les: implement new client pool (#19745)

This commit is contained in:
Felföldi Zsolt 2019-08-03 14:36:10 +02:00 committed by GitHub
parent 947f5f2b15
commit a7de796840
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 1653 additions and 588 deletions

View File

@ -42,6 +42,12 @@ type Clock interface {
Now() AbsTime
Sleep(time.Duration)
After(time.Duration) <-chan time.Time
AfterFunc(d time.Duration, f func()) Event
}
// Event represents a cancellable event returned by AfterFunc
type Event interface {
Cancel() bool
}
// System implements Clock using the system clock.
@ -61,3 +67,16 @@ func (System) Sleep(d time.Duration) {
func (System) After(d time.Duration) <-chan time.Time {
return time.After(d)
}
// AfterFunc implements Clock.
func (System) AfterFunc(d time.Duration, f func()) Event {
return (*SystemEvent)(time.AfterFunc(d, f))
}
// SystemEvent implements Event using time.Timer.
type SystemEvent time.Timer
// Cancel implements Event.
func (e *SystemEvent) Cancel() bool {
return (*time.Timer)(e).Stop()
}

View File

@ -35,30 +35,44 @@ type Simulated struct {
scheduled []event
mu sync.RWMutex
cond *sync.Cond
lastId uint64
}
type event struct {
do func()
at AbsTime
id uint64
}
// SimulatedEvent implements Event for a virtual clock.
type SimulatedEvent struct {
at AbsTime
id uint64
s *Simulated
}
// Run moves the clock by the given duration, executing all timers before that duration.
func (s *Simulated) Run(d time.Duration) {
s.mu.Lock()
defer s.mu.Unlock()
s.init()
end := s.now + AbsTime(d)
var do []func()
for len(s.scheduled) > 0 {
ev := s.scheduled[0]
if ev.at > end {
break
}
s.now = ev.at
ev.do()
do = append(do, ev.do)
s.scheduled = s.scheduled[1:]
}
s.now = end
s.mu.Unlock()
for _, fn := range do {
fn()
}
}
func (s *Simulated) ActiveTimers() int {
@ -94,23 +108,26 @@ func (s *Simulated) Sleep(d time.Duration) {
// After implements Clock.
func (s *Simulated) After(d time.Duration) <-chan time.Time {
after := make(chan time.Time, 1)
s.insert(d, func() {
s.AfterFunc(d, func() {
after <- (time.Time{}).Add(time.Duration(s.now))
})
return after
}
func (s *Simulated) insert(d time.Duration, do func()) {
// AfterFunc implements Clock.
func (s *Simulated) AfterFunc(d time.Duration, do func()) Event {
s.mu.Lock()
defer s.mu.Unlock()
s.init()
at := s.now + AbsTime(d)
s.lastId++
id := s.lastId
l, h := 0, len(s.scheduled)
ll := h
for l != h {
m := (l + h) / 2
if at < s.scheduled[m].at {
if (at < s.scheduled[m].at) || ((at == s.scheduled[m].at) && (id < s.scheduled[m].id)) {
h = m
} else {
l = m + 1
@ -118,8 +135,10 @@ func (s *Simulated) insert(d time.Duration, do func()) {
}
s.scheduled = append(s.scheduled, event{})
copy(s.scheduled[l+1:], s.scheduled[l:ll])
s.scheduled[l] = event{do: do, at: at}
e := event{do: do, at: at, id: id}
s.scheduled[l] = e
s.cond.Broadcast()
return &SimulatedEvent{at: at, id: id, s: s}
}
func (s *Simulated) init() {
@ -127,3 +146,31 @@ func (s *Simulated) init() {
s.cond = sync.NewCond(&s.mu)
}
}
// Cancel implements Event.
func (e *SimulatedEvent) Cancel() bool {
s := e.s
s.mu.Lock()
defer s.mu.Unlock()
l, h := 0, len(s.scheduled)
ll := h
for l != h {
m := (l + h) / 2
if e.id == s.scheduled[m].id {
l = m
break
}
if (e.at < s.scheduled[m].at) || ((e.at == s.scheduled[m].at) && (e.id < s.scheduled[m].id)) {
h = m
} else {
l = m + 1
}
}
if l >= ll || s.scheduled[l].id != e.id {
return false
}
copy(s.scheduled[l:ll-1], s.scheduled[l+1:])
s.scheduled = s.scheduled[:ll-1]
return true
}

182
common/prque/lazyqueue.go Normal file
View File

@ -0,0 +1,182 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package prque
import (
"container/heap"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
// LazyQueue is a priority queue data structure where priorities can change over
// time and are only evaluated on demand.
// Two callbacks are required:
// - priority evaluates the actual priority of an item
// - maxPriority gives an upper estimate for the priority in any moment between
// now and the given absolute time
// If the upper estimate is exceeded then Update should be called for that item.
// A global Refresh function should also be called periodically.
type LazyQueue struct {
clock mclock.Clock
// Items are stored in one of two internal queues ordered by estimated max
// priority until the next and the next-after-next refresh. Update and Refresh
// always places items in queue[1].
queue [2]*sstack
popQueue *sstack
period time.Duration
maxUntil mclock.AbsTime
indexOffset int
setIndex SetIndexCallback
priority PriorityCallback
maxPriority MaxPriorityCallback
}
type (
PriorityCallback func(data interface{}, now mclock.AbsTime) int64 // actual priority callback
MaxPriorityCallback func(data interface{}, until mclock.AbsTime) int64 // estimated maximum priority callback
)
// NewLazyQueue creates a new lazy queue
func NewLazyQueue(setIndex SetIndexCallback, priority PriorityCallback, maxPriority MaxPriorityCallback, clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue {
q := &LazyQueue{
popQueue: newSstack(nil),
setIndex: setIndex,
priority: priority,
maxPriority: maxPriority,
clock: clock,
period: refreshPeriod}
q.Reset()
q.Refresh()
return q
}
// Reset clears the contents of the queue
func (q *LazyQueue) Reset() {
q.queue[0] = newSstack(q.setIndex0)
q.queue[1] = newSstack(q.setIndex1)
}
// Refresh should be called at least with the frequency specified by the refreshPeriod parameter
func (q *LazyQueue) Refresh() {
q.maxUntil = q.clock.Now() + mclock.AbsTime(q.period)
for q.queue[0].Len() != 0 {
q.Push(heap.Pop(q.queue[0]).(*item).value)
}
q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
q.indexOffset = 1 - q.indexOffset
q.maxUntil += mclock.AbsTime(q.period)
}
// Push adds an item to the queue
func (q *LazyQueue) Push(data interface{}) {
heap.Push(q.queue[1], &item{data, q.maxPriority(data, q.maxUntil)})
}
// Update updates the upper priority estimate for the item with the given queue index
func (q *LazyQueue) Update(index int) {
q.Push(q.Remove(index))
}
// Pop removes and returns the item with the greatest actual priority
func (q *LazyQueue) Pop() (interface{}, int64) {
var (
resData interface{}
resPri int64
)
q.MultiPop(func(data interface{}, priority int64) bool {
resData = data
resPri = priority
return false
})
return resData, resPri
}
// peekIndex returns the index of the internal queue where the item with the
// highest estimated priority is or -1 if both are empty
func (q *LazyQueue) peekIndex() int {
if q.queue[0].Len() != 0 {
if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
return 1
}
return 0
}
if q.queue[1].Len() != 0 {
return 1
}
return -1
}
// MultiPop pops multiple items from the queue and is more efficient than calling
// Pop multiple times. Popped items are passed to the callback. MultiPop returns
// when the callback returns false or there are no more items to pop.
func (q *LazyQueue) MultiPop(callback func(data interface{}, priority int64) bool) {
now := q.clock.Now()
nextIndex := q.peekIndex()
for nextIndex != -1 {
data := heap.Pop(q.queue[nextIndex]).(*item).value
heap.Push(q.popQueue, &item{data, q.priority(data, now)})
nextIndex = q.peekIndex()
for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
i := heap.Pop(q.popQueue).(*item)
if !callback(i.value, i.priority) {
for q.popQueue.Len() != 0 {
q.Push(heap.Pop(q.popQueue).(*item).value)
}
return
}
}
}
}
// PopItem pops the item from the queue only, dropping the associated priority value.
func (q *LazyQueue) PopItem() interface{} {
i, _ := q.Pop()
return i
}
// Remove removes removes the item with the given index.
func (q *LazyQueue) Remove(index int) interface{} {
if index < 0 {
return nil
}
return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item).value
}
// Empty checks whether the priority queue is empty.
func (q *LazyQueue) Empty() bool {
return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
}
// Size returns the number of items in the priority queue.
func (q *LazyQueue) Size() int {
return q.queue[0].Len() + q.queue[1].Len()
}
// setIndex0 translates internal queue item index to the virtual index space of LazyQueue
func (q *LazyQueue) setIndex0(data interface{}, index int) {
if index == -1 {
q.setIndex(data, -1)
} else {
q.setIndex(data, index+index)
}
}
// setIndex1 translates internal queue item index to the virtual index space of LazyQueue
func (q *LazyQueue) setIndex1(data interface{}, index int) {
q.setIndex(data, index+index+1)
}

View File

@ -0,0 +1,119 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package prque
import (
"math/rand"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
const (
testItems = 1000
testPriorityStep = 100
testSteps = 1000000
testStepPeriod = time.Millisecond
testQueueRefresh = time.Second
testAvgRate = float64(testPriorityStep) / float64(testItems) / float64(testStepPeriod)
)
type lazyItem struct {
p, maxp int64
last mclock.AbsTime
index int
}
func testPriority(a interface{}, now mclock.AbsTime) int64 {
return a.(*lazyItem).p
}
func testMaxPriority(a interface{}, until mclock.AbsTime) int64 {
i := a.(*lazyItem)
dt := until - i.last
i.maxp = i.p + int64(float64(dt)*testAvgRate)
return i.maxp
}
func testSetIndex(a interface{}, i int) {
a.(*lazyItem).index = i
}
func TestLazyQueue(t *testing.T) {
rand.Seed(time.Now().UnixNano())
clock := &mclock.Simulated{}
q := NewLazyQueue(testSetIndex, testPriority, testMaxPriority, clock, testQueueRefresh)
var (
items [testItems]lazyItem
maxPri int64
)
for i := range items[:] {
items[i].p = rand.Int63n(testPriorityStep * 10)
if items[i].p > maxPri {
maxPri = items[i].p
}
items[i].index = -1
q.Push(&items[i])
}
var lock sync.Mutex
stopCh := make(chan chan struct{})
go func() {
for {
select {
case <-clock.After(testQueueRefresh):
lock.Lock()
q.Refresh()
lock.Unlock()
case stop := <-stopCh:
close(stop)
return
}
}
}()
for c := 0; c < testSteps; c++ {
i := rand.Intn(testItems)
lock.Lock()
items[i].p += rand.Int63n(testPriorityStep*2-1) + 1
if items[i].p > maxPri {
maxPri = items[i].p
}
items[i].last = clock.Now()
if items[i].p > items[i].maxp {
q.Update(items[i].index)
}
if rand.Intn(100) == 0 {
p := q.PopItem().(*lazyItem)
if p.p != maxPri {
t.Fatalf("incorrect item (best known priority %d, popped %d)", maxPri, p.p)
}
q.Push(p)
}
lock.Unlock()
clock.Run(testStepPeriod)
clock.WaitForTimers(1)
}
stop := make(chan struct{})
stopCh <- stop
<-stop
}

View File

@ -96,17 +96,14 @@ func testCapacityAPI(t *testing.T, clientCount int) {
t.Fatalf("Failed to obtain rpc client: %v", err)
}
headNum, headHash := getHead(ctx, t, serverRpcClient)
totalCap := getTotalCap(ctx, t, serverRpcClient)
minCap := getMinCap(ctx, t, serverRpcClient)
minCap, freeCap, totalCap := getCapacityInfo(ctx, t, serverRpcClient)
testCap := totalCap * 3 / 4
t.Logf("Server testCap: %d minCap: %d head number: %d head hash: %064x\n", testCap, minCap, headNum, headHash)
reqMinCap := uint64(float64(testCap) * minRelCap / (minRelCap + float64(len(clients)-1)))
if minCap > reqMinCap {
t.Fatalf("Minimum client capacity (%d) bigger than required minimum for this test (%d)", minCap, reqMinCap)
}
freeIdx := rand.Intn(len(clients))
freeCap := getFreeCap(ctx, t, serverRpcClient)
for i, client := range clients {
var err error
@ -146,7 +143,7 @@ func testCapacityAPI(t *testing.T, clientCount int) {
i, c := i, c
go func() {
queue := make(chan struct{}, 100)
var count uint64
reqCount[i] = 0
for {
select {
case queue <- struct{}{}:
@ -164,8 +161,10 @@ func testCapacityAPI(t *testing.T, clientCount int) {
wg.Done()
<-queue
if ok {
count++
atomic.StoreUint64(&reqCount[i], count)
count := atomic.AddUint64(&reqCount[i], 1)
if count%10000 == 0 {
freezeClient(ctx, t, serverRpcClient, clients[i].ID())
}
}
}()
}
@ -238,7 +237,7 @@ func testCapacityAPI(t *testing.T, clientCount int) {
default:
}
totalCap = getTotalCap(ctx, t, serverRpcClient)
_, _, totalCap = getCapacityInfo(ctx, t, serverRpcClient)
if totalCap < testCap {
t.Log("Total capacity underrun")
close(stop)
@ -327,58 +326,61 @@ func testRequest(ctx context.Context, t *testing.T, client *rpc.Client) bool {
return err == nil
}
func freezeClient(ctx context.Context, t *testing.T, server *rpc.Client, clientID enode.ID) {
if err := server.CallContext(ctx, nil, "debug_freezeClient", clientID); err != nil {
t.Fatalf("Failed to freeze client: %v", err)
}
}
func setCapacity(ctx context.Context, t *testing.T, server *rpc.Client, clientID enode.ID, cap uint64) {
if err := server.CallContext(ctx, nil, "les_setClientCapacity", clientID, cap); err != nil {
params := make(map[string]interface{})
params["capacity"] = cap
if err := server.CallContext(ctx, nil, "les_setClientParams", []enode.ID{clientID}, []string{}, params); err != nil {
t.Fatalf("Failed to set client capacity: %v", err)
}
}
func getCapacity(ctx context.Context, t *testing.T, server *rpc.Client, clientID enode.ID) uint64 {
var s string
if err := server.CallContext(ctx, &s, "les_getClientCapacity", clientID); err != nil {
t.Fatalf("Failed to get client capacity: %v", err)
var res map[enode.ID]map[string]interface{}
if err := server.CallContext(ctx, &res, "les_clientInfo", []enode.ID{clientID}, []string{}); err != nil {
t.Fatalf("Failed to get client info: %v", err)
}
cap, err := hexutil.DecodeUint64(s)
if err != nil {
t.Fatalf("Failed to decode client capacity: %v", err)
info, ok := res[clientID]
if !ok {
t.Fatalf("Missing client info")
}
return cap
v, ok := info["capacity"]
if !ok {
t.Fatalf("Missing field in client info: capacity")
}
vv, ok := v.(float64)
if !ok {
t.Fatalf("Failed to decode capacity field")
}
return uint64(vv)
}
func getTotalCap(ctx context.Context, t *testing.T, server *rpc.Client) uint64 {
var s string
if err := server.CallContext(ctx, &s, "les_totalCapacity"); err != nil {
t.Fatalf("Failed to query total capacity: %v", err)
func getCapacityInfo(ctx context.Context, t *testing.T, server *rpc.Client) (minCap, freeCap, totalCap uint64) {
var res map[string]interface{}
if err := server.CallContext(ctx, &res, "les_serverInfo"); err != nil {
t.Fatalf("Failed to query server info: %v", err)
}
total, err := hexutil.DecodeUint64(s)
if err != nil {
t.Fatalf("Failed to decode total capacity: %v", err)
decode := func(s string) uint64 {
v, ok := res[s]
if !ok {
t.Fatalf("Missing field in server info: %s", s)
}
vv, ok := v.(float64)
if !ok {
t.Fatalf("Failed to decode server info field: %s", s)
}
return uint64(vv)
}
return total
}
func getMinCap(ctx context.Context, t *testing.T, server *rpc.Client) uint64 {
var s string
if err := server.CallContext(ctx, &s, "les_minimumCapacity"); err != nil {
t.Fatalf("Failed to query minimum capacity: %v", err)
}
min, err := hexutil.DecodeUint64(s)
if err != nil {
t.Fatalf("Failed to decode minimum capacity: %v", err)
}
return min
}
func getFreeCap(ctx context.Context, t *testing.T, server *rpc.Client) uint64 {
var s string
if err := server.CallContext(ctx, &s, "les_freeClientCapacity"); err != nil {
t.Fatalf("Failed to query free client capacity: %v", err)
}
free, err := hexutil.DecodeUint64(s)
if err != nil {
t.Fatalf("Failed to decode free client capacity: %v", err)
}
return free
minCap = decode("minimumCapacity")
freeCap = decode("freeClientCapacity")
totalCap = decode("totalCapacity")
return
}
func init() {

381
les/balance.go Normal file
View File

@ -0,0 +1,381 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
const (
balanceCallbackQueue = iota
balanceCallbackZero
balanceCallbackCount
)
// balanceTracker keeps track of the positive and negative balances of a connected
// client and calculates actual and projected future priority values required by
// prque.LazyQueue.
type balanceTracker struct {
lock sync.Mutex
clock mclock.Clock
stopped bool
capacity uint64
balance balance
timeFactor, requestFactor float64
negTimeFactor, negRequestFactor float64
sumReqCost uint64
lastUpdate, nextUpdate, initTime mclock.AbsTime
updateEvent mclock.Event
// since only a limited and fixed number of callbacks are needed, they are
// stored in a fixed size array ordered by priority threshold.
callbacks [balanceCallbackCount]balanceCallback
// callbackIndex maps balanceCallback constants to callbacks array indexes (-1 if not active)
callbackIndex [balanceCallbackCount]int
callbackCount int // number of active callbacks
}
// balance represents a pair of positive and negative balances
type balance struct {
pos, neg uint64
}
// balanceCallback represents a single callback that is activated when client priority
// reaches the given threshold
type balanceCallback struct {
id int
threshold int64
callback func()
}
// init initializes balanceTracker
func (bt *balanceTracker) init(clock mclock.Clock, capacity uint64) {
bt.clock = clock
bt.initTime = clock.Now()
for i := range bt.callbackIndex {
bt.callbackIndex[i] = -1
}
bt.capacity = capacity
}
// stop shuts down the balance tracker
func (bt *balanceTracker) stop(now mclock.AbsTime) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.stopped = true
bt.updateBalance(now)
bt.negTimeFactor = 0
bt.negRequestFactor = 0
bt.timeFactor = 0
bt.requestFactor = 0
if bt.updateEvent != nil {
bt.updateEvent.Cancel()
bt.updateEvent = nil
}
}
// balanceToPriority converts a balance to a priority value. Higher priority means
// first to disconnect. Positive balance translates to negative priority. If positive
// balance is zero then negative balance translates to a positive priority.
func (bt *balanceTracker) balanceToPriority(b balance) int64 {
if b.pos > 0 {
return ^int64(b.pos / bt.capacity)
}
return int64(b.neg)
}
// reducedBalance estimates the reduced balance at a given time in the fututre based
// on the current balance, the time factor and an estimated average request cost per time ratio
func (bt *balanceTracker) reducedBalance(at mclock.AbsTime, avgReqCost float64) balance {
dt := float64(at - bt.lastUpdate)
b := bt.balance
if b.pos != 0 {
factor := bt.timeFactor + bt.requestFactor*avgReqCost
diff := uint64(dt * factor)
if diff <= b.pos {
b.pos -= diff
dt = 0
} else {
dt -= float64(b.pos) / factor
b.pos = 0
}
}
if dt != 0 {
factor := bt.negTimeFactor + bt.negRequestFactor*avgReqCost
b.neg += uint64(dt * factor)
}
return b
}
// timeUntil calculates the remaining time needed to reach a given priority level
// assuming that no requests are processed until then. If the given level is never
// reached then (0, false) is returned.
// Note: the function assumes that the balance has been recently updated and
// calculates the time starting from the last update.
func (bt *balanceTracker) timeUntil(priority int64) (time.Duration, bool) {
var dt float64
if bt.balance.pos != 0 {
if bt.timeFactor < 1e-100 {
return 0, false
}
if priority < 0 {
newBalance := uint64(^priority) * bt.capacity
if newBalance > bt.balance.pos {
return 0, false
}
dt = float64(bt.balance.pos-newBalance) / bt.timeFactor
return time.Duration(dt), true
} else {
dt = float64(bt.balance.pos) / bt.timeFactor
}
} else {
if priority < 0 {
return 0, false
}
}
// if we have a positive balance then dt equals the time needed to get it to zero
if uint64(priority) > bt.balance.neg {
if bt.negTimeFactor < 1e-100 {
return 0, false
}
dt += float64(uint64(priority)-bt.balance.neg) / bt.negTimeFactor
}
return time.Duration(dt), true
}
// getPriority returns the actual priority based on the current balance
func (bt *balanceTracker) getPriority(now mclock.AbsTime) int64 {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.updateBalance(now)
return bt.balanceToPriority(bt.balance)
}
// estimatedPriority gives an upper estimate for the priority at a given time in the future.
// If addReqCost is true then an average request cost per time is assumed that is twice the
// average cost per time in the current session. If false, zero request cost is assumed.
func (bt *balanceTracker) estimatedPriority(at mclock.AbsTime, addReqCost bool) int64 {
bt.lock.Lock()
defer bt.lock.Unlock()
var avgReqCost float64
if addReqCost {
dt := time.Duration(bt.lastUpdate - bt.initTime)
if dt > time.Second {
avgReqCost = float64(bt.sumReqCost) * 2 / float64(dt)
}
}
return bt.balanceToPriority(bt.reducedBalance(at, avgReqCost))
}
// updateBalance updates balance based on the time factor
func (bt *balanceTracker) updateBalance(now mclock.AbsTime) {
if now > bt.lastUpdate {
bt.balance = bt.reducedBalance(now, 0)
bt.lastUpdate = now
}
}
// checkCallbacks checks whether the threshold of any of the active callbacks
// have been reached and calls them if necessary. It also sets up or updates
// a scheduled event to ensure that is will be called again just after the next
// threshold has been reached.
// Note: checkCallbacks assumes that the balance has been recently updated.
func (bt *balanceTracker) checkCallbacks(now mclock.AbsTime) {
if bt.callbackCount == 0 {
return
}
pri := bt.balanceToPriority(bt.balance)
for bt.callbackCount != 0 && bt.callbacks[bt.callbackCount-1].threshold <= pri {
bt.callbackCount--
bt.callbackIndex[bt.callbacks[bt.callbackCount].id] = -1
go bt.callbacks[bt.callbackCount].callback()
}
if bt.callbackCount != 0 {
d, ok := bt.timeUntil(bt.callbacks[bt.callbackCount-1].threshold)
if !ok {
bt.nextUpdate = 0
bt.updateAfter(0)
return
}
if bt.nextUpdate == 0 || bt.nextUpdate > now+mclock.AbsTime(d) {
if d > time.Second {
// Note: if the scheduled update is not in the very near future then we
// schedule the update a bit earlier. This way we do need to update a few
// extra times but don't need to reschedule every time a processed request
// brings the expected firing time a little bit closer.
d = ((d - time.Second) * 7 / 8) + time.Second
}
bt.nextUpdate = now + mclock.AbsTime(d)
bt.updateAfter(d)
}
} else {
bt.nextUpdate = 0
bt.updateAfter(0)
}
}
// updateAfter schedules a balance update and callback check in the future
func (bt *balanceTracker) updateAfter(dt time.Duration) {
if bt.updateEvent == nil || bt.updateEvent.Cancel() {
if dt == 0 {
bt.updateEvent = nil
} else {
bt.updateEvent = bt.clock.AfterFunc(dt, func() {
bt.lock.Lock()
defer bt.lock.Unlock()
if bt.callbackCount != 0 {
now := bt.clock.Now()
bt.updateBalance(now)
bt.checkCallbacks(now)
}
})
}
}
}
// requestCost should be called after serving a request for the given peer
func (bt *balanceTracker) requestCost(cost uint64) {
bt.lock.Lock()
defer bt.lock.Unlock()
if bt.stopped {
return
}
now := bt.clock.Now()
bt.updateBalance(now)
fcost := float64(cost)
if bt.balance.pos != 0 {
if bt.requestFactor != 0 {
c := uint64(fcost * bt.requestFactor)
if bt.balance.pos >= c {
bt.balance.pos -= c
fcost = 0
} else {
fcost *= 1 - float64(bt.balance.pos)/float64(c)
bt.balance.pos = 0
}
bt.checkCallbacks(now)
} else {
fcost = 0
}
}
if fcost > 0 {
if bt.negRequestFactor != 0 {
bt.balance.neg += uint64(fcost * bt.negRequestFactor)
bt.checkCallbacks(now)
}
}
bt.sumReqCost += cost
}
// getBalance returns the current positive and negative balance
func (bt *balanceTracker) getBalance(now mclock.AbsTime) (uint64, uint64) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.updateBalance(now)
return bt.balance.pos, bt.balance.neg
}
// setBalance sets the positive and negative balance to the given values
func (bt *balanceTracker) setBalance(pos, neg uint64) error {
bt.lock.Lock()
defer bt.lock.Unlock()
now := bt.clock.Now()
bt.updateBalance(now)
bt.balance.pos = pos
bt.balance.neg = neg
bt.checkCallbacks(now)
return nil
}
// setFactors sets the price factors. timeFactor is the price of a nanosecond of
// connection while requestFactor is the price of a "realCost" unit.
func (bt *balanceTracker) setFactors(neg bool, timeFactor, requestFactor float64) {
bt.lock.Lock()
defer bt.lock.Unlock()
if bt.stopped {
return
}
now := bt.clock.Now()
bt.updateBalance(now)
if neg {
bt.negTimeFactor = timeFactor
bt.negRequestFactor = requestFactor
} else {
bt.timeFactor = timeFactor
bt.requestFactor = requestFactor
}
bt.checkCallbacks(now)
}
// setCallback sets up a one-time callback to be called when priority reaches
// the threshold. If it has already reached the threshold the callback is called
// immediately.
func (bt *balanceTracker) addCallback(id int, threshold int64, callback func()) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.removeCb(id)
idx := 0
for idx < bt.callbackCount && threshold < bt.callbacks[idx].threshold {
idx++
}
for i := bt.callbackCount - 1; i >= idx; i-- {
bt.callbackIndex[bt.callbacks[i].id]++
bt.callbacks[i+1] = bt.callbacks[i]
}
bt.callbackCount++
bt.callbackIndex[id] = idx
bt.callbacks[idx] = balanceCallback{id, threshold, callback}
now := bt.clock.Now()
bt.updateBalance(now)
bt.checkCallbacks(now)
}
// removeCallback removes the given callback and returns true if it was active
func (bt *balanceTracker) removeCallback(id int) bool {
bt.lock.Lock()
defer bt.lock.Unlock()
return bt.removeCb(id)
}
// removeCb removes the given callback and returns true if it was active
// Note: should be called while bt.lock is held
func (bt *balanceTracker) removeCb(id int) bool {
idx := bt.callbackIndex[id]
if idx == -1 {
return false
}
bt.callbackIndex[id] = -1
for i := idx; i < bt.callbackCount-1; i++ {
bt.callbackIndex[bt.callbacks[i+1].id]--
bt.callbacks[i] = bt.callbacks[i+1]
}
bt.callbackCount--
return true
}

599
les/clientpool.go Normal file
View File

@ -0,0 +1,599 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"io"
"math"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/rlp"
)
const (
negBalanceExpTC = time.Hour // time constant for exponentially reducing negative balance
fixedPointMultiplier = 0x1000000 // constant to convert logarithms to fixed point format
connectedBias = time.Minute // this bias is applied in favor of already connected clients in order to avoid kicking them out very soon
lazyQueueRefresh = time.Second * 10 // refresh period of the connected queue
)
var (
clientPoolDbKey = []byte("clientPool")
clientBalanceDbKey = []byte("clientPool-balance")
)
// clientPool implements a client database that assigns a priority to each client
// based on a positive and negative balance. Positive balance is externally assigned
// to prioritized clients and is decreased with connection time and processed
// requests (unless the price factors are zero). If the positive balance is zero
// then negative balance is accumulated. Balance tracking and priority calculation
// for connected clients is done by balanceTracker. connectedQueue ensures that
// clients with the lowest positive or highest negative balance get evicted when
// the total capacity allowance is full and new clients with a better balance want
// to connect. Already connected nodes receive a small bias in their favor in order
// to avoid accepting and instantly kicking out clients.
// Balances of disconnected clients are stored in posBalanceQueue and negBalanceQueue
// and are also saved in the database. Negative balance is transformed into a
// logarithmic form with a constantly shifting linear offset in order to implement
// an exponential decrease. negBalanceQueue has a limited size and drops the smallest
// values when necessary. Positive balances are stored in the database as long as
// they exist, posBalanceQueue only acts as a cache for recently accessed entries.
type clientPool struct {
db ethdb.Database
lock sync.Mutex
clock mclock.Clock
stopCh chan chan struct{}
closed bool
removePeer func(enode.ID)
queueLimit, countLimit int
freeClientCap, capacityLimit, connectedCapacity uint64
connectedMap map[enode.ID]*clientInfo
posBalanceMap map[enode.ID]*posBalance
negBalanceMap map[string]*negBalance
connectedQueue *prque.LazyQueue
posBalanceQueue, negBalanceQueue *prque.Prque
posFactors, negFactors priceFactors
posBalanceAccessCounter int64
startupTime mclock.AbsTime
logOffsetAtStartup int64
}
// clientPeer represents a client in the pool.
// Positive balances are assigned to node key while negative balances are assigned
// to freeClientId. Currently network IP address without port is used because
// clients have a limited access to IP addresses while new node keys can be easily
// generated so it would be useless to assign a negative value to them.
type clientPeer interface {
ID() enode.ID
freeClientId() string
updateCapacity(uint64)
}
// clientInfo represents a connected client
type clientInfo struct {
address string
id enode.ID
capacity uint64
priority bool
pool *clientPool
peer clientPeer
queueIndex int // position in connectedQueue
balanceTracker balanceTracker
}
// connSetIndex callback updates clientInfo item index in connectedQueue
func connSetIndex(a interface{}, index int) {
a.(*clientInfo).queueIndex = index
}
// connPriority callback returns actual priority of clientInfo item in connectedQueue
func connPriority(a interface{}, now mclock.AbsTime) int64 {
c := a.(*clientInfo)
return c.balanceTracker.getPriority(now)
}
// connMaxPriority callback returns estimated maximum priority of clientInfo item in connectedQueue
func connMaxPriority(a interface{}, until mclock.AbsTime) int64 {
c := a.(*clientInfo)
pri := c.balanceTracker.estimatedPriority(until, true)
c.balanceTracker.addCallback(balanceCallbackQueue, pri+1, func() {
c.pool.lock.Lock()
if c.queueIndex != -1 {
c.pool.connectedQueue.Update(c.queueIndex)
}
c.pool.lock.Unlock()
})
return pri
}
// priceFactors determine the pricing policy (may apply either to positive or
// negative balances which may have different factors).
// - timeFactor is cost unit per nanosecond of connection time
// - capacityFactor is cost unit per nanosecond of connection time per 1000000 capacity
// - requestFactor is cost unit per request "realCost" unit
type priceFactors struct {
timeFactor, capacityFactor, requestFactor float64
}
// newClientPool creates a new client pool
func newClientPool(db ethdb.Database, freeClientCap uint64, queueLimit int, clock mclock.Clock, removePeer func(enode.ID)) *clientPool {
pool := &clientPool{
db: db,
clock: clock,
connectedMap: make(map[enode.ID]*clientInfo),
posBalanceMap: make(map[enode.ID]*posBalance),
negBalanceMap: make(map[string]*negBalance),
connectedQueue: prque.NewLazyQueue(connSetIndex, connPriority, connMaxPriority, clock, lazyQueueRefresh),
negBalanceQueue: prque.New(negSetIndex),
posBalanceQueue: prque.New(posSetIndex),
freeClientCap: freeClientCap,
queueLimit: queueLimit,
removePeer: removePeer,
stopCh: make(chan chan struct{}),
}
pool.loadFromDb()
go func() {
for {
select {
case <-clock.After(lazyQueueRefresh):
pool.lock.Lock()
pool.connectedQueue.Refresh()
pool.lock.Unlock()
case stop := <-pool.stopCh:
close(stop)
return
}
}
}()
return pool
}
// stop shuts the client pool down
func (f *clientPool) stop() {
stop := make(chan struct{})
f.stopCh <- stop
<-stop
f.lock.Lock()
f.closed = true
f.saveToDb()
f.lock.Unlock()
}
// registerPeer implements peerSetNotify
func (f *clientPool) registerPeer(p *peer) {
c := f.connect(p, 0)
if c != nil {
p.balanceTracker = &c.balanceTracker
}
}
// connect should be called after a successful handshake. If the connection was
// rejected, there is no need to call disconnect.
func (f *clientPool) connect(peer clientPeer, capacity uint64) *clientInfo {
f.lock.Lock()
defer f.lock.Unlock()
if f.closed {
return nil
}
address := peer.freeClientId()
id := peer.ID()
idStr := peerIdToString(id)
if _, ok := f.connectedMap[id]; ok {
clientRejectedMeter.Mark(1)
log.Debug("Client already connected", "address", address, "id", idStr)
return nil
}
now := f.clock.Now()
// create a clientInfo but do not add it yet
e := &clientInfo{pool: f, peer: peer, address: address, queueIndex: -1, id: id}
posBalance := f.getPosBalance(id).value
e.priority = posBalance != 0
var negBalance uint64
nb := f.negBalanceMap[address]
if nb != nil {
negBalance = uint64(math.Exp(float64(nb.logValue-f.logOffset(now)) / fixedPointMultiplier))
}
if !e.priority {
capacity = f.freeClientCap
}
// check whether it fits into connectedQueue
if capacity < f.freeClientCap {
capacity = f.freeClientCap
}
e.capacity = capacity
e.balanceTracker.init(f.clock, capacity)
e.balanceTracker.setBalance(posBalance, negBalance)
f.setClientPriceFactors(e)
newCapacity := f.connectedCapacity + capacity
newCount := f.connectedQueue.Size() + 1
if newCapacity > f.capacityLimit || newCount > f.countLimit {
var (
kickList []*clientInfo
kickPriority int64
)
f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool {
c := data.(*clientInfo)
kickList = append(kickList, c)
kickPriority = priority
newCapacity -= c.capacity
newCount--
return newCapacity > f.capacityLimit || newCount > f.countLimit
})
if newCapacity > f.capacityLimit || newCount > f.countLimit || (e.balanceTracker.estimatedPriority(now+mclock.AbsTime(connectedBias), false)-kickPriority) > 0 {
// reject client
for _, c := range kickList {
f.connectedQueue.Push(c)
}
clientRejectedMeter.Mark(1)
log.Debug("Client rejected", "address", address, "id", idStr)
return nil
}
// accept new client, drop old ones
for _, c := range kickList {
f.dropClient(c, now, true)
}
}
// client accepted, finish setting it up
if nb != nil {
delete(f.negBalanceMap, address)
f.negBalanceQueue.Remove(nb.queueIndex)
}
if e.priority {
e.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) })
}
f.connectedMap[id] = e
f.connectedQueue.Push(e)
f.connectedCapacity += e.capacity
totalConnectedGauge.Update(int64(f.connectedCapacity))
if e.capacity != f.freeClientCap {
e.peer.updateCapacity(e.capacity)
}
clientConnectedMeter.Mark(1)
log.Debug("Client accepted", "address", address)
return e
}
// unregisterPeer implements peerSetNotify
func (f *clientPool) unregisterPeer(p *peer) {
f.disconnect(p)
}
// disconnect should be called when a connection is terminated. If the disconnection
// was initiated by the pool itself using disconnectFn then calling disconnect is
// not necessary but permitted.
func (f *clientPool) disconnect(p clientPeer) {
f.lock.Lock()
defer f.lock.Unlock()
if f.closed {
return
}
address := p.freeClientId()
id := p.ID()
// Short circuit if the peer hasn't been registered.
e := f.connectedMap[id]
if e == nil {
log.Debug("Client not connected", "address", address, "id", peerIdToString(id))
return
}
f.dropClient(e, f.clock.Now(), false)
}
// dropClient removes a client from the connected queue and finalizes its balance.
// If kick is true then it also initiates the disconnection.
func (f *clientPool) dropClient(e *clientInfo, now mclock.AbsTime, kick bool) {
if _, ok := f.connectedMap[e.id]; !ok {
return
}
f.finalizeBalance(e, now)
f.connectedQueue.Remove(e.queueIndex)
delete(f.connectedMap, e.id)
f.connectedCapacity -= e.capacity
totalConnectedGauge.Update(int64(f.connectedCapacity))
if kick {
clientKickedMeter.Mark(1)
log.Debug("Client kicked out", "address", e.address)
f.removePeer(e.id)
} else {
clientDisconnectedMeter.Mark(1)
log.Debug("Client disconnected", "address", e.address)
}
}
// finalizeBalance stops the balance tracker, retrieves the final balances and
// stores them in posBalanceQueue and negBalanceQueue
func (f *clientPool) finalizeBalance(c *clientInfo, now mclock.AbsTime) {
c.balanceTracker.stop(now)
pos, neg := c.balanceTracker.getBalance(now)
pb := f.getPosBalance(c.id)
pb.value = pos
f.storePosBalance(pb)
if neg < 1 {
neg = 1
}
nb := &negBalance{address: c.address, queueIndex: -1, logValue: int64(math.Log(float64(neg))*fixedPointMultiplier) + f.logOffset(now)}
f.negBalanceMap[c.address] = nb
f.negBalanceQueue.Push(nb, -nb.logValue)
if f.negBalanceQueue.Size() > f.queueLimit {
nn := f.negBalanceQueue.PopItem().(*negBalance)
delete(f.negBalanceMap, nn.address)
}
}
// balanceExhausted callback is called by balanceTracker when positive balance is exhausted.
// It revokes priority status and also reduces the client capacity if necessary.
func (f *clientPool) balanceExhausted(id enode.ID) {
f.lock.Lock()
defer f.lock.Unlock()
c := f.connectedMap[id]
if c == nil || !c.priority {
return
}
c.priority = false
if c.capacity != f.freeClientCap {
f.connectedCapacity += f.freeClientCap - c.capacity
totalConnectedGauge.Update(int64(f.connectedCapacity))
c.capacity = f.freeClientCap
c.peer.updateCapacity(c.capacity)
}
}
// setConnLimit sets the maximum number and total capacity of connected clients,
// dropping some of them if necessary.
func (f *clientPool) setLimits(count int, totalCap uint64) {
f.lock.Lock()
defer f.lock.Unlock()
f.countLimit = count
f.capacityLimit = totalCap
now := mclock.Now()
f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool {
c := data.(*clientInfo)
f.dropClient(c, now, true)
return f.connectedCapacity > f.capacityLimit || f.connectedQueue.Size() > f.countLimit
})
}
// logOffset calculates the time-dependent offset for the logarithmic
// representation of negative balance
func (f *clientPool) logOffset(now mclock.AbsTime) int64 {
// Note: fixedPointMultiplier acts as a multiplier here; the reason for dividing the divisor
// is to avoid int64 overflow. We assume that int64(negBalanceExpTC) >> fixedPointMultiplier.
logDecay := int64((time.Duration(now - f.startupTime)) / (negBalanceExpTC / fixedPointMultiplier))
return f.logOffsetAtStartup + logDecay
}
// setPriceFactors changes pricing factors for both positive and negative balances.
// Applies to connected clients and also future connections.
func (f *clientPool) setPriceFactors(posFactors, negFactors priceFactors) {
f.lock.Lock()
defer f.lock.Unlock()
f.posFactors, f.negFactors = posFactors, negFactors
for _, c := range f.connectedMap {
f.setClientPriceFactors(c)
}
}
// setClientPriceFactors sets the pricing factors for an individual connected client
func (f *clientPool) setClientPriceFactors(c *clientInfo) {
c.balanceTracker.setFactors(true, f.negFactors.timeFactor+float64(c.capacity)*f.negFactors.capacityFactor/1000000, f.negFactors.requestFactor)
c.balanceTracker.setFactors(false, f.posFactors.timeFactor+float64(c.capacity)*f.posFactors.capacityFactor/1000000, f.posFactors.requestFactor)
}
// clientPoolStorage is the RLP representation of the pool's database storage
type clientPoolStorage struct {
LogOffset uint64
List []*negBalance
}
// loadFromDb restores pool status from the database storage
// (automatically called at initialization)
func (f *clientPool) loadFromDb() {
enc, err := f.db.Get(clientPoolDbKey)
if err != nil {
return
}
var storage clientPoolStorage
err = rlp.DecodeBytes(enc, &storage)
if err != nil {
log.Error("Failed to decode client list", "err", err)
return
}
f.logOffsetAtStartup = int64(storage.LogOffset)
f.startupTime = f.clock.Now()
for _, e := range storage.List {
log.Debug("Loaded free client record", "address", e.address, "logValue", e.logValue)
f.negBalanceMap[e.address] = e
f.negBalanceQueue.Push(e, -e.logValue)
}
}
// saveToDb saves pool status to the database storage
// (automatically called during shutdown)
func (f *clientPool) saveToDb() {
now := f.clock.Now()
storage := clientPoolStorage{
LogOffset: uint64(f.logOffset(now)),
}
for _, c := range f.connectedMap {
f.finalizeBalance(c, now)
}
i := 0
storage.List = make([]*negBalance, len(f.negBalanceMap))
for _, e := range f.negBalanceMap {
storage.List[i] = e
i++
}
enc, err := rlp.EncodeToBytes(storage)
if err != nil {
log.Error("Failed to encode negative balance list", "err", err)
} else {
f.db.Put(clientPoolDbKey, enc)
}
}
// storePosBalance stores a single positive balance entry in the database
func (f *clientPool) storePosBalance(b *posBalance) {
if b.value == b.lastStored {
return
}
enc, err := rlp.EncodeToBytes(b)
if err != nil {
log.Error("Failed to encode client balance", "err", err)
} else {
f.db.Put(append(clientBalanceDbKey, b.id[:]...), enc)
b.lastStored = b.value
}
}
// getPosBalance retrieves a single positive balance entry from cache or the database
func (f *clientPool) getPosBalance(id enode.ID) *posBalance {
if b, ok := f.posBalanceMap[id]; ok {
f.posBalanceQueue.Remove(b.queueIndex)
f.posBalanceAccessCounter--
f.posBalanceQueue.Push(b, f.posBalanceAccessCounter)
return b
}
balance := &posBalance{}
if enc, err := f.db.Get(append(clientBalanceDbKey, id[:]...)); err == nil {
if err := rlp.DecodeBytes(enc, balance); err != nil {
log.Error("Failed to decode client balance", "err", err)
balance = &posBalance{}
}
}
balance.id = id
balance.queueIndex = -1
if f.posBalanceQueue.Size() >= f.queueLimit {
b := f.posBalanceQueue.PopItem().(*posBalance)
f.storePosBalance(b)
delete(f.posBalanceMap, b.id)
}
f.posBalanceAccessCounter--
f.posBalanceQueue.Push(balance, f.posBalanceAccessCounter)
f.posBalanceMap[id] = balance
return balance
}
// addBalance updates the positive balance of a client.
// If setTotal is false then the given amount is added to the balance.
// If setTotal is true then amount represents the total amount ever added to the
// given ID and positive balance is increased by (amount-lastTotal) while lastTotal
// is updated to amount. This method also allows removing positive balance.
func (f *clientPool) addBalance(id enode.ID, amount uint64, setTotal bool) {
f.lock.Lock()
defer f.lock.Unlock()
pb := f.getPosBalance(id)
c := f.connectedMap[id]
var negBalance uint64
if c != nil {
pb.value, negBalance = c.balanceTracker.getBalance(f.clock.Now())
}
if setTotal {
if pb.value+amount > pb.lastTotal {
pb.value += amount - pb.lastTotal
} else {
pb.value = 0
}
pb.lastTotal = amount
} else {
pb.value += amount
pb.lastTotal += amount
}
f.storePosBalance(pb)
if c != nil {
c.balanceTracker.setBalance(pb.value, negBalance)
if !c.priority && pb.value > 0 {
c.priority = true
c.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) })
}
}
}
// posBalance represents a recently accessed positive balance entry
type posBalance struct {
id enode.ID
value, lastStored, lastTotal uint64
queueIndex int // position in posBalanceQueue
}
// EncodeRLP implements rlp.Encoder
func (e *posBalance) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, []interface{}{e.value, e.lastTotal})
}
// DecodeRLP implements rlp.Decoder
func (e *posBalance) DecodeRLP(s *rlp.Stream) error {
var entry struct {
Value, LastTotal uint64
}
if err := s.Decode(&entry); err != nil {
return err
}
e.value = entry.Value
e.lastStored = entry.Value
e.lastTotal = entry.LastTotal
return nil
}
// posSetIndex callback updates posBalance item index in posBalanceQueue
func posSetIndex(a interface{}, index int) {
a.(*posBalance).queueIndex = index
}
// negBalance represents a negative balance entry of a disconnected client
type negBalance struct {
address string
logValue int64
queueIndex int // position in negBalanceQueue
}
// EncodeRLP implements rlp.Encoder
func (e *negBalance) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, []interface{}{e.address, uint64(e.logValue)})
}
// DecodeRLP implements rlp.Decoder
func (e *negBalance) DecodeRLP(s *rlp.Stream) error {
var entry struct {
Address string
LogValue uint64
}
if err := s.Decode(&entry); err != nil {
return err
}
e.address = entry.Address
e.logValue = int64(entry.LogValue)
e.queueIndex = -1
return nil
}
// negSetIndex callback updates negBalance item index in negBalanceQueue
func negSetIndex(a interface{}, index int) {
a.(*negBalance).queueIndex = index
}

180
les/clientpool_test.go Normal file
View File

@ -0,0 +1,180 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"fmt"
"math/rand"
"testing"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/p2p/enode"
)
func TestClientPoolL10C100Free(t *testing.T) {
testClientPool(t, 10, 100, 0, true)
}
func TestClientPoolL40C200Free(t *testing.T) {
testClientPool(t, 40, 200, 0, true)
}
func TestClientPoolL100C300Free(t *testing.T) {
testClientPool(t, 100, 300, 0, true)
}
func TestClientPoolL10C100P4(t *testing.T) {
testClientPool(t, 10, 100, 4, false)
}
func TestClientPoolL40C200P30(t *testing.T) {
testClientPool(t, 40, 200, 30, false)
}
func TestClientPoolL100C300P20(t *testing.T) {
testClientPool(t, 100, 300, 20, false)
}
const testClientPoolTicks = 500000
type poolTestPeer int
func (i poolTestPeer) ID() enode.ID {
return enode.ID{byte(i % 256), byte(i >> 8)}
}
func (i poolTestPeer) freeClientId() string {
return fmt.Sprintf("addr #%d", i)
}
func (i poolTestPeer) updateCapacity(uint64) {}
func testClientPool(t *testing.T, connLimit, clientCount, paidCount int, randomDisconnect bool) {
rand.Seed(time.Now().UnixNano())
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
connected = make([]bool, clientCount)
connTicks = make([]int, clientCount)
disconnCh = make(chan int, clientCount)
disconnFn = func(id enode.ID) {
disconnCh <- int(id[0]) + int(id[1])<<8
}
pool = newClientPool(db, 1, 10000, &clock, disconnFn)
)
pool.setLimits(connLimit, uint64(connLimit))
pool.setPriceFactors(priceFactors{1, 0, 1}, priceFactors{1, 0, 1})
// pool should accept new peers up to its connected limit
for i := 0; i < connLimit; i++ {
if pool.connect(poolTestPeer(i), 0) != nil {
connected[i] = true
} else {
t.Fatalf("Test peer #%d rejected", i)
}
}
// since all accepted peers are new and should not be kicked out, the next one should be rejected
if pool.connect(poolTestPeer(connLimit), 0) != nil {
connected[connLimit] = true
t.Fatalf("Peer accepted over connected limit")
}
// randomly connect and disconnect peers, expect to have a similar total connection time at the end
for tickCounter := 0; tickCounter < testClientPoolTicks; tickCounter++ {
clock.Run(1 * time.Second)
//time.Sleep(time.Microsecond * 100)
if tickCounter == testClientPoolTicks/4 {
// give a positive balance to some of the peers
amount := uint64(testClientPoolTicks / 2 * 1000000000) // enough for half of the simulation period
for i := 0; i < paidCount; i++ {
pool.addBalance(poolTestPeer(i).ID(), amount, false)
}
}
i := rand.Intn(clientCount)
if connected[i] {
if randomDisconnect {
pool.disconnect(poolTestPeer(i))
connected[i] = false
connTicks[i] += tickCounter
}
} else {
if pool.connect(poolTestPeer(i), 0) != nil {
connected[i] = true
connTicks[i] -= tickCounter
}
}
pollDisconnects:
for {
select {
case i := <-disconnCh:
pool.disconnect(poolTestPeer(i))
if connected[i] {
connTicks[i] += tickCounter
connected[i] = false
}
default:
break pollDisconnects
}
}
}
expTicks := testClientPoolTicks/2*connLimit/clientCount + testClientPoolTicks/2*(connLimit-paidCount)/(clientCount-paidCount)
expMin := expTicks - expTicks/10
expMax := expTicks + expTicks/10
paidTicks := testClientPoolTicks/2*connLimit/clientCount + testClientPoolTicks/2
paidMin := paidTicks - paidTicks/10
paidMax := paidTicks + paidTicks/10
// check if the total connected time of peers are all in the expected range
for i, c := range connected {
if c {
connTicks[i] += testClientPoolTicks
}
min, max := expMin, expMax
if i < paidCount {
// expect a higher amount for clients with a positive balance
min, max = paidMin, paidMax
}
if connTicks[i] < min || connTicks[i] > max {
t.Errorf("Total connected time of test node #%d (%d) outside expected range (%d to %d)", i, connTicks[i], min, max)
}
}
// a previously unknown peer should be accepted now
if pool.connect(poolTestPeer(54321), 0) == nil {
t.Fatalf("Previously unknown peer rejected")
}
// close and restart pool
pool.stop()
pool = newClientPool(db, 1, 10000, &clock, func(id enode.ID) {})
pool.setLimits(connLimit, uint64(connLimit))
// try connecting all known peers (connLimit should be filled up)
for i := 0; i < clientCount; i++ {
pool.connect(poolTestPeer(i), 0)
}
// expect pool to remember known nodes and kick out one of them to accept a new one
if pool.connect(poolTestPeer(54322), 0) == nil {
t.Errorf("Previously unknown peer rejected after restarting pool")
}
pool.stop()
}

View File

@ -17,7 +17,6 @@
package les
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/common"
@ -64,7 +63,7 @@ func (c *lesCommons) makeProtocols(versions []uint) []p2p.Protocol {
return c.protocolManager.runPeer(version, p, rw)
},
PeerInfo: func(id enode.ID) interface{} {
if p := c.protocolManager.peers.Peer(fmt.Sprintf("%x", id.Bytes())); p != nil {
if p := c.protocolManager.peers.Peer(peerIdToString(id)); p != nil {
return p.Info()
}
return nil

View File

@ -1,351 +0,0 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"io"
"math"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
)
// freeClientPool implements a client database that limits the connection time
// of each client and manages accepting/rejecting incoming connections and even
// kicking out some connected clients. The pool calculates recent usage time
// for each known client (a value that increases linearly when the client is
// connected and decreases exponentially when not connected). Clients with lower
// recent usage are preferred, unknown nodes have the highest priority. Already
// connected nodes receive a small bias in their favor in order to avoid accepting
// and instantly kicking out clients.
//
// Note: the pool can use any string for client identification. Using signature
// keys for that purpose would not make sense when being known has a negative
// value for the client. Currently the LES protocol manager uses IP addresses
// (without port address) to identify clients.
type freeClientPool struct {
db ethdb.Database
lock sync.Mutex
clock mclock.Clock
closed bool
removePeer func(string)
connectedLimit, totalLimit int
freeClientCap uint64
connectedCap uint64
addressMap map[string]*freeClientPoolEntry
connPool, disconnPool *prque.Prque
startupTime mclock.AbsTime
logOffsetAtStartup int64
}
const (
recentUsageExpTC = time.Hour // time constant of the exponential weighting window for "recent" server usage
fixedPointMultiplier = 0x1000000 // constant to convert logarithms to fixed point format
connectedBias = time.Minute // this bias is applied in favor of already connected clients in order to avoid kicking them out very soon
)
// newFreeClientPool creates a new free client pool
func newFreeClientPool(db ethdb.Database, freeClientCap uint64, totalLimit int, clock mclock.Clock, removePeer func(string)) *freeClientPool {
pool := &freeClientPool{
db: db,
clock: clock,
addressMap: make(map[string]*freeClientPoolEntry),
connPool: prque.New(poolSetIndex),
disconnPool: prque.New(poolSetIndex),
freeClientCap: freeClientCap,
totalLimit: totalLimit,
removePeer: removePeer,
}
pool.loadFromDb()
return pool
}
func (f *freeClientPool) stop() {
f.lock.Lock()
f.closed = true
f.saveToDb()
f.lock.Unlock()
}
// freeClientId returns a string identifier for the peer. Multiple peers with the
// same identifier can not be in the free client pool simultaneously.
func freeClientId(p *peer) string {
if addr, ok := p.RemoteAddr().(*net.TCPAddr); ok {
if addr.IP.IsLoopback() {
// using peer id instead of loopback ip address allows multiple free
// connections from local machine to own server
return p.id
} else {
return addr.IP.String()
}
}
return ""
}
// registerPeer implements clientPool
func (f *freeClientPool) registerPeer(p *peer) {
if freeId := freeClientId(p); freeId != "" {
if !f.connect(freeId, p.id) {
f.removePeer(p.id)
}
}
}
// connect should be called after a successful handshake. If the connection was
// rejected, there is no need to call disconnect.
func (f *freeClientPool) connect(address, id string) bool {
f.lock.Lock()
defer f.lock.Unlock()
if f.closed {
return false
}
if f.connectedLimit == 0 {
log.Debug("Client rejected", "address", address)
return false
}
e := f.addressMap[address]
now := f.clock.Now()
var recentUsage int64
if e == nil {
e = &freeClientPoolEntry{address: address, index: -1, id: id}
f.addressMap[address] = e
} else {
if e.connected {
log.Debug("Client already connected", "address", address)
return false
}
recentUsage = int64(math.Exp(float64(e.logUsage-f.logOffset(now)) / fixedPointMultiplier))
}
e.linUsage = recentUsage - int64(now)
// check whether (linUsage+connectedBias) is smaller than the highest entry in the connected pool
if f.connPool.Size() == f.connectedLimit {
i := f.connPool.PopItem().(*freeClientPoolEntry)
if e.linUsage+int64(connectedBias)-i.linUsage < 0 {
// kick it out and accept the new client
f.dropClient(i, now)
clientKickedMeter.Mark(1)
f.connectedCap -= f.freeClientCap
} else {
// keep the old client and reject the new one
f.connPool.Push(i, i.linUsage)
log.Debug("Client rejected", "address", address)
clientRejectedMeter.Mark(1)
return false
}
}
f.disconnPool.Remove(e.index)
e.connected = true
e.id = id
f.connPool.Push(e, e.linUsage)
if f.connPool.Size()+f.disconnPool.Size() > f.totalLimit {
f.disconnPool.Pop()
}
f.connectedCap += f.freeClientCap
totalConnectedGauge.Update(int64(f.connectedCap))
clientConnectedMeter.Mark(1)
log.Debug("Client accepted", "address", address)
return true
}
// unregisterPeer implements clientPool
func (f *freeClientPool) unregisterPeer(p *peer) {
if freeId := freeClientId(p); freeId != "" {
f.disconnect(freeId)
}
}
// disconnect should be called when a connection is terminated. If the disconnection
// was initiated by the pool itself using disconnectFn then calling disconnect is
// not necessary but permitted.
func (f *freeClientPool) disconnect(address string) {
f.lock.Lock()
defer f.lock.Unlock()
if f.closed {
return
}
// Short circuit if the peer hasn't been registered.
e := f.addressMap[address]
if e == nil {
return
}
now := f.clock.Now()
if !e.connected {
log.Debug("Client already disconnected", "address", address)
return
}
f.connPool.Remove(e.index)
f.calcLogUsage(e, now)
e.connected = false
f.disconnPool.Push(e, -e.logUsage)
f.connectedCap -= f.freeClientCap
totalConnectedGauge.Update(int64(f.connectedCap))
log.Debug("Client disconnected", "address", address)
}
// setConnLimit sets the maximum number of free client slots and also drops
// some peers if necessary
func (f *freeClientPool) setLimits(count int, totalCap uint64) {
f.lock.Lock()
defer f.lock.Unlock()
f.connectedLimit = int(totalCap / f.freeClientCap)
if count < f.connectedLimit {
f.connectedLimit = count
}
now := mclock.Now()
for f.connPool.Size() > f.connectedLimit {
i := f.connPool.PopItem().(*freeClientPoolEntry)
f.dropClient(i, now)
f.connectedCap -= f.freeClientCap
}
totalConnectedGauge.Update(int64(f.connectedCap))
}
// dropClient disconnects a client and also moves it from the connected to the
// disconnected pool
func (f *freeClientPool) dropClient(i *freeClientPoolEntry, now mclock.AbsTime) {
f.connPool.Remove(i.index)
f.calcLogUsage(i, now)
i.connected = false
f.disconnPool.Push(i, -i.logUsage)
log.Debug("Client kicked out", "address", i.address)
f.removePeer(i.id)
}
// logOffset calculates the time-dependent offset for the logarithmic
// representation of recent usage
func (f *freeClientPool) logOffset(now mclock.AbsTime) int64 {
// Note: fixedPointMultiplier acts as a multiplier here; the reason for dividing the divisor
// is to avoid int64 overflow. We assume that int64(recentUsageExpTC) >> fixedPointMultiplier.
logDecay := int64((time.Duration(now - f.startupTime)) / (recentUsageExpTC / fixedPointMultiplier))
return f.logOffsetAtStartup + logDecay
}
// calcLogUsage converts recent usage from linear to logarithmic representation
// when disconnecting a peer or closing the client pool
func (f *freeClientPool) calcLogUsage(e *freeClientPoolEntry, now mclock.AbsTime) {
dt := e.linUsage + int64(now)
if dt < 1 {
dt = 1
}
e.logUsage = int64(math.Log(float64(dt))*fixedPointMultiplier) + f.logOffset(now)
}
// freeClientPoolStorage is the RLP representation of the pool's database storage
type freeClientPoolStorage struct {
LogOffset uint64
List []*freeClientPoolEntry
}
// loadFromDb restores pool status from the database storage
// (automatically called at initialization)
func (f *freeClientPool) loadFromDb() {
enc, err := f.db.Get([]byte("freeClientPool"))
if err != nil {
return
}
var storage freeClientPoolStorage
err = rlp.DecodeBytes(enc, &storage)
if err != nil {
log.Error("Failed to decode client list", "err", err)
return
}
f.logOffsetAtStartup = int64(storage.LogOffset)
f.startupTime = f.clock.Now()
for _, e := range storage.List {
log.Debug("Loaded free client record", "address", e.address, "logUsage", e.logUsage)
f.addressMap[e.address] = e
f.disconnPool.Push(e, -e.logUsage)
}
}
// saveToDb saves pool status to the database storage
// (automatically called during shutdown)
func (f *freeClientPool) saveToDb() {
now := f.clock.Now()
storage := freeClientPoolStorage{
LogOffset: uint64(f.logOffset(now)),
List: make([]*freeClientPoolEntry, len(f.addressMap)),
}
i := 0
for _, e := range f.addressMap {
if e.connected {
f.calcLogUsage(e, now)
}
storage.List[i] = e
i++
}
enc, err := rlp.EncodeToBytes(storage)
if err != nil {
log.Error("Failed to encode client list", "err", err)
} else {
f.db.Put([]byte("freeClientPool"), enc)
}
}
// freeClientPoolEntry represents a client address known by the pool.
// When connected, recent usage is calculated as linUsage + int64(clock.Now())
// When disconnected, it is calculated as exp(logUsage - logOffset) where logOffset
// also grows linearly with time while the server is running.
// Conversion between linear and logarithmic representation happens when connecting
// or disconnecting the node.
//
// Note: linUsage and logUsage are values used with constantly growing offsets so
// even though they are close to each other at any time they may wrap around int64
// limits over time. Comparison should be performed accordingly.
type freeClientPoolEntry struct {
address, id string
connected bool
disconnectFn func()
linUsage, logUsage int64
index int
}
func (e *freeClientPoolEntry) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, []interface{}{e.address, uint64(e.logUsage)})
}
func (e *freeClientPoolEntry) DecodeRLP(s *rlp.Stream) error {
var entry struct {
Address string
LogUsage uint64
}
if err := s.Decode(&entry); err != nil {
return err
}
e.address = entry.Address
e.logUsage = int64(entry.LogUsage)
e.connected = false
e.index = -1
return nil
}
// poolSetIndex callback is used by both priority queues to set/update the index of
// the element in the queue. Index is needed to remove elements other than the top one.
func poolSetIndex(a interface{}, i int) {
a.(*freeClientPoolEntry).index = i
}

View File

@ -1,145 +0,0 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"fmt"
"math/rand"
"strconv"
"testing"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/rawdb"
)
func TestFreeClientPoolL10C100(t *testing.T) {
testFreeClientPool(t, 10, 100)
}
func TestFreeClientPoolL40C200(t *testing.T) {
testFreeClientPool(t, 40, 200)
}
func TestFreeClientPoolL100C300(t *testing.T) {
testFreeClientPool(t, 100, 300)
}
const testFreeClientPoolTicks = 500000
func testFreeClientPool(t *testing.T, connLimit, clientCount int) {
var (
clock mclock.Simulated
db = rawdb.NewMemoryDatabase()
connected = make([]bool, clientCount)
connTicks = make([]int, clientCount)
disconnCh = make(chan int, clientCount)
peerAddress = func(i int) string {
return fmt.Sprintf("addr #%d", i)
}
peerId = func(i int) string {
return fmt.Sprintf("id #%d", i)
}
disconnFn = func(id string) {
i, err := strconv.Atoi(id[4:])
if err != nil {
panic(err)
}
disconnCh <- i
}
pool = newFreeClientPool(db, 1, 10000, &clock, disconnFn)
)
pool.setLimits(connLimit, uint64(connLimit))
// pool should accept new peers up to its connected limit
for i := 0; i < connLimit; i++ {
if pool.connect(peerAddress(i), peerId(i)) {
connected[i] = true
} else {
t.Fatalf("Test peer #%d rejected", i)
}
}
// since all accepted peers are new and should not be kicked out, the next one should be rejected
if pool.connect(peerAddress(connLimit), peerId(connLimit)) {
connected[connLimit] = true
t.Fatalf("Peer accepted over connected limit")
}
// randomly connect and disconnect peers, expect to have a similar total connection time at the end
for tickCounter := 0; tickCounter < testFreeClientPoolTicks; tickCounter++ {
clock.Run(1 * time.Second)
i := rand.Intn(clientCount)
if connected[i] {
pool.disconnect(peerAddress(i))
connected[i] = false
connTicks[i] += tickCounter
} else {
if pool.connect(peerAddress(i), peerId(i)) {
connected[i] = true
connTicks[i] -= tickCounter
}
}
pollDisconnects:
for {
select {
case i := <-disconnCh:
pool.disconnect(peerAddress(i))
if connected[i] {
connTicks[i] += tickCounter
connected[i] = false
}
default:
break pollDisconnects
}
}
}
expTicks := testFreeClientPoolTicks * connLimit / clientCount
expMin := expTicks - expTicks/10
expMax := expTicks + expTicks/10
// check if the total connected time of peers are all in the expected range
for i, c := range connected {
if c {
connTicks[i] += testFreeClientPoolTicks
}
if connTicks[i] < expMin || connTicks[i] > expMax {
t.Errorf("Total connected time of test node #%d (%d) outside expected range (%d to %d)", i, connTicks[i], expMin, expMax)
}
}
// a previously unknown peer should be accepted now
if !pool.connect("newAddr", "newId") {
t.Fatalf("Previously unknown peer rejected")
}
// close and restart pool
pool.stop()
pool = newFreeClientPool(db, 1, 10000, &clock, disconnFn)
pool.setLimits(connLimit, uint64(connLimit))
// try connecting all known peers (connLimit should be filled up)
for i := 0; i < clientCount; i++ {
pool.connect(peerAddress(i), peerId(i))
}
// expect pool to remember known nodes and kick out one of them to accept a new one
if !pool.connect("newAddr2", "newId2") {
t.Errorf("Previously unknown peer rejected after restarting pool")
}
pool.stop()
}

View File

@ -27,6 +27,7 @@ import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
@ -304,8 +305,14 @@ func (pm *ProtocolManager) handle(p *peer) error {
p.Log().Error("Light Ethereum peer registration failed", "err", err)
return err
}
if !pm.client && p.balanceTracker == nil {
// add dummy balance tracker for tests
p.balanceTracker = &balanceTracker{}
p.balanceTracker.init(&mclock.System{}, 1)
}
connectedAt := time.Now()
defer func() {
p.balanceTracker = nil
pm.removePeer(p.id)
connectionTimer.UpdateSince(connectedAt)
}()
@ -400,6 +407,7 @@ func (pm *ProtocolManager) handleMsg(p *peer) error {
defer msg.Discard()
var deliverMsg *Msg
balanceTracker := p.balanceTracker
sendResponse := func(reqID, amount uint64, reply *reply, servingTime uint64) {
p.responseLock.Lock()
@ -418,6 +426,7 @@ func (pm *ProtocolManager) handleMsg(p *peer) error {
realCost = pm.server.costTracker.realCost(servingTime, msg.Size, replySize)
if amount != 0 {
pm.server.costTracker.updateStats(msg.Code, amount, servingTime, realCost)
balanceTracker.requestCost(realCost)
}
} else {
realCost = maxCost

View File

@ -29,24 +29,24 @@ var (
connectionTimer = metrics.NewRegisteredTimer("les/connectionTime", nil)
totalConnectedGauge = metrics.NewRegisteredGauge("les/server/totalConnected", nil)
totalCapacityGauge = metrics.NewRegisteredGauge("les/server/totalCapacity", nil)
totalRechargeGauge = metrics.NewRegisteredGauge("les/server/totalRecharge", nil)
blockProcessingTimer = metrics.NewRegisteredTimer("les/server/blockProcessingTime", nil)
requestServedTimer = metrics.NewRegisteredTimer("les/server/requestServed", nil)
requestServedMeter = metrics.NewRegisteredMeter("les/server/totalRequestServed", nil)
requestEstimatedMeter = metrics.NewRegisteredMeter("les/server/totalRequestEstimated", nil)
relativeCostHistogram = metrics.NewRegisteredHistogram("les/server/relativeCost", nil, metrics.NewExpDecaySample(1028, 0.015))
recentServedGauge = metrics.NewRegisteredGauge("les/server/recentRequestServed", nil)
recentEstimatedGauge = metrics.NewRegisteredGauge("les/server/recentRequestEstimated", nil)
sqServedGauge = metrics.NewRegisteredGauge("les/server/servingQueue/served", nil)
sqQueuedGauge = metrics.NewRegisteredGauge("les/server/servingQueue/queued", nil)
clientConnectedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/connected", nil)
clientRejectedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/rejected", nil)
clientKickedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/kicked", nil)
// clientDisconnectedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/disconnected", nil)
clientFreezeMeter = metrics.NewRegisteredMeter("les/server/clientEvent/freeze", nil)
clientErrorMeter = metrics.NewRegisteredMeter("les/server/clientEvent/error", nil)
totalConnectedGauge = metrics.NewRegisteredGauge("les/server/totalConnected", nil)
totalCapacityGauge = metrics.NewRegisteredGauge("les/server/totalCapacity", nil)
totalRechargeGauge = metrics.NewRegisteredGauge("les/server/totalRecharge", nil)
blockProcessingTimer = metrics.NewRegisteredTimer("les/server/blockProcessingTime", nil)
requestServedTimer = metrics.NewRegisteredTimer("les/server/requestServed", nil)
requestServedMeter = metrics.NewRegisteredMeter("les/server/totalRequestServed", nil)
requestEstimatedMeter = metrics.NewRegisteredMeter("les/server/totalRequestEstimated", nil)
relativeCostHistogram = metrics.NewRegisteredHistogram("les/server/relativeCost", nil, metrics.NewExpDecaySample(1028, 0.015))
recentServedGauge = metrics.NewRegisteredGauge("les/server/recentRequestServed", nil)
recentEstimatedGauge = metrics.NewRegisteredGauge("les/server/recentRequestEstimated", nil)
sqServedGauge = metrics.NewRegisteredGauge("les/server/servingQueue/served", nil)
sqQueuedGauge = metrics.NewRegisteredGauge("les/server/servingQueue/queued", nil)
clientConnectedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/connected", nil)
clientRejectedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/rejected", nil)
clientKickedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/kicked", nil)
clientDisconnectedMeter = metrics.NewRegisteredMeter("les/server/clientEvent/disconnected", nil)
clientFreezeMeter = metrics.NewRegisteredMeter("les/server/clientEvent/freeze", nil)
clientErrorMeter = metrics.NewRegisteredMeter("les/server/clientEvent/error", nil)
)
// meteredMsgReadWriter is a wrapper around a p2p.MsgReadWriter, capable of

View File

@ -21,6 +21,7 @@ import (
"fmt"
"math/big"
"math/rand"
"net"
"sync"
"sync/atomic"
"time"
@ -33,6 +34,7 @@ import (
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
)
@ -105,10 +107,11 @@ type peer struct {
updateTime mclock.AbsTime
frozen uint32 // 1 if client is in frozen state
fcClient *flowcontrol.ClientNode // nil if the peer is server only
fcServer *flowcontrol.ServerNode // nil if the peer is client only
fcParams flowcontrol.ServerParams
fcCosts requestCostTable
fcClient *flowcontrol.ClientNode // nil if the peer is server only
fcServer *flowcontrol.ServerNode // nil if the peer is client only
fcParams flowcontrol.ServerParams
fcCosts requestCostTable
balanceTracker *balanceTracker // set by clientPool.connect, used and removed by ProtocolManager.handle
trusted bool
onlyAnnounce bool
@ -122,12 +125,32 @@ func newPeer(version int, network uint64, trusted bool, p *p2p.Peer, rw p2p.MsgR
rw: rw,
version: version,
network: network,
id: fmt.Sprintf("%x", p.ID().Bytes()),
id: peerIdToString(p.ID()),
trusted: trusted,
errCh: make(chan error, 1),
}
}
// peerIdToString converts enode.ID to a string form
func peerIdToString(id enode.ID) string {
return fmt.Sprintf("%x", id.Bytes())
}
// freeClientId returns a string identifier for the peer. Multiple peers with the
// same identifier can not be connected in free mode simultaneously.
func (p *peer) freeClientId() string {
if addr, ok := p.RemoteAddr().(*net.TCPAddr); ok {
if addr.IP.IsLoopback() {
// using peer id instead of loopback ip address allows multiple free
// connections from local machine to own server
return p.id
} else {
return addr.IP.String()
}
}
return p.id
}
// rejectUpdate returns true if a parameter update has to be rejected because
// the size and/or rate of updates exceed the capacity limitation
func (p *peer) rejectUpdate(size uint64) bool {

View File

@ -33,6 +33,7 @@ import (
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discv5"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rpc"
)
@ -55,9 +56,9 @@ type LesServer struct {
thcNormal, thcBlockProcessing int // serving thread count for normal operation and block processing mode
maxPeers int
minCapacity, freeClientCap uint64
freeClientPool *freeClientPool
maxPeers int
minCapacity, maxCapacity, freeClientCap uint64
clientPool *clientPool
}
func NewLesServer(e *eth.Ethereum, config *eth.Config) (*LesServer, error) {
@ -158,7 +159,7 @@ func (s *LesServer) startEventLoop() {
}
updateRecharge()
totalCapacity := s.fcManager.SubscribeTotalCapacity(totalCapacityCh)
s.freeClientPool.setLimits(s.maxPeers, totalCapacity)
s.clientPool.setLimits(s.maxPeers, totalCapacity)
var maxFreePeers uint64
go func() {
@ -175,7 +176,7 @@ func (s *LesServer) startEventLoop() {
log.Warn("Reduced total capacity", "maxFreePeers", newFreePeers)
}
maxFreePeers = newFreePeers
s.freeClientPool.setLimits(s.maxPeers, totalCapacity)
s.clientPool.setLimits(s.maxPeers, totalCapacity)
case <-s.protocolManager.quitSync:
s.protocolManager.wg.Done()
return
@ -205,14 +206,14 @@ func (s *LesServer) Start(srvr *p2p.Server) {
}
}
maxCapacity := s.freeClientCap * uint64(s.maxPeers)
if totalRecharge > maxCapacity {
maxCapacity = totalRecharge
s.maxCapacity = s.freeClientCap * uint64(s.maxPeers)
if totalRecharge > s.maxCapacity {
s.maxCapacity = totalRecharge
}
s.fcManager.SetCapacityLimits(s.freeClientCap, maxCapacity, s.freeClientCap*2)
s.freeClientPool = newFreeClientPool(s.chainDb, s.freeClientCap, 10000, mclock.System{}, func(id string) { go s.protocolManager.removePeer(id) })
s.protocolManager.peers.notify(s.freeClientPool)
s.fcManager.SetCapacityLimits(s.freeClientCap, s.maxCapacity, s.freeClientCap*2)
s.clientPool = newClientPool(s.chainDb, s.freeClientCap, 10000, mclock.System{}, func(id enode.ID) { go s.protocolManager.removePeer(peerIdToString(id)) })
s.clientPool.setPriceFactors(priceFactors{0, 1, 1}, priceFactors{0, 1, 1})
s.protocolManager.peers.notify(s.clientPool)
s.startEventLoop()
s.protocolManager.Start(s.config.LightPeers)
if srvr.DiscV5 != nil {
@ -250,7 +251,7 @@ func (s *LesServer) Stop() {
go func() {
<-s.protocolManager.noMorePeers
}()
s.freeClientPool.stop()
s.clientPool.stop()
s.costTracker.stop()
s.protocolManager.Stop()
}