []int32) {
func (v *word64Slice) Len() int { return len(*v) } *(*[]int32)(p.p) = v
func (v *word64Slice) Index(i int) uint64 { return (*v)[i] } }
func structPointer_Word64Slice(p structPointer, f field) *word64Slice { // TODO: Can we get rid of appendInt32Slice and use setInt32Slice instead?
return (*word64Slice)(unsafe.Pointer(uintptr(p) + uintptr(f))) func (p pointer) appendInt32Slice(v int32) {
s := (*[]int32)(p.p)
*s = append(*s, v)
}
func (p pointer) toUint64() *uint64 {
return (*uint64)(p.p)
}
func (p pointer) toUint64Ptr() **uint64 {
return (**uint64)(p.p)
}
func (p pointer) toUint64Slice() *[]uint64 {
return (*[]uint64)(p.p)
}
func (p pointer) toUint32() *uint32 {
return (*uint32)(p.p)
}
func (p pointer) toUint32Ptr() **uint32 {
return (**uint32)(p.p)
}
func (p pointer) toUint32Slice() *[]uint32 {
return (*[]uint32)(p.p)
}
func (p pointer) toBool() *bool {
return (*bool)(p.p)
}
func (p pointer) toBoolPtr() **bool {
return (**bool)(p.p)
}
func (p pointer) toBoolSlice() *[]bool {
return (*[]bool)(p.p)
}
func (p pointer) toFloat64() *float64 {
return (*float64)(p.p)
}
func (p pointer) toFloat64Ptr() **float64 {
return (**float64)(p.p)
}
func (p pointer) toFloat64Slice() *[]float64 {
return (*[]float64)(p.p)
}
func (p pointer) toFloat32() *float32 {
return (*float32)(p.p)
}
func (p pointer) toFloat32Ptr() **float32 {
return (**float32)(p.p)
}
func (p pointer) toFloat32Slice() *[]float32 {
return (*[]float32)(p.p)
}
func (p pointer) toString() *string {
return (*string)(p.p)
}
func (p pointer) toStringPtr() **string {
return (**string)(p.p)
}
func (p pointer) toStringSlice() *[]string {
return (*[]string)(p.p)
}
func (p pointer) toBytes() *[]byte {
return (*[]byte)(p.p)
}
func (p pointer) toBytesSlice() *[][]byte {
return (*[][]byte)(p.p)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return (*XXX_InternalExtensions)(p.p)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return (*map[int32]Extension)(p.p)
}
// getPointerSlice loads []*T from p as a []pointer.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getPointerSlice() []pointer {
// Super-tricky - p should point to a []*T where T is a
// message type. We load it as []pointer.
return *(*[]pointer)(p.p)
}
// setPointerSlice stores []pointer into p as a []*T.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setPointerSlice(v []pointer) {
// Super-tricky - p should point to a []*T where T is a
// message type. We store it as []pointer.
*(*[]pointer)(p.p) = v
}
// getPointer loads the pointer at p and returns it.
func (p pointer) getPointer() pointer {
return pointer{p: *(*unsafe.Pointer)(p.p)}
}
// setPointer stores the pointer q at p.
func (p pointer) setPointer(q pointer) {
*(*unsafe.Pointer)(p.p) = q.p
}
// append q to the slice pointed to by p.
func (p pointer) appendPointer(q pointer) {
s := (*[]unsafe.Pointer)(p.p)
*s = append(*s, q.p)
}
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
// Super-tricky - read pointer out of data word of interface value.
return pointer{p: (*(*[2]unsafe.Pointer)(p.p))[1]}
}
// asPointerTo returns a reflect.Value that is a pointer to an
// object of type t stored at p.
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
return reflect.NewAt(t, p.p)
}
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
return (*unmarshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
return (*marshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
return (*mergeInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
return (*discardInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
} }

View File

@ -38,7 +38,6 @@ package proto
import ( import (
"fmt" "fmt"
"log" "log"
"os"
"reflect" "reflect"
"sort" "sort"
"strconv" "strconv"
@ -58,42 +57,6 @@ const (
WireFixed32 = 5 WireFixed32 = 5
) )
const startSize = 10 // initial slice/string sizes
// Encoders are defined in encode.go
// An encoder outputs the full representation of a field, including its
// tag and encoder type.
type encoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueEncoder encodes a single integer in a particular encoding.
type valueEncoder func(o *Buffer, x uint64) error
// Sizers are defined in encode.go
// A sizer returns the encoded size of a field, including its tag and encoder
// type.
type sizer func(prop *Properties, base structPointer) int
// A valueSizer returns the encoded size of a single integer in a particular
// encoding.
type valueSizer func(x uint64) int
// Decoders are defined in decode.go
// A decoder creates a value from its wire representation.
// Unrecognized subelements are saved in unrec.
type decoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueDecoder decodes a single integer in a particular encoding.
type valueDecoder func(o *Buffer) (x uint64, err error)
// A oneofMarshaler does the marshaling for all oneof fields in a message.
type oneofMarshaler func(Message, *Buffer) error
// A oneofUnmarshaler does the unmarshaling for a oneof field in a message.
type oneofUnmarshaler func(Message, int, int, *Buffer) (bool, error)
// A oneofSizer does the sizing for all oneof fields in a message.
type oneofSizer func(Message) int
// tagMap is an optimization over map[int]int for typical protocol buffer // tagMap is an optimization over map[int]int for typical protocol buffer
// use-cases. Encoded protocol buffers are often in tag order with small tag // use-cases. Encoded protocol buffers are often in tag order with small tag
// numbers. // numbers.
@ -140,13 +103,6 @@ type StructProperties struct {
decoderTags tagMap // map from proto tag to struct field number decoderTags tagMap // map from proto tag to struct field number
decoderOrigNames map[string]int // map from original name to struct field number decoderOrigNames map[string]int // map from original name to struct field number
order []int // list of struct field numbers in tag order order []int // list of struct field numbers in tag order
unrecField field // field id of the XXX_unrecognized []byte field
extendable bool // is this an extendable proto
oneofMarshaler oneofMarshaler
oneofUnmarshaler oneofUnmarshaler
oneofSizer oneofSizer
stype reflect.Type
// OneofTypes contains information about the oneof fields in this message. // OneofTypes contains information about the oneof fields in this message.
// It is keyed by the original name of a field. // It is keyed by the original name of a field.
@ -182,41 +138,24 @@ type Properties struct {
Repeated bool Repeated bool
Packed bool // relevant for repeated primitives only Packed bool // relevant for repeated primitives only
Enum string // set for enum types only Enum string // set for enum types only
proto3 bool // whether this is known to be a proto3 field; set for []byte only proto3 bool // whether this is known to be a proto3 field
oneof bool // whether this is a oneof field oneof bool // whether this is a oneof field
Default string // default value Default string // default value
HasDefault bool // whether an explicit default was provided HasDefault bool // whether an explicit default was provided
def_uint64 uint64
enc encoder stype reflect.Type // set for struct types only
valEnc valueEncoder // set for bool and numeric types only sprop *StructProperties // set for struct types only
field field
tagcode []byte // encoding of EncodeVarint((Tag<<3)|WireType)
tagbuf [8]byte
stype reflect.Type // set for struct types only
sprop *StructProperties // set for struct types only
isMarshaler bool
isUnmarshaler bool
mtype reflect.Type // set for map types only mtype reflect.Type // set for map types only
mkeyprop *Properties // set for map types only MapKeyProp *Properties // set for map types only
mvalprop *Properties // set for map types only MapValProp *Properties // set for map types only
size sizer
valSize valueSizer // set for bool and numeric types only
dec decoder
valDec valueDecoder // set for bool and numeric types only
// If this is a packable field, this will be the decoder for the packed version of the field.
packedDec decoder
} }
// String formats the properties in the protobuf struct field tag style. // String formats the properties in the protobuf struct field tag style.
func (p *Properties) String() string { func (p *Properties) String() string {
s := p.Wire s := p.Wire
s = "," s += ","
s += strconv.Itoa(p.Tag) s += strconv.Itoa(p.Tag)
if p.Required { if p.Required {
s += ",req" s += ",req"
@ -254,7 +193,7 @@ func (p *Properties) Parse(s string) {
// "bytes,49,opt,name=foo,def=hello!" // "bytes,49,opt,name=foo,def=hello!"
fields := strings.Split(s, ",") // breaks def=, but handled below. fields := strings.Split(s, ",") // breaks def=, but handled below.
if len(fields) < 2 { if len(fields) < 2 {
fmt.Fprintf(os.Stderr, "proto: tag has too few fields: %q\n", s) log.Printf("proto: tag has too few fields: %q", s)
return return
} }
@ -262,34 +201,19 @@ func (p *Properties) Parse(s string) {
switch p.Wire { switch p.Wire {
case "varint": case "varint":
p.WireType = WireVarint p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeVarint
p.valDec = (*Buffer).DecodeVarint
p.valSize = sizeVarint
case "fixed32": case "fixed32":
p.WireType = WireFixed32 p.WireType = WireFixed32
p.valEnc = (*Buffer).EncodeFixed32
p.valDec = (*Buffer).DecodeFixed32
p.valSize = sizeFixed32
case "fixed64": case "fixed64":
p.WireType = WireFixed64 p.WireType = WireFixed64
p.valEnc = (*Buffer).EncodeFixed64
p.valDec = (*Buffer).DecodeFixed64
p.valSize = sizeFixed64
case "zigzag32": case "zigzag32":
p.WireType = WireVarint p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag32
p.valDec = (*Buffer).DecodeZigzag32
p.valSize = sizeZigzag32
case "zigzag64": case "zigzag64":
p.WireType = WireVarint p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag64
p.valDec = (*Buffer).DecodeZigzag64
p.valSize = sizeZigzag64
case "bytes", "group": case "bytes", "group":
p.WireType = WireBytes p.WireType = WireBytes
// no numeric converter for non-numeric types // no numeric converter for non-numeric types
default: default:
fmt.Fprintf(os.Stderr, "proto: tag has unknown wire type: %q\n", s) log.Printf("proto: tag has unknown wire type: %q", s)
return return
} }
@ -299,6 +223,7 @@ func (p *Properties) Parse(s string) {
return return
} }
outer:
for i := 2; i < len(fields); i++ { for i := 2; i < len(fields); i++ {
f := fields[i] f := fields[i]
switch { switch {
@ -326,256 +251,41 @@ func (p *Properties) Parse(s string) {
if i+1 < len(fields) { if i+1 < len(fields) {
// Commas aren't escaped, and def is always last. // Commas aren't escaped, and def is always last.
p.Default += "," + strings.Join(fields[i+1:], ",") p.Default += "," + strings.Join(fields[i+1:], ",")
break break outer
} }
} }
} }
} }
func logNoSliceEnc(t1, t2 reflect.Type) {
fmt.Fprintf(os.Stderr, "proto: no slice oenc for %T = []%T\n", t1, t2)
}
var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem() var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem()
// Initialize the fields for encoding and decoding. // setFieldProps initializes the field properties for submessages and maps.
func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lockGetProp bool) { func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
p.enc = nil
p.dec = nil
p.size = nil
switch t1 := typ; t1.Kind() { switch t1 := typ; t1.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no coders for %v\n", t1)
// proto3 scalar types
case reflect.Bool:
p.enc = (*Buffer).enc_proto3_bool
p.dec = (*Buffer).dec_proto3_bool
p.size = size_proto3_bool
case reflect.Int32:
p.enc = (*Buffer).enc_proto3_int32
p.dec = (*Buffer).dec_proto3_int32
p.size = size_proto3_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_proto3_uint32
p.dec = (*Buffer).dec_proto3_int32 // can reuse
p.size = size_proto3_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_proto3_int64
p.dec = (*Buffer).dec_proto3_int64
p.size = size_proto3_int64
case reflect.Float32:
p.enc = (*Buffer).enc_proto3_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_proto3_int32
p.size = size_proto3_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_proto3_int64 // can just treat them as bits
p.dec = (*Buffer).dec_proto3_int64
p.size = size_proto3_int64
case reflect.String:
p.enc = (*Buffer).enc_proto3_string
p.dec = (*Buffer).dec_proto3_string
p.size = size_proto3_string
case reflect.Ptr: case reflect.Ptr:
switch t2 := t1.Elem(); t2.Kind() { if t1.Elem().Kind() == reflect.Struct {
default:
fmt.Fprintf(os.Stderr, "proto: no encoder function for %v -> %v\n", t1, t2)
break
case reflect.Bool:
p.enc = (*Buffer).enc_bool
p.dec = (*Buffer).dec_bool
p.size = size_bool
case reflect.Int32:
p.enc = (*Buffer).enc_int32
p.dec = (*Buffer).dec_int32
p.size = size_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_uint32
p.dec = (*Buffer).dec_int32 // can reuse
p.size = size_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_int64
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.Float32:
p.enc = (*Buffer).enc_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_int32
p.size = size_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_int64 // can just treat them as bits
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.String:
p.enc = (*Buffer).enc_string
p.dec = (*Buffer).dec_string
p.size = size_string
case reflect.Struct:
p.stype = t1.Elem() p.stype = t1.Elem()
p.isMarshaler = isMarshaler(t1)
p.isUnmarshaler = isUnmarshaler(t1)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_struct_message
p.dec = (*Buffer).dec_struct_message
p.size = size_struct_message
} else {
p.enc = (*Buffer).enc_struct_group
p.dec = (*Buffer).dec_struct_group
p.size = size_struct_group
}
} }
case reflect.Slice: case reflect.Slice:
switch t2 := t1.Elem(); t2.Kind() { if t2 := t1.Elem(); t2.Kind() == reflect.Ptr && t2.Elem().Kind() == reflect.Struct {
default: p.stype = t2.Elem()
logNoSliceEnc(t1, t2)
break
case reflect.Bool:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_bool
p.size = size_slice_packed_bool
} else {
p.enc = (*Buffer).enc_slice_bool
p.size = size_slice_bool
}
p.dec = (*Buffer).dec_slice_bool
p.packedDec = (*Buffer).dec_slice_packed_bool
case reflect.Int32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int32
p.size = size_slice_packed_int32
} else {
p.enc = (*Buffer).enc_slice_int32
p.size = size_slice_int32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Uint32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Int64, reflect.Uint64:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
case reflect.Uint8:
p.dec = (*Buffer).dec_slice_byte
if p.proto3 {
p.enc = (*Buffer).enc_proto3_slice_byte
p.size = size_proto3_slice_byte
} else {
p.enc = (*Buffer).enc_slice_byte
p.size = size_slice_byte
}
case reflect.Float32, reflect.Float64:
switch t2.Bits() {
case 32:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case 64:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
default:
logNoSliceEnc(t1, t2)
break
}
case reflect.String:
p.enc = (*Buffer).enc_slice_string
p.dec = (*Buffer).dec_slice_string
p.size = size_slice_string
case reflect.Ptr:
switch t3 := t2.Elem(); t3.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no ptr oenc for %T -> %T -> %T\n", t1, t2, t3)
break
case reflect.Struct:
p.stype = t2.Elem()
p.isMarshaler = isMarshaler(t2)
p.isUnmarshaler = isUnmarshaler(t2)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_slice_struct_message
p.dec = (*Buffer).dec_slice_struct_message
p.size = size_slice_struct_message
} else {
p.enc = (*Buffer).enc_slice_struct_group
p.dec = (*Buffer).dec_slice_struct_group
p.size = size_slice_struct_group
}
}
case reflect.Slice:
switch t2.Elem().Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no slice elem oenc for %T -> %T -> %T\n", t1, t2, t2.Elem())
break
case reflect.Uint8:
p.enc = (*Buffer).enc_slice_slice_byte
p.dec = (*Buffer).dec_slice_slice_byte
p.size = size_slice_slice_byte
}
} }
case reflect.Map: case reflect.Map:
p.enc = (*Buffer).enc_new_map
p.dec = (*Buffer).dec_new_map
p.size = size_new_map
p.mtype = t1 p.mtype = t1
p.mkeyprop = &Properties{} p.MapKeyProp = &Properties{}
p.mkeyprop.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp) p.MapKeyProp.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
p.mvalprop = &Properties{} p.MapValProp = &Properties{}
vtype := p.mtype.Elem() vtype := p.mtype.Elem()
if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice { if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice {
// The value type is not a message (*T) or bytes ([]byte), // The value type is not a message (*T) or bytes ([]byte),
// so we need encoders for the pointer to this type. // so we need encoders for the pointer to this type.
vtype = reflect.PtrTo(vtype) vtype = reflect.PtrTo(vtype)
} }
p.mvalprop.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp) p.MapValProp.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
} }
// precalculate tag code
wire := p.WireType
if p.Packed {
wire = WireBytes
}
x := uint32(p.Tag)<<3 | uint32(wire)
i := 0
for i = 0; x > 127; i++ {
p.tagbuf[i] = 0x80 | uint8(x&0x7F)
x >>= 7
}
p.tagbuf[i] = uint8(x)
p.tagcode = p.tagbuf[0 : i+1]
if p.stype != nil { if p.stype != nil {
if lockGetProp { if lockGetProp {
p.sprop = GetProperties(p.stype) p.sprop = GetProperties(p.stype)
@ -586,32 +296,9 @@ func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lock
} }
var ( var (
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem() marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem()
) )
// isMarshaler reports whether type t implements Marshaler.
func isMarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isMarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isMarshaler")
}
return t.Implements(marshalerType)
}
// isUnmarshaler reports whether type t implements Unmarshaler.
func isUnmarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isUnmarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isUnmarshaler")
}
return t.Implements(unmarshalerType)
}
// Init populates the properties from a protocol buffer struct tag. // Init populates the properties from a protocol buffer struct tag.
func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) { func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) {
p.init(typ, name, tag, f, true) p.init(typ, name, tag, f, true)
@ -621,14 +308,11 @@ func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructF
// "bytes,49,opt,def=hello!" // "bytes,49,opt,def=hello!"
p.Name = name p.Name = name
p.OrigName = name p.OrigName = name
if f != nil {
p.field = toField(f)
}
if tag == "" { if tag == "" {
return return
} }
p.Parse(tag) p.Parse(tag)
p.setEncAndDec(typ, f, lockGetProp) p.setFieldProps(typ, f, lockGetProp)
} }
var ( var (
@ -649,9 +333,6 @@ func GetProperties(t reflect.Type) *StructProperties {
sprop, ok := propertiesMap[t] sprop, ok := propertiesMap[t]
propertiesMu.RUnlock() propertiesMu.RUnlock()
if ok { if ok {
if collectStats {
stats.Chit++
}
return sprop return sprop
} }
@ -661,26 +342,26 @@ func GetProperties(t reflect.Type) *StructProperties {
return sprop return sprop
} }
type (
oneofFuncsIface interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
oneofWrappersIface interface {
XXX_OneofWrappers() []interface{}
}
)
// getPropertiesLocked requires that propertiesMu is held. // getPropertiesLocked requires that propertiesMu is held.
func getPropertiesLocked(t reflect.Type) *StructProperties { func getPropertiesLocked(t reflect.Type) *StructProperties {
if prop, ok := propertiesMap[t]; ok { if prop, ok := propertiesMap[t]; ok {
if collectStats {
stats.Chit++
}
return prop return prop
} }
if collectStats {
stats.Cmiss++
}
prop := new(StructProperties) prop := new(StructProperties)
// in case of recursive protos, fill this in now. // in case of recursive protos, fill this in now.
propertiesMap[t] = prop propertiesMap[t] = prop
// build properties // build properties
prop.extendable = reflect.PtrTo(t).Implements(extendableProtoType) ||
reflect.PtrTo(t).Implements(extendableProtoV1Type)
prop.unrecField = invalidField
prop.Prop = make([]*Properties, t.NumField()) prop.Prop = make([]*Properties, t.NumField())
prop.order = make([]int, t.NumField()) prop.order = make([]int, t.NumField())
@ -690,17 +371,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
name := f.Name name := f.Name
p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false) p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false)
if f.Name == "XXX_InternalExtensions" { // special case
p.enc = (*Buffer).enc_exts
p.dec = nil // not needed
p.size = size_exts
} else if f.Name == "XXX_extensions" { // special case
p.enc = (*Buffer).enc_map
p.dec = nil // not needed
p.size = size_map
} else if f.Name == "XXX_unrecognized" { // special case
prop.unrecField = toField(&f)
}
oneof := f.Tag.Get("protobuf_oneof") // special case oneof := f.Tag.Get("protobuf_oneof") // special case
if oneof != "" { if oneof != "" {
// Oneof fields don't use the traditional protobuf tag. // Oneof fields don't use the traditional protobuf tag.
@ -715,22 +385,19 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
} }
print("\n") print("\n")
} }
if p.enc == nil && !strings.HasPrefix(f.Name, "XXX_") && oneof == "" {
fmt.Fprintln(os.Stderr, "proto: no encoder for", f.Name, f.Type.String(), "[GetProperties]")
}
} }
// Re-order prop.order. // Re-order prop.order.
sort.Sort(prop) sort.Sort(prop)
type oneofMessage interface { var oots []interface{}
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{}) switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oots = m.XXX_OneofFuncs()
case oneofWrappersIface:
oots = m.XXX_OneofWrappers()
} }
if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok { if len(oots) > 0 {
var oots []interface{}
prop.oneofMarshaler, prop.oneofUnmarshaler, prop.oneofSizer, oots = om.XXX_OneofFuncs()
prop.stype = t
// Interpret oneof metadata. // Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties) prop.OneofTypes = make(map[string]*OneofProperties)
for _, oot := range oots { for _, oot := range oots {
@ -779,30 +446,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
return prop return prop
} }
// Return the Properties object for the x[0]'th field of the structure.
func propByIndex(t reflect.Type, x []int) *Properties {
if len(x) != 1 {
fmt.Fprintf(os.Stderr, "proto: field index dimension %d (not 1) for type %s\n", len(x), t)
return nil
}
prop := GetProperties(t)
return prop.Prop[x[0]]
}
// Get the address and type of a pointer to a struct from an interface.
func getbase(pb Message) (t reflect.Type, b structPointer, err error) {
if pb == nil {
err = ErrNil
return
}
// get the reflect type of the pointer to the struct.
t = reflect.TypeOf(pb)
// get the address of the struct.
value := reflect.ValueOf(pb)
b = toStructPointer(value)
return
}
// A global registry of enum types. // A global registry of enum types.
// The generated code will register the generated maps by calling RegisterEnum. // The generated code will register the generated maps by calling RegisterEnum.
@ -826,20 +469,42 @@ func EnumValueMap(enumType string) map[string]int32 {
// A registry of all linked message types. // A registry of all linked message types.
// The string is a fully-qualified proto name ("pkg.Message"). // The string is a fully-qualified proto name ("pkg.Message").
var ( var (
protoTypes = make(map[string]reflect.Type) protoTypedNils = make(map[string]Message) // a map from proto names to typed nil pointers
revProtoTypes = make(map[reflect.Type]string) protoMapTypes = make(map[string]reflect.Type) // a map from proto names to map types
revProtoTypes = make(map[reflect.Type]string)
) )
// RegisterType is called from generated code and maps from the fully qualified // RegisterType is called from generated code and maps from the fully qualified
// proto name to the type (pointer to struct) of the protocol buffer. // proto name to the type (pointer to struct) of the protocol buffer.
func RegisterType(x Message, name string) { func RegisterType(x Message, name string) {
if _, ok := protoTypes[name]; ok { if _, ok := protoTypedNils[name]; ok {
// TODO: Some day, make this a panic. // TODO: Some day, make this a panic.
log.Printf("proto: duplicate proto type registered: %s", name) log.Printf("proto: duplicate proto type registered: %s", name)
return return
} }
t := reflect.TypeOf(x) t := reflect.TypeOf(x)
protoTypes[name] = t if v := reflect.ValueOf(x); v.Kind() == reflect.Ptr && v.Pointer() == 0 {
// Generated code always calls RegisterType with nil x.
// This check is just for extra safety.
protoTypedNils[name] = x
} else {
protoTypedNils[name] = reflect.Zero(t).Interface().(Message)
}
revProtoTypes[t] = name
}
// RegisterMapType is called from generated code and maps from the fully qualified
// proto name to the native map type of the proto map definition.
func RegisterMapType(x interface{}, name string) {
if reflect.TypeOf(x).Kind() != reflect.Map {
panic(fmt.Sprintf("RegisterMapType(%T, %q); want map", x, name))
}
if _, ok := protoMapTypes[name]; ok {
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
protoMapTypes[name] = t
revProtoTypes[t] = name revProtoTypes[t] = name
} }
@ -855,7 +520,14 @@ func MessageName(x Message) string {
} }
// MessageType returns the message type (pointer to struct) for a named message. // MessageType returns the message type (pointer to struct) for a named message.
func MessageType(name string) reflect.Type { return protoTypes[name] } // The type is not guaranteed to implement proto.Message if the name refers to a
// map entry.
func MessageType(name string) reflect.Type {
if t, ok := protoTypedNils[name]; ok {
return reflect.TypeOf(t)
}
return protoMapTypes[name]
}
// A registry of all linked proto files. // A registry of all linked proto files.
var ( var (

2776
vendor/github.com/golang/protobuf/proto/table_marshal.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

654
vendor/github.com/golang/protobuf/proto/table_merge.go generated vendored Normal file
View File

@ -0,0 +1,654 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
// Merge merges the src message into dst.
// This assumes that dst and src of the same type and are non-nil.
func (a *InternalMessageInfo) Merge(dst, src Message) {
mi := atomicLoadMergeInfo(&a.merge)
if mi == nil {
mi = getMergeInfo(reflect.TypeOf(dst).Elem())
atomicStoreMergeInfo(&a.merge, mi)
}
mi.merge(toPointer(&dst), toPointer(&src))
}
type mergeInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []mergeFieldInfo
unrecognized field // Offset of XXX_unrecognized
}
type mergeFieldInfo struct {
field field // Offset of field, guaranteed to be valid
// isPointer reports whether the value in the field is a pointer.
// This is true for the following situations:
// * Pointer to struct
// * Pointer to basic type (proto2 only)
// * Slice (first value in slice header is a pointer)
// * String (first value in string header is a pointer)
isPointer bool
// basicWidth reports the width of the field assuming that it is directly
// embedded in the struct (as is the case for basic types in proto3).
// The possible values are:
// 0: invalid
// 1: bool
// 4: int32, uint32, float32
// 8: int64, uint64, float64
basicWidth int
// Where dst and src are pointers to the types being merged.
merge func(dst, src pointer)
}
var (
mergeInfoMap = map[reflect.Type]*mergeInfo{}
mergeInfoLock sync.Mutex
)
func getMergeInfo(t reflect.Type) *mergeInfo {
mergeInfoLock.Lock()
defer mergeInfoLock.Unlock()
mi := mergeInfoMap[t]
if mi == nil {
mi = &mergeInfo{typ: t}
mergeInfoMap[t] = mi
}
return mi
}
// merge merges src into dst assuming they are both of type *mi.typ.
func (mi *mergeInfo) merge(dst, src pointer) {
if dst.isNil() {
panic("proto: nil destination")
}
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&mi.initialized) == 0 {
mi.computeMergeInfo()
}
for _, fi := range mi.fields {
sfp := src.offset(fi.field)
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
if fi.isPointer && sfp.getPointer().isNil() { // Could be slice or string
continue
}
if fi.basicWidth > 0 {
switch {
case fi.basicWidth == 1 && !*sfp.toBool():
continue
case fi.basicWidth == 4 && *sfp.toUint32() == 0:
continue
case fi.basicWidth == 8 && *sfp.toUint64() == 0:
continue
}
}
}
dfp := dst.offset(fi.field)
fi.merge(dfp, sfp)
}
// TODO: Make this faster?
out := dst.asPointerTo(mi.typ).Elem()
in := src.asPointerTo(mi.typ).Elem()
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {
mOut := emOut.extensionsWrite()
muIn.Lock()
mergeExtension(mOut, mIn)
muIn.Unlock()
}
}
if mi.unrecognized.IsValid() {
if b := *src.offset(mi.unrecognized).toBytes(); len(b) > 0 {
*dst.offset(mi.unrecognized).toBytes() = append([]byte(nil), b...)
}
}
}
func (mi *mergeInfo) computeMergeInfo() {
mi.lock.Lock()
defer mi.lock.Unlock()
if mi.initialized != 0 {
return
}
t := mi.typ
n := t.NumField()
props := GetProperties(t)
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
mfi := mergeFieldInfo{field: toField(&f)}
tf := f.Type
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
switch tf.Kind() {
case reflect.Ptr, reflect.Slice, reflect.String:
// As a special case, we assume slices and strings are pointers
// since we know that the first field in the SliceSlice or
// StringHeader is a data pointer.
mfi.isPointer = true
case reflect.Bool:
mfi.basicWidth = 1
case reflect.Int32, reflect.Uint32, reflect.Float32:
mfi.basicWidth = 4
case reflect.Int64, reflect.Uint64, reflect.Float64:
mfi.basicWidth = 8
}
}
// Unwrap tf to get at its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic("both pointer and slice for basic type in " + tf.Name())
}
switch tf.Kind() {
case reflect.Int32:
switch {
case isSlice: // E.g., []int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Slice is not defined (see pointer_reflect.go).
/*
sfsp := src.toInt32Slice()
if *sfsp != nil {
dfsp := dst.toInt32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
*/
sfs := src.getInt32Slice()
if sfs != nil {
dfs := dst.getInt32Slice()
dfs = append(dfs, sfs...)
if dfs == nil {
dfs = []int32{}
}
dst.setInt32Slice(dfs)
}
}
case isPointer: // E.g., *int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Ptr is not defined (see pointer_reflect.go).
/*
sfpp := src.toInt32Ptr()
if *sfpp != nil {
dfpp := dst.toInt32Ptr()
if *dfpp == nil {
*dfpp = Int32(**sfpp)
} else {
**dfpp = **sfpp
}
}
*/
sfp := src.getInt32Ptr()
if sfp != nil {
dfp := dst.getInt32Ptr()
if dfp == nil {
dst.setInt32Ptr(*sfp)
} else {
*dfp = *sfp
}
}
}
default: // E.g., int32
mfi.merge = func(dst, src pointer) {
if v := *src.toInt32(); v != 0 {
*dst.toInt32() = v
}
}
}
case reflect.Int64:
switch {
case isSlice: // E.g., []int64
mfi.merge = func(dst, src pointer) {
sfsp := src.toInt64Slice()
if *sfsp != nil {
dfsp := dst.toInt64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
}
case isPointer: // E.g., *int64
mfi.merge = func(dst, src pointer) {
sfpp := src.toInt64Ptr()
if *sfpp != nil {
dfpp := dst.toInt64Ptr()
if *dfpp == nil {
*dfpp = Int64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., int64
mfi.merge = func(dst, src pointer) {
if v := *src.toInt64(); v != 0 {
*dst.toInt64() = v
}
}
}
case reflect.Uint32:
switch {
case isSlice: // E.g., []uint32
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint32Slice()
if *sfsp != nil {
dfsp := dst.toUint32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint32{}
}
}
}
case isPointer: // E.g., *uint32
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint32Ptr()
if *sfpp != nil {
dfpp := dst.toUint32Ptr()
if *dfpp == nil {
*dfpp = Uint32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint32
mfi.merge = func(dst, src pointer) {
if v := *src.toUint32(); v != 0 {
*dst.toUint32() = v
}
}
}
case reflect.Uint64:
switch {
case isSlice: // E.g., []uint64
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint64Slice()
if *sfsp != nil {
dfsp := dst.toUint64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint64{}
}
}
}
case isPointer: // E.g., *uint64
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint64Ptr()
if *sfpp != nil {
dfpp := dst.toUint64Ptr()
if *dfpp == nil {
*dfpp = Uint64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint64
mfi.merge = func(dst, src pointer) {
if v := *src.toUint64(); v != 0 {
*dst.toUint64() = v
}
}
}
case reflect.Float32:
switch {
case isSlice: // E.g., []float32
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat32Slice()
if *sfsp != nil {
dfsp := dst.toFloat32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float32{}
}
}
}
case isPointer: // E.g., *float32
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat32Ptr()
if *sfpp != nil {
dfpp := dst.toFloat32Ptr()
if *dfpp == nil {
*dfpp = Float32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float32
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat32(); v != 0 {
*dst.toFloat32() = v
}
}
}
case reflect.Float64:
switch {
case isSlice: // E.g., []float64
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat64Slice()
if *sfsp != nil {
dfsp := dst.toFloat64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float64{}
}
}
}
case isPointer: // E.g., *float64
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat64Ptr()
if *sfpp != nil {
dfpp := dst.toFloat64Ptr()
if *dfpp == nil {
*dfpp = Float64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float64
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat64(); v != 0 {
*dst.toFloat64() = v
}
}
}
case reflect.Bool:
switch {
case isSlice: // E.g., []bool
mfi.merge = func(dst, src pointer) {
sfsp := src.toBoolSlice()
if *sfsp != nil {
dfsp := dst.toBoolSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []bool{}
}
}
}
case isPointer: // E.g., *bool
mfi.merge = func(dst, src pointer) {
sfpp := src.toBoolPtr()
if *sfpp != nil {
dfpp := dst.toBoolPtr()
if *dfpp == nil {
*dfpp = Bool(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., bool
mfi.merge = func(dst, src pointer) {
if v := *src.toBool(); v {
*dst.toBool() = v
}
}
}
case reflect.String:
switch {
case isSlice: // E.g., []string
mfi.merge = func(dst, src pointer) {
sfsp := src.toStringSlice()
if *sfsp != nil {
dfsp := dst.toStringSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []string{}
}
}
}
case isPointer: // E.g., *string
mfi.merge = func(dst, src pointer) {
sfpp := src.toStringPtr()
if *sfpp != nil {
dfpp := dst.toStringPtr()
if *dfpp == nil {
*dfpp = String(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., string
mfi.merge = func(dst, src pointer) {
if v := *src.toString(); v != "" {
*dst.toString() = v
}
}
}
case reflect.Slice:
isProto3 := props.Prop[i].proto3
switch {
case isPointer:
panic("bad pointer in byte slice case in " + tf.Name())
case tf.Elem().Kind() != reflect.Uint8:
panic("bad element kind in byte slice case in " + tf.Name())
case isSlice: // E.g., [][]byte
mfi.merge = func(dst, src pointer) {
sbsp := src.toBytesSlice()
if *sbsp != nil {
dbsp := dst.toBytesSlice()
for _, sb := range *sbsp {
if sb == nil {
*dbsp = append(*dbsp, nil)
} else {
*dbsp = append(*dbsp, append([]byte{}, sb...))
}
}
if *dbsp == nil {
*dbsp = [][]byte{}
}
}
}
default: // E.g., []byte
mfi.merge = func(dst, src pointer) {
sbp := src.toBytes()
if *sbp != nil {
dbp := dst.toBytes()
if !isProto3 || len(*sbp) > 0 {
*dbp = append([]byte{}, *sbp...)
}
}
}
}
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("message field %s without pointer", tf))
case isSlice: // E.g., []*pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sps := src.getPointerSlice()
if sps != nil {
dps := dst.getPointerSlice()
for _, sp := range sps {
var dp pointer
if !sp.isNil() {
dp = valToPointer(reflect.New(tf))
mi.merge(dp, sp)
}
dps = append(dps, dp)
}
if dps == nil {
dps = []pointer{}
}
dst.setPointerSlice(dps)
}
}
default: // E.g., *pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sp := src.getPointer()
if !sp.isNil() {
dp := dst.getPointer()
if dp.isNil() {
dp = valToPointer(reflect.New(tf))
dst.setPointer(dp)
}
mi.merge(dp, sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic("bad pointer or slice in map case in " + tf.Name())
default: // E.g., map[K]V
mfi.merge = func(dst, src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
dm := dst.asPointerTo(tf).Elem()
if dm.IsNil() {
dm.Set(reflect.MakeMap(tf))
}
switch tf.Elem().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(Clone(val.Interface().(Message)))
dm.SetMapIndex(key, val)
}
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(append([]byte{}, val.Bytes()...))
dm.SetMapIndex(key, val)
}
default: // Basic type (e.g., string)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
dm.SetMapIndex(key, val)
}
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic("bad pointer or slice in interface case in " + tf.Name())
default: // E.g., interface{}
// TODO: Make this faster?
mfi.merge = func(dst, src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
du := dst.asPointerTo(tf).Elem()
typ := su.Elem().Type()
if du.IsNil() || du.Elem().Type() != typ {
du.Set(reflect.New(typ.Elem())) // Initialize interface if empty
}
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
dv := du.Elem().Elem().Field(0)
if dv.Kind() == reflect.Ptr && dv.IsNil() {
dv.Set(reflect.New(sv.Type().Elem())) // Initialize proto message if empty
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
Merge(dv.Interface().(Message), sv.Interface().(Message))
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
dv.Set(reflect.ValueOf(append([]byte{}, sv.Bytes()...)))
default: // Basic type (e.g., string)
dv.Set(sv)
}
}
}
}
default:
panic(fmt.Sprintf("merger not found for type:%s", tf))
}
mi.fields = append(mi.fields, mfi)
}
mi.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
mi.unrecognized = toField(&f)
}
atomic.StoreInt32(&mi.initialized, 1)
}

File diff suppressed because it is too large Load Diff

View File

@ -50,7 +50,6 @@ import (
var ( var (
newline = []byte("\n") newline = []byte("\n")
spaces = []byte(" ") spaces = []byte(" ")
gtNewline = []byte(">\n")
endBraceNewline = []byte("}\n") endBraceNewline = []byte("}\n")
backslashN = []byte{'\\', 'n'} backslashN = []byte{'\\', 'n'}
backslashR = []byte{'\\', 'r'} backslashR = []byte{'\\', 'r'}
@ -170,11 +169,6 @@ func writeName(w *textWriter, props *Properties) error {
return nil return nil
} }
// raw is the interface satisfied by RawMessage.
type raw interface {
Bytes() []byte
}
func requiresQuotes(u string) bool { func requiresQuotes(u string) bool {
// When type URL contains any characters except [0-9A-Za-z./\-]*, it must be quoted. // When type URL contains any characters except [0-9A-Za-z./\-]*, it must be quoted.
for _, ch := range u { for _, ch := range u {
@ -269,6 +263,10 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
props := sprops.Prop[i] props := sprops.Prop[i]
name := st.Field(i).Name name := st.Field(i).Name
if name == "XXX_NoUnkeyedLiteral" {
continue
}
if strings.HasPrefix(name, "XXX_") { if strings.HasPrefix(name, "XXX_") {
// There are two XXX_ fields: // There are two XXX_ fields:
// XXX_unrecognized []byte // XXX_unrecognized []byte
@ -355,7 +353,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err return err
} }
} }
if err := tm.writeAny(w, key, props.mkeyprop); err != nil { if err := tm.writeAny(w, key, props.MapKeyProp); err != nil {
return err return err
} }
if err := w.WriteByte('\n'); err != nil { if err := w.WriteByte('\n'); err != nil {
@ -372,7 +370,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err return err
} }
} }
if err := tm.writeAny(w, val, props.mvalprop); err != nil { if err := tm.writeAny(w, val, props.MapValProp); err != nil {
return err return err
} }
if err := w.WriteByte('\n'); err != nil { if err := w.WriteByte('\n'); err != nil {
@ -436,12 +434,6 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err return err
} }
} }
if b, ok := fv.Interface().(raw); ok {
if err := writeRaw(w, b.Bytes()); err != nil {
return err
}
continue
}
// Enums have a String method, so writeAny will work fine. // Enums have a String method, so writeAny will work fine.
if err := tm.writeAny(w, fv, props); err != nil { if err := tm.writeAny(w, fv, props); err != nil {
@ -455,7 +447,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
// Extensions (the XXX_extensions field). // Extensions (the XXX_extensions field).
pv := sv.Addr() pv := sv.Addr()
if _, ok := extendable(pv.Interface()); ok { if _, err := extendable(pv.Interface()); err == nil {
if err := tm.writeExtensions(w, pv); err != nil { if err := tm.writeExtensions(w, pv); err != nil {
return err return err
} }
@ -464,27 +456,6 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return nil return nil
} }
// writeRaw writes an uninterpreted raw message.
func writeRaw(w *textWriter, b []byte) error {
if err := w.WriteByte('<'); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
if err := writeUnknownStruct(w, b); err != nil {
return err
}
w.unindent()
if err := w.WriteByte('>'); err != nil {
return err
}
return nil
}
// writeAny writes an arbitrary field. // writeAny writes an arbitrary field.
func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Properties) error { func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Properties) error {
v = reflect.Indirect(v) v = reflect.Indirect(v)
@ -535,6 +506,19 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
} }
} }
w.indent() w.indent()
if v.CanAddr() {
// Calling v.Interface on a struct causes the reflect package to
// copy the entire struct. This is racy with the new Marshaler
// since we atomically update the XXX_sizecache.
//
// Thus, we retrieve a pointer to the struct if possible to avoid
// a race since v.Interface on the pointer doesn't copy the struct.
//
// If v is not addressable, then we are not worried about a race
// since it implies that the binary Marshaler cannot possibly be
// mutating this value.
v = v.Addr()
}
if etm, ok := v.Interface().(encoding.TextMarshaler); ok { if etm, ok := v.Interface().(encoding.TextMarshaler); ok {
text, err := etm.MarshalText() text, err := etm.MarshalText()
if err != nil { if err != nil {
@ -543,8 +527,13 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
if _, err = w.Write(text); err != nil { if _, err = w.Write(text); err != nil {
return err return err
} }
} else if err := tm.writeStruct(w, v); err != nil { } else {
return err if v.Kind() == reflect.Ptr {
v = v.Elem()
}
if err := tm.writeStruct(w, v); err != nil {
return err
}
} }
w.unindent() w.unindent()
if err := w.WriteByte(ket); err != nil { if err := w.WriteByte(ket); err != nil {

View File

@ -206,7 +206,6 @@ func (p *textParser) advance() {
var ( var (
errBadUTF8 = errors.New("proto: bad UTF-8") errBadUTF8 = errors.New("proto: bad UTF-8")
errBadHex = errors.New("proto: bad hexadecimal")
) )
func unquoteC(s string, quote rune) (string, error) { func unquoteC(s string, quote rune) (string, error) {
@ -277,60 +276,47 @@ func unescape(s string) (ch string, tail string, err error) {
return "?", s, nil // trigraph workaround return "?", s, nil // trigraph workaround
case '\'', '"', '\\': case '\'', '"', '\\':
return string(r), s, nil return string(r), s, nil
case '0', '1', '2', '3', '4', '5', '6', '7', 'x', 'X': case '0', '1', '2', '3', '4', '5', '6', '7':
if len(s) < 2 { if len(s) < 2 {
return "", "", fmt.Errorf(`\%c requires 2 following digits`, r) return "", "", fmt.Errorf(`\%c requires 2 following digits`, r)
} }
base := 8 ss := string(r) + s[:2]
ss := s[:2]
s = s[2:] s = s[2:]
if r == 'x' || r == 'X' { i, err := strconv.ParseUint(ss, 8, 8)
base = 16
} else {
ss = string(r) + ss
}
i, err := strconv.ParseUint(ss, base, 8)
if err != nil { if err != nil {
return "", "", err return "", "", fmt.Errorf(`\%s contains non-octal digits`, ss)
} }
return string([]byte{byte(i)}), s, nil return string([]byte{byte(i)}), s, nil
case 'u', 'U': case 'x', 'X', 'u', 'U':
n := 4 var n int
if r == 'U' { switch r {
case 'x', 'X':
n = 2
case 'u':
n = 4
case 'U':
n = 8 n = 8
} }
if len(s) < n { if len(s) < n {
return "", "", fmt.Errorf(`\%c requires %d digits`, r, n) return "", "", fmt.Errorf(`\%c requires %d following digits`, r, n)
}
bs := make([]byte, n/2)
for i := 0; i < n; i += 2 {
a, ok1 := unhex(s[i])
b, ok2 := unhex(s[i+1])
if !ok1 || !ok2 {
return "", "", errBadHex
}
bs[i/2] = a<<4 | b
} }
ss := s[:n]
s = s[n:] s = s[n:]
return string(bs), s, nil i, err := strconv.ParseUint(ss, 16, 64)
if err != nil {
return "", "", fmt.Errorf(`\%c%s contains non-hexadecimal digits`, r, ss)
}
if r == 'x' || r == 'X' {
return string([]byte{byte(i)}), s, nil
}
if i > utf8.MaxRune {
return "", "", fmt.Errorf(`\%c%s is not a valid Unicode code point`, r, ss)
}
return string(i), s, nil
} }
return "", "", fmt.Errorf(`unknown escape \%c`, r) return "", "", fmt.Errorf(`unknown escape \%c`, r)
} }
// Adapted from src/pkg/strconv/quote.go.
func unhex(b byte) (v byte, ok bool) {
switch {
case '0' <= b && b <= '9':
return b - '0', true
case 'a' <= b && b <= 'f':
return b - 'a' + 10, true
case 'A' <= b && b <= 'F':
return b - 'A' + 10, true
}
return 0, false
}
// Back off the parser by one token. Can only be done between calls to next(). // Back off the parser by one token. Can only be done between calls to next().
// It makes the next advance() a no-op. // It makes the next advance() a no-op.
func (p *textParser) back() { p.backed = true } func (p *textParser) back() { p.backed = true }
@ -644,17 +630,17 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
if err := p.consumeToken(":"); err != nil { if err := p.consumeToken(":"); err != nil {
return err return err
} }
if err := p.readAny(key, props.mkeyprop); err != nil { if err := p.readAny(key, props.MapKeyProp); err != nil {
return err return err
} }
if err := p.consumeOptionalSeparator(); err != nil { if err := p.consumeOptionalSeparator(); err != nil {
return err return err
} }
case "value": case "value":
if err := p.checkForColon(props.mvalprop, dst.Type().Elem()); err != nil { if err := p.checkForColon(props.MapValProp, dst.Type().Elem()); err != nil {
return err return err
} }
if err := p.readAny(val, props.mvalprop); err != nil { if err := p.readAny(val, props.MapValProp); err != nil {
return err return err
} }
if err := p.consumeOptionalSeparator(); err != nil { if err := p.consumeOptionalSeparator(); err != nil {
@ -728,6 +714,9 @@ func (p *textParser) consumeExtName() (string, error) {
if tok.err != nil { if tok.err != nil {
return "", p.errorf("unrecognized type_url or extension name: %s", tok.err) return "", p.errorf("unrecognized type_url or extension name: %s", tok.err)
} }
if p.done && tok.value != "]" {
return "", p.errorf("unclosed type_url or extension name")
}
} }
return strings.Join(parts, ""), nil return strings.Join(parts, ""), nil
} }
@ -865,7 +854,7 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
return p.readStruct(fv, terminator) return p.readStruct(fv, terminator)
case reflect.Uint32: case reflect.Uint32:
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil { if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
fv.SetUint(x) fv.SetUint(uint64(x))
return nil return nil
} }
case reflect.Uint64: case reflect.Uint64:
@ -883,13 +872,9 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
// UnmarshalText returns *RequiredNotSetError. // UnmarshalText returns *RequiredNotSetError.
func UnmarshalText(s string, pb Message) error { func UnmarshalText(s string, pb Message) error {
if um, ok := pb.(encoding.TextUnmarshaler); ok { if um, ok := pb.(encoding.TextUnmarshaler); ok {
err := um.UnmarshalText([]byte(s)) return um.UnmarshalText([]byte(s))
return err
} }
pb.Reset() pb.Reset()
v := reflect.ValueOf(pb) v := reflect.ValueOf(pb)
if pe := newTextParser(s).readStruct(v.Elem(), ""); pe != nil { return newTextParser(s).readStruct(v.Elem(), "")
return pe
}
return nil
} }

View File

@ -1,36 +0,0 @@
# Go support for Protocol Buffers - Google's data interchange format
#
# Copyright 2010 The Go Authors. All rights reserved.
# https://github.com/golang/protobuf
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Not stored here, but descriptor.proto is in https://github.com/google/protobuf/
# at src/google/protobuf/descriptor.proto
regenerate:
@echo WARNING! THIS RULE IS PROBABLY NOT RIGHT FOR YOUR INSTALLATION
protoc --go_out=../../../../.. -I$(HOME)/src/protobuf/include $(HOME)/src/protobuf/include/google/protobuf/descriptor.proto

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,883 @@
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// The messages in this file describe the definitions found in .proto files.
// A valid .proto file can be translated directly to a FileDescriptorProto
// without any other information (e.g. without reading its imports).
syntax = "proto2";
package google.protobuf;
option go_package = "github.com/golang/protobuf/protoc-gen-go/descriptor;descriptor";
option java_package = "com.google.protobuf";
option java_outer_classname = "DescriptorProtos";
option csharp_namespace = "Google.Protobuf.Reflection";
option objc_class_prefix = "GPB";
option cc_enable_arenas = true;
// descriptor.proto must be optimized for speed because reflection-based
// algorithms don't work during bootstrapping.
option optimize_for = SPEED;
// The protocol compiler can output a FileDescriptorSet containing the .proto
// files it parses.
message FileDescriptorSet {
repeated FileDescriptorProto file = 1;
}
// Describes a complete .proto file.
message FileDescriptorProto {
optional string name = 1; // file name, relative to root of source tree
optional string package = 2; // e.g. "foo", "foo.bar", etc.
// Names of files imported by this file.
repeated string dependency = 3;
// Indexes of the public imported files in the dependency list above.
repeated int32 public_dependency = 10;
// Indexes of the weak imported files in the dependency list.
// For Google-internal migration only. Do not use.
repeated int32 weak_dependency = 11;
// All top-level definitions in this file.
repeated DescriptorProto message_type = 4;
repeated EnumDescriptorProto enum_type = 5;
repeated ServiceDescriptorProto service = 6;
repeated FieldDescriptorProto extension = 7;
optional FileOptions options = 8;
// This field contains optional information about the original source code.
// You may safely remove this entire field without harming runtime
// functionality of the descriptors -- the information is needed only by
// development tools.
optional SourceCodeInfo source_code_info = 9;
// The syntax of the proto file.
// The supported values are "proto2" and "proto3".
optional string syntax = 12;
}
// Describes a message type.
message DescriptorProto {
optional string name = 1;
repeated FieldDescriptorProto field = 2;
repeated FieldDescriptorProto extension = 6;
repeated DescriptorProto nested_type = 3;
repeated EnumDescriptorProto enum_type = 4;
message ExtensionRange {
optional int32 start = 1;
optional int32 end = 2;
optional ExtensionRangeOptions options = 3;
}
repeated ExtensionRange extension_range = 5;
repeated OneofDescriptorProto oneof_decl = 8;
optional MessageOptions options = 7;
// Range of reserved tag numbers. Reserved tag numbers may not be used by
// fields or extension ranges in the same message. Reserved ranges may
// not overlap.
message ReservedRange {
optional int32 start = 1; // Inclusive.
optional int32 end = 2; // Exclusive.
}
repeated ReservedRange reserved_range = 9;
// Reserved field names, which may not be used by fields in the same message.
// A given name may only be reserved once.
repeated string reserved_name = 10;
}
message ExtensionRangeOptions {
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
// Describes a field within a message.
message FieldDescriptorProto {
enum Type {
// 0 is reserved for errors.
// Order is weird for historical reasons.
TYPE_DOUBLE = 1;
TYPE_FLOAT = 2;
// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT64 if
// negative values are likely.
TYPE_INT64 = 3;
TYPE_UINT64 = 4;
// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT32 if
// negative values are likely.
TYPE_INT32 = 5;
TYPE_FIXED64 = 6;
TYPE_FIXED32 = 7;
TYPE_BOOL = 8;
TYPE_STRING = 9;
// Tag-delimited aggregate.
// Group type is deprecated and not supported in proto3. However, Proto3
// implementations should still be able to parse the group wire format and
// treat group fields as unknown fields.
TYPE_GROUP = 10;
TYPE_MESSAGE = 11; // Length-delimited aggregate.
// New in version 2.
TYPE_BYTES = 12;
TYPE_UINT32 = 13;
TYPE_ENUM = 14;
TYPE_SFIXED32 = 15;
TYPE_SFIXED64 = 16;
TYPE_SINT32 = 17; // Uses ZigZag encoding.
TYPE_SINT64 = 18; // Uses ZigZag encoding.
};
enum Label {
// 0 is reserved for errors
LABEL_OPTIONAL = 1;
LABEL_REQUIRED = 2;
LABEL_REPEATED = 3;
};
optional string name = 1;
optional int32 number = 3;
optional Label label = 4;
// If type_name is set, this need not be set. If both this and type_name
// are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.
optional Type type = 5;
// For message and enum types, this is the name of the type. If the name
// starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
// rules are used to find the type (i.e. first the nested types within this
// message are searched, then within the parent, on up to the root
// namespace).
optional string type_name = 6;
// For extensions, this is the name of the type being extended. It is
// resolved in the same manner as type_name.
optional string extendee = 2;
// For numeric types, contains the original text representation of the value.
// For booleans, "true" or "false".
// For strings, contains the default text contents (not escaped in any way).
// For bytes, contains the C escaped value. All bytes >= 128 are escaped.
// TODO(kenton): Base-64 encode?
optional string default_value = 7;
// If set, gives the index of a oneof in the containing type's oneof_decl
// list. This field is a member of that oneof.
optional int32 oneof_index = 9;
// JSON name of this field. The value is set by protocol compiler. If the
// user has set a "json_name" option on this field, that option's value
// will be used. Otherwise, it's deduced from the field's name by converting
// it to camelCase.
optional string json_name = 10;
optional FieldOptions options = 8;
}
// Describes a oneof.
message OneofDescriptorProto {
optional string name = 1;
optional OneofOptions options = 2;
}
// Describes an enum type.
message EnumDescriptorProto {
optional string name = 1;
repeated EnumValueDescriptorProto value = 2;
optional EnumOptions options = 3;
// Range of reserved numeric values. Reserved values may not be used by
// entries in the same enum. Reserved ranges may not overlap.
//
// Note that this is distinct from DescriptorProto.ReservedRange in that it
// is inclusive such that it can appropriately represent the entire int32
// domain.
message EnumReservedRange {
optional int32 start = 1; // Inclusive.
optional int32 end = 2; // Inclusive.
}
// Range of reserved numeric values. Reserved numeric values may not be used
// by enum values in the same enum declaration. Reserved ranges may not
// overlap.
repeated EnumReservedRange reserved_range = 4;
// Reserved enum value names, which may not be reused. A given name may only
// be reserved once.
repeated string reserved_name = 5;
}
// Describes a value within an enum.
message EnumValueDescriptorProto {
optional string name = 1;
optional int32 number = 2;
optional EnumValueOptions options = 3;
}
// Describes a service.
message ServiceDescriptorProto {
optional string name = 1;
repeated MethodDescriptorProto method = 2;
optional ServiceOptions options = 3;
}
// Describes a method of a service.
message MethodDescriptorProto {
optional string name = 1;
// Input and output type names. These are resolved in the same way as
// FieldDescriptorProto.type_name, but must refer to a message type.
optional string input_type = 2;
optional string output_type = 3;
optional MethodOptions options = 4;
// Identifies if client streams multiple client messages
optional bool client_streaming = 5 [default=false];
// Identifies if server streams multiple server messages
optional bool server_streaming = 6 [default=false];
}
// ===================================================================
// Options
// Each of the definitions above may have "options" attached. These are
// just annotations which may cause code to be generated slightly differently
// or may contain hints for code that manipulates protocol messages.
//
// Clients may define custom options as extensions of the *Options messages.
// These extensions may not yet be known at parsing time, so the parser cannot
// store the values in them. Instead it stores them in a field in the *Options
// message called uninterpreted_option. This field must have the same name
// across all *Options messages. We then use this field to populate the
// extensions when we build a descriptor, at which point all protos have been
// parsed and so all extensions are known.
//
// Extension numbers for custom options may be chosen as follows:
// * For options which will only be used within a single application or
// organization, or for experimental options, use field numbers 50000
// through 99999. It is up to you to ensure that you do not use the
// same number for multiple options.
// * For options which will be published and used publicly by multiple
// independent entities, e-mail protobuf-global-extension-registry@google.com
// to reserve extension numbers. Simply provide your project name (e.g.
// Objective-C plugin) and your project website (if available) -- there's no
// need to explain how you intend to use them. Usually you only need one
// extension number. You can declare multiple options with only one extension
// number by putting them in a sub-message. See the Custom Options section of
// the docs for examples:
// https://developers.google.com/protocol-buffers/docs/proto#options
// If this turns out to be popular, a web service will be set up
// to automatically assign option numbers.
message FileOptions {
// Sets the Java package where classes generated from this .proto will be
// placed. By default, the proto package is used, but this is often
// inappropriate because proto packages do not normally start with backwards
// domain names.
optional string java_package = 1;
// If set, all the classes from the .proto file are wrapped in a single
// outer class with the given name. This applies to both Proto1
// (equivalent to the old "--one_java_file" option) and Proto2 (where
// a .proto always translates to a single class, but you may want to
// explicitly choose the class name).
optional string java_outer_classname = 8;
// If set true, then the Java code generator will generate a separate .java
// file for each top-level message, enum, and service defined in the .proto
// file. Thus, these types will *not* be nested inside the outer class
// named by java_outer_classname. However, the outer class will still be
// generated to contain the file's getDescriptor() method as well as any
// top-level extensions defined in the file.
optional bool java_multiple_files = 10 [default=false];
// This option does nothing.
optional bool java_generate_equals_and_hash = 20 [deprecated=true];
// If set true, then the Java2 code generator will generate code that
// throws an exception whenever an attempt is made to assign a non-UTF-8
// byte sequence to a string field.
// Message reflection will do the same.
// However, an extension field still accepts non-UTF-8 byte sequences.
// This option has no effect on when used with the lite runtime.
optional bool java_string_check_utf8 = 27 [default=false];
// Generated classes can be optimized for speed or code size.
enum OptimizeMode {
SPEED = 1; // Generate complete code for parsing, serialization,
// etc.
CODE_SIZE = 2; // Use ReflectionOps to implement these methods.
LITE_RUNTIME = 3; // Generate code using MessageLite and the lite runtime.
}
optional OptimizeMode optimize_for = 9 [default=SPEED];
// Sets the Go package where structs generated from this .proto will be
// placed. If omitted, the Go package will be derived from the following:
// - The basename of the package import path, if provided.
// - Otherwise, the package statement in the .proto file, if present.
// - Otherwise, the basename of the .proto file, without extension.
optional string go_package = 11;
// Should generic services be generated in each language? "Generic" services
// are not specific to any particular RPC system. They are generated by the
// main code generators in each language (without additional plugins).
// Generic services were the only kind of service generation supported by
// early versions of google.protobuf.
//
// Generic services are now considered deprecated in favor of using plugins
// that generate code specific to your particular RPC system. Therefore,
// these default to false. Old code which depends on generic services should
// explicitly set them to true.
optional bool cc_generic_services = 16 [default=false];
optional bool java_generic_services = 17 [default=false];
optional bool py_generic_services = 18 [default=false];
optional bool php_generic_services = 42 [default=false];
// Is this file deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for everything in the file, or it will be completely ignored; in the very
// least, this is a formalization for deprecating files.
optional bool deprecated = 23 [default=false];
// Enables the use of arenas for the proto messages in this file. This applies
// only to generated classes for C++.
optional bool cc_enable_arenas = 31 [default=false];
// Sets the objective c class prefix which is prepended to all objective c
// generated classes from this .proto. There is no default.
optional string objc_class_prefix = 36;
// Namespace for generated classes; defaults to the package.
optional string csharp_namespace = 37;
// By default Swift generators will take the proto package and CamelCase it
// replacing '.' with underscore and use that to prefix the types/symbols
// defined. When this options is provided, they will use this value instead
// to prefix the types/symbols defined.
optional string swift_prefix = 39;
// Sets the php class prefix which is prepended to all php generated classes
// from this .proto. Default is empty.
optional string php_class_prefix = 40;
// Use this option to change the namespace of php generated classes. Default
// is empty. When this option is empty, the package name will be used for
// determining the namespace.
optional string php_namespace = 41;
// Use this option to change the namespace of php generated metadata classes.
// Default is empty. When this option is empty, the proto file name will be used
// for determining the namespace.
optional string php_metadata_namespace = 44;
// Use this option to change the package of ruby generated classes. Default
// is empty. When this option is not set, the package name will be used for
// determining the ruby package.
optional string ruby_package = 45;
// The parser stores options it doesn't recognize here.
// See the documentation for the "Options" section above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message.
// See the documentation for the "Options" section above.
extensions 1000 to max;
reserved 38;
}
message MessageOptions {
// Set true to use the old proto1 MessageSet wire format for extensions.
// This is provided for backwards-compatibility with the MessageSet wire
// format. You should not use this for any other reason: It's less
// efficient, has fewer features, and is more complicated.
//
// The message must be defined exactly as follows:
// message Foo {
// option message_set_wire_format = true;
// extensions 4 to max;
// }
// Note that the message cannot have any defined fields; MessageSets only
// have extensions.
//
// All extensions of your type must be singular messages; e.g. they cannot
// be int32s, enums, or repeated messages.
//
// Because this is an option, the above two restrictions are not enforced by
// the protocol compiler.
optional bool message_set_wire_format = 1 [default=false];
// Disables the generation of the standard "descriptor()" accessor, which can
// conflict with a field of the same name. This is meant to make migration
// from proto1 easier; new code should avoid fields named "descriptor".
optional bool no_standard_descriptor_accessor = 2 [default=false];
// Is this message deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for the message, or it will be completely ignored; in the very least,
// this is a formalization for deprecating messages.
optional bool deprecated = 3 [default=false];
// Whether the message is an automatically generated map entry type for the
// maps field.
//
// For maps fields:
// map<KeyType, ValueType> map_field = 1;
// The parsed descriptor looks like:
// message MapFieldEntry {
// option map_entry = true;
// optional KeyType key = 1;
// optional ValueType value = 2;
// }
// repeated MapFieldEntry map_field = 1;
//
// Implementations may choose not to generate the map_entry=true message, but
// use a native map in the target language to hold the keys and values.
// The reflection APIs in such implementions still need to work as
// if the field is a repeated message field.
//
// NOTE: Do not set the option in .proto files. Always use the maps syntax
// instead. The option should only be implicitly set by the proto compiler
// parser.
optional bool map_entry = 7;
reserved 8; // javalite_serializable
reserved 9; // javanano_as_lite
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
message FieldOptions {
// The ctype option instructs the C++ code generator to use a different
// representation of the field than it normally would. See the specific
// options below. This option is not yet implemented in the open source
// release -- sorry, we'll try to include it in a future version!
optional CType ctype = 1 [default = STRING];
enum CType {
// Default mode.
STRING = 0;
CORD = 1;
STRING_PIECE = 2;
}
// The packed option can be enabled for repeated primitive fields to enable
// a more efficient representation on the wire. Rather than repeatedly
// writing the tag and type for each element, the entire array is encoded as
// a single length-delimited blob. In proto3, only explicit setting it to
// false will avoid using packed encoding.
optional bool packed = 2;
// The jstype option determines the JavaScript type used for values of the
// field. The option is permitted only for 64 bit integral and fixed types
// (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING
// is represented as JavaScript string, which avoids loss of precision that
// can happen when a large value is converted to a floating point JavaScript.
// Specifying JS_NUMBER for the jstype causes the generated JavaScript code to
// use the JavaScript "number" type. The behavior of the default option
// JS_NORMAL is implementation dependent.
//
// This option is an enum to permit additional types to be added, e.g.
// goog.math.Integer.
optional JSType jstype = 6 [default = JS_NORMAL];
enum JSType {
// Use the default type.
JS_NORMAL = 0;
// Use JavaScript strings.
JS_STRING = 1;
// Use JavaScript numbers.
JS_NUMBER = 2;
}
// Should this field be parsed lazily? Lazy applies only to message-type
// fields. It means that when the outer message is initially parsed, the
// inner message's contents will not be parsed but instead stored in encoded
// form. The inner message will actually be parsed when it is first accessed.
//
// This is only a hint. Implementations are free to choose whether to use
// eager or lazy parsing regardless of the value of this option. However,
// setting this option true suggests that the protocol author believes that
// using lazy parsing on this field is worth the additional bookkeeping
// overhead typically needed to implement it.
//
// This option does not affect the public interface of any generated code;
// all method signatures remain the same. Furthermore, thread-safety of the
// interface is not affected by this option; const methods remain safe to
// call from multiple threads concurrently, while non-const methods continue
// to require exclusive access.
//
//
// Note that implementations may choose not to check required fields within
// a lazy sub-message. That is, calling IsInitialized() on the outer message
// may return true even if the inner message has missing required fields.
// This is necessary because otherwise the inner message would have to be
// parsed in order to perform the check, defeating the purpose of lazy
// parsing. An implementation which chooses not to check required fields
// must be consistent about it. That is, for any particular sub-message, the
// implementation must either *always* check its required fields, or *never*
// check its required fields, regardless of whether or not the message has
// been parsed.
optional bool lazy = 5 [default=false];
// Is this field deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for accessors, or it will be completely ignored; in the very least, this
// is a formalization for deprecating fields.
optional bool deprecated = 3 [default=false];
// For Google-internal migration only. Do not use.
optional bool weak = 10 [default=false];
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
reserved 4; // removed jtype
}
message OneofOptions {
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
message EnumOptions {
// Set this option to true to allow mapping different tag names to the same
// value.
optional bool allow_alias = 2;
// Is this enum deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for the enum, or it will be completely ignored; in the very least, this
// is a formalization for deprecating enums.
optional bool deprecated = 3 [default=false];
reserved 5; // javanano_as_lite
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
message EnumValueOptions {
// Is this enum value deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for the enum value, or it will be completely ignored; in the very least,
// this is a formalization for deprecating enum values.
optional bool deprecated = 1 [default=false];
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
message ServiceOptions {
// Note: Field numbers 1 through 32 are reserved for Google's internal RPC
// framework. We apologize for hoarding these numbers to ourselves, but
// we were already using them long before we decided to release Protocol
// Buffers.
// Is this service deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for the service, or it will be completely ignored; in the very least,
// this is a formalization for deprecating services.
optional bool deprecated = 33 [default=false];
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
message MethodOptions {
// Note: Field numbers 1 through 32 are reserved for Google's internal RPC
// framework. We apologize for hoarding these numbers to ourselves, but
// we were already using them long before we decided to release Protocol
// Buffers.
// Is this method deprecated?
// Depending on the target platform, this can emit Deprecated annotations
// for the method, or it will be completely ignored; in the very least,
// this is a formalization for deprecating methods.
optional bool deprecated = 33 [default=false];
// Is this method side-effect-free (or safe in HTTP parlance), or idempotent,
// or neither? HTTP based RPC implementation may choose GET verb for safe
// methods, and PUT verb for idempotent methods instead of the default POST.
enum IdempotencyLevel {
IDEMPOTENCY_UNKNOWN = 0;
NO_SIDE_EFFECTS = 1; // implies idempotent
IDEMPOTENT = 2; // idempotent, but may have side effects
}
optional IdempotencyLevel idempotency_level =
34 [default=IDEMPOTENCY_UNKNOWN];
// The parser stores options it doesn't recognize here. See above.
repeated UninterpretedOption uninterpreted_option = 999;
// Clients can define custom options in extensions of this message. See above.
extensions 1000 to max;
}
// A message representing a option the parser does not recognize. This only
// appears in options protos created by the compiler::Parser class.
// DescriptorPool resolves these when building Descriptor objects. Therefore,
// options protos in descriptor objects (e.g. returned by Descriptor::options(),
// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions
// in them.
message UninterpretedOption {
// The name of the uninterpreted option. Each string represents a segment in
// a dot-separated name. is_extension is true iff a segment represents an
// extension (denoted with parentheses in options specs in .proto files).
// E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents
// "foo.(bar.baz).qux".
message NamePart {
required string name_part = 1;
required bool is_extension = 2;
}
repeated NamePart name = 2;
// The value of the uninterpreted option, in whatever type the tokenizer
// identified it as during parsing. Exactly one of these should be set.
optional string identifier_value = 3;
optional uint64 positive_int_value = 4;
optional int64 negative_int_value = 5;
optional double double_value = 6;
optional bytes string_value = 7;
optional string aggregate_value = 8;
}
// ===================================================================
// Optional source code info
// Encapsulates information about the original source file from which a
// FileDescriptorProto was generated.
message SourceCodeInfo {
// A Location identifies a piece of source code in a .proto file which
// corresponds to a particular definition. This information is intended
// to be useful to IDEs, code indexers, documentation generators, and similar
// tools.
//
// For example, say we have a file like:
// message Foo {
// optional string foo = 1;
// }
// Let's look at just the field definition:
// optional string foo = 1;
// ^ ^^ ^^ ^ ^^^
// a bc de f ghi
// We have the following locations:
// span path represents
// [a,i) [ 4, 0, 2, 0 ] The whole field definition.
// [a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
// [c,d) [ 4, 0, 2, 0, 5 ] The type (string).
// [e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
// [g,h) [ 4, 0, 2, 0, 3 ] The number (1).
//
// Notes:
// - A location may refer to a repeated field itself (i.e. not to any
// particular index within it). This is used whenever a set of elements are
// logically enclosed in a single code segment. For example, an entire
// extend block (possibly containing multiple extension definitions) will
// have an outer location whose path refers to the "extensions" repeated
// field without an index.
// - Multiple locations may have the same path. This happens when a single
// logical declaration is spread out across multiple places. The most
// obvious example is the "extend" block again -- there may be multiple
// extend blocks in the same scope, each of which will have the same path.
// - A location's span is not always a subset of its parent's span. For
// example, the "extendee" of an extension declaration appears at the
// beginning of the "extend" block and is shared by all extensions within
// the block.
// - Just because a location's span is a subset of some other location's span
// does not mean that it is a descendent. For example, a "group" defines
// both a type and a field in a single declaration. Thus, the locations
// corresponding to the type and field and their components will overlap.
// - Code which tries to interpret locations should probably be designed to
// ignore those that it doesn't understand, as more types of locations could
// be recorded in the future.
repeated Location location = 1;
message Location {
// Identifies which part of the FileDescriptorProto was defined at this
// location.
//
// Each element is a field number or an index. They form a path from
// the root FileDescriptorProto to the place where the definition. For
// example, this path:
// [ 4, 3, 2, 7, 1 ]
// refers to:
// file.message_type(3) // 4, 3
// .field(7) // 2, 7
// .name() // 1
// This is because FileDescriptorProto.message_type has field number 4:
// repeated DescriptorProto message_type = 4;
// and DescriptorProto.field has field number 2:
// repeated FieldDescriptorProto field = 2;
// and FieldDescriptorProto.name has field number 1:
// optional string name = 1;
//
// Thus, the above path gives the location of a field name. If we removed
// the last element:
// [ 4, 3, 2, 7 ]
// this path refers to the whole field declaration (from the beginning
// of the label to the terminating semicolon).
repeated int32 path = 1 [packed=true];
// Always has exactly three or four elements: start line, start column,
// end line (optional, otherwise assumed same as start line), end column.
// These are packed into a single field for efficiency. Note that line
// and column numbers are zero-based -- typically you will want to add
// 1 to each before displaying to a user.
repeated int32 span = 2 [packed=true];
// If this SourceCodeInfo represents a complete declaration, these are any
// comments appearing before and after the declaration which appear to be
// attached to the declaration.
//
// A series of line comments appearing on consecutive lines, with no other
// tokens appearing on those lines, will be treated as a single comment.
//
// leading_detached_comments will keep paragraphs of comments that appear
// before (but not connected to) the current element. Each paragraph,
// separated by empty lines, will be one comment element in the repeated
// field.
//
// Only the comment content is provided; comment markers (e.g. //) are
// stripped out. For block comments, leading whitespace and an asterisk
// will be stripped from the beginning of each line other than the first.
// Newlines are included in the output.
//
// Examples:
//
// optional int32 foo = 1; // Comment attached to foo.
// // Comment attached to bar.
// optional int32 bar = 2;
//
// optional string baz = 3;
// // Comment attached to baz.
// // Another line attached to baz.
//
// // Comment attached to qux.
// //
// // Another line attached to qux.
// optional double qux = 4;
//
// // Detached comment for corge. This is not leading or trailing comments
// // to qux or corge because there are blank lines separating it from
// // both.
//
// // Detached comment for corge paragraph 2.
//
// optional string corge = 5;
// /* Block comment attached
// * to corge. Leading asterisks
// * will be removed. */
// /* Block comment attached to
// * grault. */
// optional int32 grault = 6;
//
// // ignored detached comments.
optional string leading_comments = 3;
optional string trailing_comments = 4;
repeated string leading_detached_comments = 6;
}
}
// Describes the relationship between generated code and its original source
// file. A GeneratedCodeInfo message is associated with only one generated
// source file, but may contain references to different source .proto files.
message GeneratedCodeInfo {
// An Annotation connects some span of text in generated code to an element
// of its generating .proto file.
repeated Annotation annotation = 1;
message Annotation {
// Identifies the element in the original source .proto file. This field
// is formatted the same as SourceCodeInfo.Location.path.
repeated int32 path = 1 [packed=true];
// Identifies the filesystem path to the original source .proto.
optional string source_file = 2;
// Identifies the starting offset in bytes in the generated code
// that relates to the identified object.
optional int32 begin = 3;
// Identifies the ending offset in bytes in the generated code that
// relates to the identified offset. The end offset should be one past
// the last relevant byte (so the length of the text = end - begin).
optional int32 end = 4;
}
}

12
vendor/vendor.json vendored
View File

@ -159,16 +159,16 @@
"revisionTime": "2017-07-10T16:04:46Z" "revisionTime": "2017-07-10T16:04:46Z"
}, },
{ {
"checksumSHA1": "yqF125xVSkmfLpIVGrLlfE05IUk=", "checksumSHA1": "CGj8VcI/CpzxaNqlqpEVM7qElD4=",
"path": "github.com/golang/protobuf/proto", "path": "github.com/golang/protobuf/proto",
"revision": "748d386b5c1ea99658fd69fe9f03991ce86a90c1", "revision": "b285ee9cfc6c881bb20c0d8dc73370ea9b9ec90f",
"revisionTime": "2017-07-26T21:28:29Z" "revisionTime": "2019-05-17T06:12:10Z"
}, },
{ {
"checksumSHA1": "Z1gJ3PKzwBpOoPnTSEM5yd0zHYA=", "checksumSHA1": "WOkXetG3AqJnfVVuqTJvdukcHps=",
"path": "github.com/golang/protobuf/protoc-gen-go/descriptor", "path": "github.com/golang/protobuf/protoc-gen-go/descriptor",
"revision": "748d386b5c1ea99658fd69fe9f03991ce86a90c1", "revision": "b285ee9cfc6c881bb20c0d8dc73370ea9b9ec90f",
"revisionTime": "2017-07-26T21:28:29Z" "revisionTime": "2019-05-17T06:12:10Z"
}, },
{ {
"checksumSHA1": "p/8vSviYF91gFflhrt5vkyksroo=", "checksumSHA1": "p/8vSviYF91gFflhrt5vkyksroo=",