all: EIP-1559 tx pool support (#22898)

This pull request implements EIP-1559 compatible transaction pool with dual heap eviction ordering.
It is based on #22791
The eviction ordering scheme and the reasoning behind it is described here: https://gist.github.com/zsfelfoldi/9607ad248707a925b701f49787904fd6
This commit is contained in:
Felföldi Zsolt 2021-05-28 10:28:07 +02:00 committed by GitHub
parent ee35ddc8fd
commit 966ee3ae6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 747 additions and 147 deletions

View File

@ -21,6 +21,7 @@ import (
"math" "math"
"math/big" "math/big"
"sort" "sort"
"time"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/types"
@ -279,15 +280,23 @@ func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Tran
// If there's an older better transaction, abort // If there's an older better transaction, abort
old := l.txs.Get(tx.Nonce()) old := l.txs.Get(tx.Nonce())
if old != nil { if old != nil {
// threshold = oldGP * (100 + priceBump) / 100 if old.FeeCapCmp(tx) >= 0 || old.TipCmp(tx) >= 0 {
return false, nil
}
// thresholdFeeCap = oldFC * (100 + priceBump) / 100
a := big.NewInt(100 + int64(priceBump)) a := big.NewInt(100 + int64(priceBump))
a = a.Mul(a, old.GasPrice()) aFeeCap := new(big.Int).Mul(a, old.FeeCap())
aTip := a.Mul(a, old.Tip())
// thresholdTip = oldTip * (100 + priceBump) / 100
b := big.NewInt(100) b := big.NewInt(100)
threshold := a.Div(a, b) thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
// Have to ensure that the new gas price is higher than the old gas thresholdTip := aTip.Div(aTip, b)
// price as well as checking the percentage threshold to ensure that
// Have to ensure that either the new fee cap or tip is higher than the
// old ones as well as checking the percentage threshold to ensure that
// this is accurate for low (Wei-level) gas price replacements // this is accurate for low (Wei-level) gas price replacements
if old.GasPriceCmp(tx) >= 0 || tx.GasPriceIntCmp(threshold) < 0 { if tx.FeeCapIntCmp(thresholdFeeCap) < 0 || tx.TipIntCmp(thresholdTip) < 0 {
return false, nil return false, nil
} }
} }
@ -406,34 +415,54 @@ func (l *txList) LastElement() *types.Transaction {
} }
// priceHeap is a heap.Interface implementation over transactions for retrieving // priceHeap is a heap.Interface implementation over transactions for retrieving
// price-sorted transactions to discard when the pool fills up. // price-sorted transactions to discard when the pool fills up. If baseFee is set
type priceHeap []*types.Transaction // then the heap is sorted based on the effective tip based on the given base fee.
// If baseFee is nil then the sorting is based on feeCap.
type priceHeap struct {
baseFee *big.Int // heap should always be re-sorted after baseFee is changed
list []*types.Transaction
}
func (h priceHeap) Len() int { return len(h) } func (h *priceHeap) Len() int { return len(h.list) }
func (h priceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
func (h priceHeap) Less(i, j int) bool { func (h *priceHeap) Less(i, j int) bool {
// Sort primarily by price, returning the cheaper one switch h.cmp(h.list[i], h.list[j]) {
switch h[i].GasPriceCmp(h[j]) {
case -1: case -1:
return true return true
case 1: case 1:
return false return false
default:
return h.list[i].Nonce() > h.list[j].Nonce()
} }
// If the prices match, stabilize via nonces (high nonce is worse) }
return h[i].Nonce() > h[j].Nonce()
func (h *priceHeap) cmp(a, b *types.Transaction) int {
if h.baseFee != nil {
// Compare effective tips if baseFee is specified
if c := a.EffectiveTipCmp(b, h.baseFee); c != 0 {
return c
}
}
// Compare fee caps if baseFee is not specified or effective tips are equal
if c := a.FeeCapCmp(b); c != 0 {
return c
}
// Compare tips if effective tips and fee caps are equal
return a.TipCmp(b)
} }
func (h *priceHeap) Push(x interface{}) { func (h *priceHeap) Push(x interface{}) {
*h = append(*h, x.(*types.Transaction)) tx := x.(*types.Transaction)
h.list = append(h.list, tx)
} }
func (h *priceHeap) Pop() interface{} { func (h *priceHeap) Pop() interface{} {
old := *h old := h.list
n := len(old) n := len(old)
x := old[n-1] x := old[n-1]
old[n-1] = nil old[n-1] = nil
*h = old[0 : n-1] h.list = old[0 : n-1]
return x return x
} }
@ -441,17 +470,29 @@ func (h *priceHeap) Pop() interface{} {
// contents in a price-incrementing way. It's built opon the all transactions // contents in a price-incrementing way. It's built opon the all transactions
// in txpool but only interested in the remote part. It means only remote transactions // in txpool but only interested in the remote part. It means only remote transactions
// will be considered for tracking, sorting, eviction, etc. // will be considered for tracking, sorting, eviction, etc.
//
// Two heaps are used for sorting: the urgent heap (based on effective tip in the next
// block) and the floating heap (based on feeCap). Always the bigger heap is chosen for
// eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
// In some cases (during a congestion, when blocks are full) the urgent heap can provide
// better candidates for inclusion while in other cases (at the top of the baseFee peak)
// the floating heap is better. When baseFee is decreasing they behave similarly.
type txPricedList struct { type txPricedList struct {
all *txLookup // Pointer to the map of all transactions all *txLookup // Pointer to the map of all transactions
remotes *priceHeap // Heap of prices of all the stored **remote** transactions urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions
stales int // Number of stale price points to (re-heap trigger) stales int // Number of stale price points to (re-heap trigger)
} }
const (
// urgentRatio : floatingRatio is the capacity ratio of the two queues
urgentRatio = 4
floatingRatio = 1
)
// newTxPricedList creates a new price-sorted transaction heap. // newTxPricedList creates a new price-sorted transaction heap.
func newTxPricedList(all *txLookup) *txPricedList { func newTxPricedList(all *txLookup) *txPricedList {
return &txPricedList{ return &txPricedList{
all: all, all: all,
remotes: new(priceHeap),
} }
} }
@ -460,7 +501,8 @@ func (l *txPricedList) Put(tx *types.Transaction, local bool) {
if local { if local {
return return
} }
heap.Push(l.remotes, tx) // Insert every new transaction to the urgent heap first; Discard will balance the heaps
heap.Push(&l.urgent, tx)
} }
// Removed notifies the prices transaction list that an old transaction dropped // Removed notifies the prices transaction list that an old transaction dropped
@ -469,58 +511,43 @@ func (l *txPricedList) Put(tx *types.Transaction, local bool) {
func (l *txPricedList) Removed(count int) { func (l *txPricedList) Removed(count int) {
// Bump the stale counter, but exit if still too low (< 25%) // Bump the stale counter, but exit if still too low (< 25%)
l.stales += count l.stales += count
if l.stales <= len(*l.remotes)/4 { if l.stales <= (len(l.urgent.list)+len(l.floating.list))/4 {
return return
} }
// Seems we've reached a critical number of stale transactions, reheap // Seems we've reached a critical number of stale transactions, reheap
l.Reheap() l.Reheap()
} }
// Cap finds all the transactions below the given price threshold, drops them
// from the priced list and returns them for further removal from the entire pool.
//
// Note: only remote transactions will be considered for eviction.
func (l *txPricedList) Cap(threshold *big.Int) types.Transactions {
drop := make(types.Transactions, 0, 128) // Remote underpriced transactions to drop
for len(*l.remotes) > 0 {
// Discard stale transactions if found during cleanup
cheapest := (*l.remotes)[0]
if l.all.GetRemote(cheapest.Hash()) == nil { // Removed or migrated
heap.Pop(l.remotes)
l.stales--
continue
}
// Stop the discards if we've reached the threshold
if cheapest.GasPriceIntCmp(threshold) >= 0 {
break
}
heap.Pop(l.remotes)
drop = append(drop, cheapest)
}
return drop
}
// Underpriced checks whether a transaction is cheaper than (or as cheap as) the // Underpriced checks whether a transaction is cheaper than (or as cheap as) the
// lowest priced (remote) transaction currently being tracked. // lowest priced (remote) transaction currently being tracked.
func (l *txPricedList) Underpriced(tx *types.Transaction) bool { func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
// Note: with two queues, being underpriced is defined as being worse than the worst item
// in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
(l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
(len(l.urgent.list) != 0 || len(l.floating.list) != 0)
}
// underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
// lowest priced (remote) transaction in the given heap.
func (l *txPricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
// Discard stale price points if found at the heap start // Discard stale price points if found at the heap start
for len(*l.remotes) > 0 { for len(h.list) > 0 {
head := []*types.Transaction(*l.remotes)[0] head := h.list[0]
if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
l.stales-- l.stales--
heap.Pop(l.remotes) heap.Pop(h)
continue continue
} }
break break
} }
// Check if the transaction is underpriced or not // Check if the transaction is underpriced or not
if len(*l.remotes) == 0 { if len(h.list) == 0 {
return false // There is no remote transaction at all. return false // There is no remote transaction at all.
} }
// If the remote transaction is even cheaper than the // If the remote transaction is even cheaper than the
// cheapest one tracked locally, reject it. // cheapest one tracked locally, reject it.
cheapest := []*types.Transaction(*l.remotes)[0] return h.cmp(h.list[0], tx) >= 0
return cheapest.GasPriceCmp(tx) >= 0
} }
// Discard finds a number of most underpriced transactions, removes them from the // Discard finds a number of most underpriced transactions, removes them from the
@ -529,21 +556,36 @@ func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
// Note local transaction won't be considered for eviction. // Note local transaction won't be considered for eviction.
func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) { func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) {
drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
for len(*l.remotes) > 0 && slots > 0 { for slots > 0 {
// Discard stale transactions if found during cleanup if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
tx := heap.Pop(l.remotes).(*types.Transaction) // Discard stale transactions if found during cleanup
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated tx := heap.Pop(&l.urgent).(*types.Transaction)
l.stales-- if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
continue l.stales--
continue
}
// Non stale transaction found, move to floating heap
heap.Push(&l.floating, tx)
} else {
if len(l.floating.list) == 0 {
// Stop if both heaps are empty
break
}
// Discard stale transactions if found during cleanup
tx := heap.Pop(&l.floating).(*types.Transaction)
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
l.stales--
continue
}
// Non stale transaction found, discard it
drop = append(drop, tx)
slots -= numSlots(tx)
} }
// Non stale transaction found, discard it
drop = append(drop, tx)
slots -= numSlots(tx)
} }
// If we still can't make enough room for the new transaction // If we still can't make enough room for the new transaction
if slots > 0 && !force { if slots > 0 && !force {
for _, tx := range drop { for _, tx := range drop {
heap.Push(l.remotes, tx) heap.Push(&l.urgent, tx)
} }
return nil, false return nil, false
} }
@ -552,12 +594,32 @@ func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool)
// Reheap forcibly rebuilds the heap based on the current remote transaction set. // Reheap forcibly rebuilds the heap based on the current remote transaction set.
func (l *txPricedList) Reheap() { func (l *txPricedList) Reheap() {
reheap := make(priceHeap, 0, l.all.RemoteCount()) start := time.Now()
l.stales = 0
l.stales, l.remotes = 0, &reheap l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool { l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
*l.remotes = append(*l.remotes, tx) l.urgent.list = append(l.urgent.list, tx)
return true return true
}, false, true) // Only iterate remotes }, false, true) // Only iterate remotes
heap.Init(l.remotes) heap.Init(&l.urgent)
// balance out the two heaps by moving the worse half of transactions into the
// floating heap
// Note: Discard would also do this before the first eviction but Reheap can do
// is more efficiently. Also, Underpriced would work suboptimally the first time
// if the floating queue was empty.
floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
l.floating.list = make([]*types.Transaction, floatingCount)
for i := 0; i < floatingCount; i++ {
l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
}
heap.Init(&l.floating)
reheapTimer.Update(time.Since(start))
}
// SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
// necessary to call right before SetBaseFee when processing a new block.
func (l *txPricedList) SetBaseFee(baseFee *big.Int) {
l.urgent.baseFee = baseFee
l.Reheap()
} }

View File

@ -83,6 +83,10 @@ var (
// than some meaningful limit a user might use. This is not a consensus error // than some meaningful limit a user might use. This is not a consensus error
// making the transaction invalid, rather a DOS protection. // making the transaction invalid, rather a DOS protection.
ErrOversizedData = errors.New("oversized data") ErrOversizedData = errors.New("oversized data")
// ErrTipAboveFeeCap is a sanity error to ensure no one is able to specify a
// transaction with a tip higher than the total fee cap.
ErrTipAboveFeeCap = errors.New("tip higher than fee cap")
) )
var ( var (
@ -115,6 +119,8 @@ var (
queuedGauge = metrics.NewRegisteredGauge("txpool/queued", nil) queuedGauge = metrics.NewRegisteredGauge("txpool/queued", nil)
localGauge = metrics.NewRegisteredGauge("txpool/local", nil) localGauge = metrics.NewRegisteredGauge("txpool/local", nil)
slotsGauge = metrics.NewRegisteredGauge("txpool/slots", nil) slotsGauge = metrics.NewRegisteredGauge("txpool/slots", nil)
reheapTimer = metrics.NewRegisteredTimer("txpool/reheap", nil)
) )
// TxStatus is the current status of a transaction as seen by the pool. // TxStatus is the current status of a transaction as seen by the pool.
@ -165,7 +171,7 @@ var DefaultTxPoolConfig = TxPoolConfig{
PriceBump: 10, PriceBump: 10,
AccountSlots: 16, AccountSlots: 16,
GlobalSlots: 4096, GlobalSlots: 4096 + 1024, // urgent + floating queue capacity with 4:1 ratio
AccountQueue: 64, AccountQueue: 64,
GlobalQueue: 1024, GlobalQueue: 1024,
@ -230,6 +236,7 @@ type TxPool struct {
istanbul bool // Fork indicator whether we are in the istanbul stage. istanbul bool // Fork indicator whether we are in the istanbul stage.
eip2718 bool // Fork indicator whether we are using EIP-2718 type transactions. eip2718 bool // Fork indicator whether we are using EIP-2718 type transactions.
eip1559 bool // Fork indicator whether we are using EIP-1559 type transactions.
currentState *state.StateDB // Current state in the blockchain head currentState *state.StateDB // Current state in the blockchain head
pendingNonces *txNoncer // Pending state tracking virtual nonces pendingNonces *txNoncer // Pending state tracking virtual nonces
@ -426,10 +433,18 @@ func (pool *TxPool) SetGasPrice(price *big.Int) {
pool.mu.Lock() pool.mu.Lock()
defer pool.mu.Unlock() defer pool.mu.Unlock()
old := pool.gasPrice
pool.gasPrice = price pool.gasPrice = price
for _, tx := range pool.priced.Cap(price) { // if the min miner fee increased, remove transactions below the new threshold
pool.removeTx(tx.Hash(), false) if price.Cmp(old) > 0 {
// pool.priced is sorted by FeeCap, so we have to iterate through pool.all instead
drop := pool.all.RemotesBelowTip(price)
for _, tx := range drop {
pool.removeTx(tx.Hash(), false)
}
pool.priced.Removed(len(drop))
} }
log.Info("Transaction pool price threshold updated", "price", price) log.Info("Transaction pool price threshold updated", "price", price)
} }
@ -527,6 +542,10 @@ func (pool *TxPool) validateTx(tx *types.Transaction, local bool) error {
if !pool.eip2718 && tx.Type() != types.LegacyTxType { if !pool.eip2718 && tx.Type() != types.LegacyTxType {
return ErrTxTypeNotSupported return ErrTxTypeNotSupported
} }
// Reject dynamic fee transactions until EIP-1559 activates.
if !pool.eip1559 && tx.Type() == types.DynamicFeeTxType {
return ErrTxTypeNotSupported
}
// Reject transactions over defined size to prevent DOS attacks // Reject transactions over defined size to prevent DOS attacks
if uint64(tx.Size()) > txMaxSize { if uint64(tx.Size()) > txMaxSize {
return ErrOversizedData return ErrOversizedData
@ -540,13 +559,17 @@ func (pool *TxPool) validateTx(tx *types.Transaction, local bool) error {
if pool.currentMaxGas < tx.Gas() { if pool.currentMaxGas < tx.Gas() {
return ErrGasLimit return ErrGasLimit
} }
// Ensure feeCap is less than or equal to tip.
if tx.FeeCapIntCmp(tx.Tip()) < 0 {
return ErrTipAboveFeeCap
}
// Make sure the transaction is signed properly. // Make sure the transaction is signed properly.
from, err := types.Sender(pool.signer, tx) from, err := types.Sender(pool.signer, tx)
if err != nil { if err != nil {
return ErrInvalidSender return ErrInvalidSender
} }
// Drop non-local transactions under our own minimal accepted gas price // Drop non-local transactions under our own minimal accepted gas price or tip
if !local && tx.GasPriceIntCmp(pool.gasPrice) < 0 { if !local && tx.TipIntCmp(pool.gasPrice) < 0 {
return ErrUnderpriced return ErrUnderpriced
} }
// Ensure the transaction adheres to nonce ordering // Ensure the transaction adheres to nonce ordering
@ -598,7 +621,7 @@ func (pool *TxPool) add(tx *types.Transaction, local bool) (replaced bool, err e
if uint64(pool.all.Slots()+numSlots(tx)) > pool.config.GlobalSlots+pool.config.GlobalQueue { if uint64(pool.all.Slots()+numSlots(tx)) > pool.config.GlobalSlots+pool.config.GlobalQueue {
// If the new transaction is underpriced, don't accept it // If the new transaction is underpriced, don't accept it
if !isLocal && pool.priced.Underpriced(tx) { if !isLocal && pool.priced.Underpriced(tx) {
log.Trace("Discarding underpriced transaction", "hash", hash, "price", tx.GasPrice()) log.Trace("Discarding underpriced transaction", "hash", hash, "tip", tx.Tip(), "feeCap", tx.FeeCap())
underpricedTxMeter.Mark(1) underpricedTxMeter.Mark(1)
return false, ErrUnderpriced return false, ErrUnderpriced
} }
@ -615,7 +638,7 @@ func (pool *TxPool) add(tx *types.Transaction, local bool) (replaced bool, err e
} }
// Kick out the underpriced remote transactions. // Kick out the underpriced remote transactions.
for _, tx := range drop { for _, tx := range drop {
log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "price", tx.GasPrice()) log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "tip", tx.Tip(), "feeCap", tx.FeeCap())
underpricedTxMeter.Mark(1) underpricedTxMeter.Mark(1)
pool.removeTx(tx.Hash(), false) pool.removeTx(tx.Hash(), false)
} }
@ -1088,6 +1111,9 @@ func (pool *TxPool) runReorg(done chan struct{}, reset *txpoolResetRequest, dirt
// because of another transaction (e.g. higher gas price). // because of another transaction (e.g. higher gas price).
if reset != nil { if reset != nil {
pool.demoteUnexecutables() pool.demoteUnexecutables()
if reset.newHead != nil {
pool.priced.SetBaseFee(reset.newHead.BaseFee)
}
} }
// Ensure pool.queue and pool.pending sizes stay within the configured limits. // Ensure pool.queue and pool.pending sizes stay within the configured limits.
pool.truncatePending() pool.truncatePending()
@ -1205,6 +1231,7 @@ func (pool *TxPool) reset(oldHead, newHead *types.Header) {
next := new(big.Int).Add(newHead.Number, big.NewInt(1)) next := new(big.Int).Add(newHead.Number, big.NewInt(1))
pool.istanbul = pool.chainconfig.IsIstanbul(next) pool.istanbul = pool.chainconfig.IsIstanbul(next)
pool.eip2718 = pool.chainconfig.IsBerlin(next) pool.eip2718 = pool.chainconfig.IsBerlin(next)
pool.eip1559 = pool.chainconfig.IsLondon(next)
} }
// promoteExecutables moves transactions that have become processable from the // promoteExecutables moves transactions that have become processable from the
@ -1408,6 +1435,10 @@ func (pool *TxPool) truncateQueue() {
// demoteUnexecutables removes invalid and processed transactions from the pools // demoteUnexecutables removes invalid and processed transactions from the pools
// executable/pending queue and any subsequent transactions that become unexecutable // executable/pending queue and any subsequent transactions that become unexecutable
// are moved back into the future queue. // are moved back into the future queue.
//
// Note: transactions are not marked as removed in the priced list because re-heaping
// is always explicitly triggered by SetBaseFee and it would be unnecessary and wasteful
// to trigger a re-heap is this function
func (pool *TxPool) demoteUnexecutables() { func (pool *TxPool) demoteUnexecutables() {
// Iterate over all accounts and demote any non-executable transactions // Iterate over all accounts and demote any non-executable transactions
for addr, list := range pool.pending { for addr, list := range pool.pending {
@ -1427,7 +1458,6 @@ func (pool *TxPool) demoteUnexecutables() {
log.Trace("Removed unpayable pending transaction", "hash", hash) log.Trace("Removed unpayable pending transaction", "hash", hash)
pool.all.Remove(hash) pool.all.Remove(hash)
} }
pool.priced.Removed(len(olds) + len(drops))
pendingNofundsMeter.Mark(int64(len(drops))) pendingNofundsMeter.Mark(int64(len(drops)))
for _, tx := range invalids { for _, tx := range invalids {
@ -1709,6 +1739,18 @@ func (t *txLookup) RemoteToLocals(locals *accountSet) int {
return migrated return migrated
} }
// RemotesBelowTip finds all remote transactions below the given tip threshold.
func (t *txLookup) RemotesBelowTip(threshold *big.Int) types.Transactions {
found := make(types.Transactions, 0, 128)
t.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
if tx.TipIntCmp(threshold) < 0 {
found = append(found, tx)
}
return true
}, false, true) // Only iterate remotes
return found
}
// numSlots calculates the number of slots needed for a single transaction. // numSlots calculates the number of slots needed for a single transaction.
func numSlots(tx *types.Transaction) int { func numSlots(tx *types.Transaction) int {
return int((tx.Size() + txSlotSize - 1) / txSlotSize) return int((tx.Size() + txSlotSize - 1) / txSlotSize)

View File

@ -37,13 +37,23 @@ import (
"github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/trie"
) )
// testTxPoolConfig is a transaction pool configuration without stateful disk var (
// sideeffects used during testing. // testTxPoolConfig is a transaction pool configuration without stateful disk
var testTxPoolConfig TxPoolConfig // sideeffects used during testing.
testTxPoolConfig TxPoolConfig
// eip1559Config is a chain config with EIP-1559 enabled at block 0.
eip1559Config *params.ChainConfig
)
func init() { func init() {
testTxPoolConfig = DefaultTxPoolConfig testTxPoolConfig = DefaultTxPoolConfig
testTxPoolConfig.Journal = "" testTxPoolConfig.Journal = ""
cpy := *params.TestChainConfig
eip1559Config = &cpy
eip1559Config.BerlinBlock = common.Big0
eip1559Config.LondonBlock = common.Big0
} }
type testBlockChain struct { type testBlockChain struct {
@ -87,12 +97,31 @@ func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key
return tx return tx
} }
func dynamicFeeTx(nonce uint64, gaslimit uint64, gasFee *big.Int, tip *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.SignNewTx(key, types.LatestSignerForChainID(params.TestChainConfig.ChainID), &types.DynamicFeeTx{
ChainID: params.TestChainConfig.ChainID,
Nonce: nonce,
Tip: tip,
FeeCap: gasFee,
Gas: gaslimit,
To: &common.Address{},
Value: big.NewInt(100),
Data: nil,
AccessList: nil,
})
return tx
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) { func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
return setupTxPoolWithConfig(params.TestChainConfig)
}
func setupTxPoolWithConfig(config *params.ChainConfig) (*TxPool, *ecdsa.PrivateKey) {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 10000000, new(event.Feed)} blockchain := &testBlockChain{statedb, 10000000, new(event.Feed)}
key, _ := crypto.GenerateKey() key, _ := crypto.GenerateKey()
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) pool := NewTxPool(testTxPoolConfig, config, blockchain)
return pool, key return pool, key
} }
@ -108,7 +137,7 @@ func validateTxPoolInternals(pool *TxPool) error {
return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued) return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
} }
pool.priced.Reheap() pool.priced.Reheap()
priced, remote := pool.priced.remotes.Len(), pool.all.RemoteCount() priced, remote := pool.priced.urgent.Len()+pool.priced.floating.Len(), pool.all.RemoteCount()
if priced != remote { if priced != remote {
return fmt.Errorf("total priced transaction count %d != %d", priced, remote) return fmt.Errorf("total priced transaction count %d != %d", priced, remote)
} }
@ -233,6 +262,18 @@ func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
} }
} }
func testAddBalance(pool *TxPool, addr common.Address, amount *big.Int) {
pool.mu.Lock()
pool.currentState.AddBalance(addr, amount)
pool.mu.Unlock()
}
func testSetNonce(pool *TxPool, addr common.Address, nonce uint64) {
pool.mu.Lock()
pool.currentState.SetNonce(addr, nonce)
pool.mu.Unlock()
}
func TestInvalidTransactions(t *testing.T) { func TestInvalidTransactions(t *testing.T) {
t.Parallel() t.Parallel()
@ -242,19 +283,19 @@ func TestInvalidTransactions(t *testing.T) {
tx := transaction(0, 100, key) tx := transaction(0, 100, key)
from, _ := deriveSender(tx) from, _ := deriveSender(tx)
pool.currentState.AddBalance(from, big.NewInt(1)) testAddBalance(pool, from, big.NewInt(1))
if err := pool.AddRemote(tx); !errors.Is(err, ErrInsufficientFunds) { if err := pool.AddRemote(tx); !errors.Is(err, ErrInsufficientFunds) {
t.Error("expected", ErrInsufficientFunds) t.Error("expected", ErrInsufficientFunds)
} }
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice())) balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice()))
pool.currentState.AddBalance(from, balance) testAddBalance(pool, from, balance)
if err := pool.AddRemote(tx); !errors.Is(err, ErrIntrinsicGas) { if err := pool.AddRemote(tx); !errors.Is(err, ErrIntrinsicGas) {
t.Error("expected", ErrIntrinsicGas, "got", err) t.Error("expected", ErrIntrinsicGas, "got", err)
} }
pool.currentState.SetNonce(from, 1) testSetNonce(pool, from, 1)
pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) testAddBalance(pool, from, big.NewInt(0xffffffffffffff))
tx = transaction(0, 100000, key) tx = transaction(0, 100000, key)
if err := pool.AddRemote(tx); !errors.Is(err, ErrNonceTooLow) { if err := pool.AddRemote(tx); !errors.Is(err, ErrNonceTooLow) {
t.Error("expected", ErrNonceTooLow) t.Error("expected", ErrNonceTooLow)
@ -278,7 +319,7 @@ func TestTransactionQueue(t *testing.T) {
tx := transaction(0, 100, key) tx := transaction(0, 100, key)
from, _ := deriveSender(tx) from, _ := deriveSender(tx)
pool.currentState.AddBalance(from, big.NewInt(1000)) testAddBalance(pool, from, big.NewInt(1000))
<-pool.requestReset(nil, nil) <-pool.requestReset(nil, nil)
pool.enqueueTx(tx.Hash(), tx, false, true) pool.enqueueTx(tx.Hash(), tx, false, true)
@ -289,7 +330,7 @@ func TestTransactionQueue(t *testing.T) {
tx = transaction(1, 100, key) tx = transaction(1, 100, key)
from, _ = deriveSender(tx) from, _ = deriveSender(tx)
pool.currentState.SetNonce(from, 2) testSetNonce(pool, from, 2)
pool.enqueueTx(tx.Hash(), tx, false, true) pool.enqueueTx(tx.Hash(), tx, false, true)
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from)) <-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
@ -311,7 +352,7 @@ func TestTransactionQueue2(t *testing.T) {
tx2 := transaction(10, 100, key) tx2 := transaction(10, 100, key)
tx3 := transaction(11, 100, key) tx3 := transaction(11, 100, key)
from, _ := deriveSender(tx1) from, _ := deriveSender(tx1)
pool.currentState.AddBalance(from, big.NewInt(1000)) testAddBalance(pool, from, big.NewInt(1000))
pool.reset(nil, nil) pool.reset(nil, nil)
pool.enqueueTx(tx1.Hash(), tx1, false, true) pool.enqueueTx(tx1.Hash(), tx1, false, true)
@ -335,12 +376,25 @@ func TestTransactionNegativeValue(t *testing.T) {
tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key) tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key)
from, _ := deriveSender(tx) from, _ := deriveSender(tx)
pool.currentState.AddBalance(from, big.NewInt(1)) testAddBalance(pool, from, big.NewInt(1))
if err := pool.AddRemote(tx); err != ErrNegativeValue { if err := pool.AddRemote(tx); err != ErrNegativeValue {
t.Error("expected", ErrNegativeValue, "got", err) t.Error("expected", ErrNegativeValue, "got", err)
} }
} }
func TestTransactionTipAboveFeeCap(t *testing.T) {
t.Parallel()
pool, key := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
tx := dynamicFeeTx(0, 100, big.NewInt(1), big.NewInt(2), key)
if err := pool.AddRemote(tx); err != ErrTipAboveFeeCap {
t.Error("expected", ErrTipAboveFeeCap, "got", err)
}
}
func TestTransactionChainFork(t *testing.T) { func TestTransactionChainFork(t *testing.T) {
t.Parallel() t.Parallel()
@ -428,7 +482,7 @@ func TestTransactionMissingNonce(t *testing.T) {
defer pool.Stop() defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey) addr := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) testAddBalance(pool, addr, big.NewInt(100000000000000))
tx := transaction(1, 100000, key) tx := transaction(1, 100000, key)
if _, err := pool.add(tx, false); err != nil { if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err) t.Error("didn't expect error", err)
@ -452,8 +506,8 @@ func TestTransactionNonceRecovery(t *testing.T) {
defer pool.Stop() defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey) addr := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.SetNonce(addr, n) testSetNonce(pool, addr, n)
pool.currentState.AddBalance(addr, big.NewInt(100000000000000)) testAddBalance(pool, addr, big.NewInt(100000000000000))
<-pool.requestReset(nil, nil) <-pool.requestReset(nil, nil)
tx := transaction(n, 100000, key) tx := transaction(n, 100000, key)
@ -461,7 +515,7 @@ func TestTransactionNonceRecovery(t *testing.T) {
t.Error(err) t.Error(err)
} }
// simulate some weird re-order of transactions and missing nonce(s) // simulate some weird re-order of transactions and missing nonce(s)
pool.currentState.SetNonce(addr, n-1) testSetNonce(pool, addr, n-1)
<-pool.requestReset(nil, nil) <-pool.requestReset(nil, nil)
if fn := pool.Nonce(addr); fn != n-1 { if fn := pool.Nonce(addr); fn != n-1 {
t.Errorf("expected nonce to be %d, got %d", n-1, fn) t.Errorf("expected nonce to be %d, got %d", n-1, fn)
@ -478,7 +532,7 @@ func TestTransactionDropping(t *testing.T) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000)) testAddBalance(pool, account, big.NewInt(1000))
// Add some pending and some queued transactions // Add some pending and some queued transactions
var ( var (
@ -526,7 +580,7 @@ func TestTransactionDropping(t *testing.T) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6) t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
} }
// Reduce the balance of the account, and check that invalidated transactions are dropped // Reduce the balance of the account, and check that invalidated transactions are dropped
pool.currentState.AddBalance(account, big.NewInt(-650)) testAddBalance(pool, account, big.NewInt(-650))
<-pool.requestReset(nil, nil) <-pool.requestReset(nil, nil)
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
@ -592,7 +646,7 @@ func TestTransactionPostponing(t *testing.T) {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey) accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100))
} }
// Add a batch consecutive pending transactions for validation // Add a batch consecutive pending transactions for validation
txs := []*types.Transaction{} txs := []*types.Transaction{}
@ -635,7 +689,7 @@ func TestTransactionPostponing(t *testing.T) {
} }
// Reduce the balance of the account, and check that transactions are reorganised // Reduce the balance of the account, and check that transactions are reorganised
for _, addr := range accs { for _, addr := range accs {
pool.currentState.AddBalance(addr, big.NewInt(-1)) testAddBalance(pool, addr, big.NewInt(-1))
} }
<-pool.requestReset(nil, nil) <-pool.requestReset(nil, nil)
@ -696,7 +750,7 @@ func TestTransactionGapFilling(t *testing.T) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000)) testAddBalance(pool, account, big.NewInt(1000000))
// Keep track of transaction events to ensure all executables get announced // Keep track of transaction events to ensure all executables get announced
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
@ -750,7 +804,7 @@ func TestTransactionQueueAccountLimiting(t *testing.T) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000)) testAddBalance(pool, account, big.NewInt(1000000))
// Keep queuing up transactions and make sure all above a limit are dropped // Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ { for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
@ -805,7 +859,7 @@ func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
keys := make([]*ecdsa.PrivateKey, 5) keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
local := keys[len(keys)-1] local := keys[len(keys)-1]
@ -897,8 +951,8 @@ func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
local, _ := crypto.GenerateKey() local, _ := crypto.GenerateKey()
remote, _ := crypto.GenerateKey() remote, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) testAddBalance(pool, crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) testAddBalance(pool, crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
// Add the two transactions and ensure they both are queued up // Add the two transactions and ensure they both are queued up
if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil { if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
@ -1031,7 +1085,7 @@ func TestTransactionPendingLimiting(t *testing.T) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000)) testAddBalance(pool, account, big.NewInt(1000000))
// Keep track of transaction events to ensure all executables get announced // Keep track of transaction events to ensure all executables get announced
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5) events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
@ -1081,7 +1135,7 @@ func TestTransactionPendingGlobalLimiting(t *testing.T) {
keys := make([]*ecdsa.PrivateKey, 5) keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
// Generate and queue a batch of transactions // Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64) nonces := make(map[common.Address]uint64)
@ -1120,7 +1174,7 @@ func TestTransactionAllowedTxSize(t *testing.T) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000000)) testAddBalance(pool, account, big.NewInt(1000000000))
// Compute maximal data size for transactions (lower bound). // Compute maximal data size for transactions (lower bound).
// //
@ -1184,7 +1238,7 @@ func TestTransactionCapClearsFromAll(t *testing.T) {
// Create a number of test accounts and fund them // Create a number of test accounts and fund them
key, _ := crypto.GenerateKey() key, _ := crypto.GenerateKey()
addr := crypto.PubkeyToAddress(key.PublicKey) addr := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(addr, big.NewInt(1000000)) testAddBalance(pool, addr, big.NewInt(1000000))
txs := types.Transactions{} txs := types.Transactions{}
for j := 0; j < int(config.GlobalSlots)*2; j++ { for j := 0; j < int(config.GlobalSlots)*2; j++ {
@ -1217,7 +1271,7 @@ func TestTransactionPendingMinimumAllowance(t *testing.T) {
keys := make([]*ecdsa.PrivateKey, 5) keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
// Generate and queue a batch of transactions // Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64) nonces := make(map[common.Address]uint64)
@ -1267,7 +1321,7 @@ func TestTransactionPoolRepricing(t *testing.T) {
keys := make([]*ecdsa.PrivateKey, 4) keys := make([]*ecdsa.PrivateKey, 4)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
// Generate and queue a batch of transactions, both pending and queued // Generate and queue a batch of transactions, both pending and queued
txs := types.Transactions{} txs := types.Transactions{}
@ -1367,8 +1421,135 @@ func TestTransactionPoolRepricing(t *testing.T) {
} }
} }
// Tests that setting the transaction pool gas price to a higher value correctly
// discards everything cheaper (legacy & dynamic fee) than that and moves any
// gapped transactions back from the pending pool to the queue.
//
// Note, local transactions are never allowed to be dropped.
func TestTransactionPoolRepricingDynamicFee(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
pool, _ := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
// Keep track of transaction events to ensure all executables get announced
events := make(chan NewTxsEvent, 32)
sub := pool.txFeed.Subscribe(events)
defer sub.Unsubscribe()
// Create a number of test accounts and fund them
keys := make([]*ecdsa.PrivateKey, 4)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions, both pending and queued
txs := types.Transactions{}
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0]))
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0]))
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0]))
txs = append(txs, dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[1]))
txs = append(txs, dynamicFeeTx(1, 100000, big.NewInt(3), big.NewInt(2), keys[1]))
txs = append(txs, dynamicFeeTx(2, 100000, big.NewInt(3), big.NewInt(2), keys[1]))
txs = append(txs, dynamicFeeTx(1, 100000, big.NewInt(2), big.NewInt(2), keys[2]))
txs = append(txs, dynamicFeeTx(2, 100000, big.NewInt(1), big.NewInt(1), keys[2]))
txs = append(txs, dynamicFeeTx(3, 100000, big.NewInt(2), big.NewInt(2), keys[2]))
ltx := dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[3])
// Import the batch and that both pending and queued transactions match up
pool.AddRemotesSync(txs)
pool.AddLocal(ltx)
pending, queued := pool.Stats()
if pending != 7 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7)
}
if queued != 3 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
}
if err := validateEvents(events, 7); err != nil {
t.Fatalf("original event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Reprice the pool and check that underpriced transactions get dropped
pool.SetGasPrice(big.NewInt(2))
pending, queued = pool.Stats()
if pending != 2 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
}
if queued != 5 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5)
}
if err := validateEvents(events, 0); err != nil {
t.Fatalf("reprice event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Check that we can't add the old transactions back
tx := pricedTransaction(1, 100000, big.NewInt(1), keys[0])
if err := pool.AddRemote(tx); err != ErrUnderpriced {
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
}
tx = dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[1])
if err := pool.AddRemote(tx); err != ErrUnderpriced {
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
}
tx = dynamicFeeTx(2, 100000, big.NewInt(1), big.NewInt(1), keys[2])
if err := pool.AddRemote(tx); err != ErrUnderpriced {
t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
}
if err := validateEvents(events, 0); err != nil {
t.Fatalf("post-reprice event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// However we can add local underpriced transactions
tx = dynamicFeeTx(1, 100000, big.NewInt(1), big.NewInt(1), keys[3])
if err := pool.AddLocal(tx); err != nil {
t.Fatalf("failed to add underpriced local transaction: %v", err)
}
if pending, _ = pool.Stats(); pending != 3 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
}
if err := validateEvents(events, 1); err != nil {
t.Fatalf("post-reprice local event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// And we can fill gaps with properly priced transactions
tx = pricedTransaction(1, 100000, big.NewInt(2), keys[0])
if err := pool.AddRemote(tx); err != nil {
t.Fatalf("failed to add pending transaction: %v", err)
}
tx = dynamicFeeTx(0, 100000, big.NewInt(3), big.NewInt(2), keys[1])
if err := pool.AddRemote(tx); err != nil {
t.Fatalf("failed to add pending transaction: %v", err)
}
tx = dynamicFeeTx(2, 100000, big.NewInt(2), big.NewInt(2), keys[2])
if err := pool.AddRemote(tx); err != nil {
t.Fatalf("failed to add queued transaction: %v", err)
}
if err := validateEvents(events, 5); err != nil {
t.Fatalf("post-reprice event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that setting the transaction pool gas price to a higher value does not // Tests that setting the transaction pool gas price to a higher value does not
// remove local transactions. // remove local transactions (legacy & dynamic fee).
func TestTransactionPoolRepricingKeepsLocals(t *testing.T) { func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
t.Parallel() t.Parallel()
@ -1376,14 +1557,14 @@ func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)} blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain) pool := NewTxPool(testTxPoolConfig, eip1559Config, blockchain)
defer pool.Stop() defer pool.Stop()
// Create a number of test accounts and fund them // Create a number of test accounts and fund them
keys := make([]*ecdsa.PrivateKey, 3) keys := make([]*ecdsa.PrivateKey, 3)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000))
} }
// Create transaction (both pending and queued) with a linearly growing gasprice // Create transaction (both pending and queued) with a linearly growing gasprice
for i := uint64(0); i < 500; i++ { for i := uint64(0); i < 500; i++ {
@ -1397,9 +1578,20 @@ func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
if err := pool.AddLocal(queuedTx); err != nil { if err := pool.AddLocal(queuedTx); err != nil {
t.Fatal(err) t.Fatal(err)
} }
// Add pending dynamic fee transaction.
pendingTx = dynamicFeeTx(i, 100000, big.NewInt(int64(i)+1), big.NewInt(int64(i)), keys[1])
if err := pool.AddLocal(pendingTx); err != nil {
t.Fatal(err)
}
// Add queued dynamic fee transaction.
queuedTx = dynamicFeeTx(i+501, 100000, big.NewInt(int64(i)+1), big.NewInt(int64(i)), keys[1])
if err := pool.AddLocal(queuedTx); err != nil {
t.Fatal(err)
}
} }
pending, queued := pool.Stats() pending, queued := pool.Stats()
expPending, expQueued := 500, 500 expPending, expQueued := 1000, 1000
validate := func() { validate := func() {
pending, queued = pool.Stats() pending, queued = pool.Stats()
if pending != expPending { if pending != expPending {
@ -1454,7 +1646,7 @@ func TestTransactionPoolUnderpricing(t *testing.T) {
keys := make([]*ecdsa.PrivateKey, 4) keys := make([]*ecdsa.PrivateKey, 4)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
// Generate and queue a batch of transactions, both pending and queued // Generate and queue a batch of transactions, both pending and queued
txs := types.Transactions{} txs := types.Transactions{}
@ -1560,7 +1752,7 @@ func TestTransactionPoolStableUnderpricing(t *testing.T) {
keys := make([]*ecdsa.PrivateKey, 2) keys := make([]*ecdsa.PrivateKey, 2)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
// Fill up the entire queue with the same transaction price points // Fill up the entire queue with the same transaction price points
txs := types.Transactions{} txs := types.Transactions{}
@ -1601,6 +1793,173 @@ func TestTransactionPoolStableUnderpricing(t *testing.T) {
} }
} }
// Tests that when the pool reaches its global transaction limit, underpriced
// transactions (legacy & dynamic fee) are gradually shifted out for more
// expensive ones and any gapped pending transactions are moved into the queue.
//
// Note, local transactions are never allowed to be dropped.
func TestTransactionPoolUnderpricingDynamicFee(t *testing.T) {
t.Parallel()
pool, _ := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
pool.config.GlobalSlots = 2
pool.config.GlobalQueue = 2
// Keep track of transaction events to ensure all executables get announced
events := make(chan NewTxsEvent, 32)
sub := pool.txFeed.Subscribe(events)
defer sub.Unsubscribe()
// Create a number of test accounts and fund them
keys := make([]*ecdsa.PrivateKey, 4)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions, both pending and queued
txs := types.Transactions{}
txs = append(txs, dynamicFeeTx(0, 100000, big.NewInt(3), big.NewInt(2), keys[0]))
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0]))
txs = append(txs, dynamicFeeTx(1, 100000, big.NewInt(2), big.NewInt(1), keys[1]))
ltx := dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[2])
// Import the batch and that both pending and queued transactions match up
pool.AddRemotes(txs) // Pend K0:0, K0:1; Que K1:1
pool.AddLocal(ltx) // +K2:0 => Pend K0:0, K0:1, K2:0; Que K1:1
pending, queued := pool.Stats()
if pending != 3 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
}
if queued != 1 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
}
if err := validateEvents(events, 3); err != nil {
t.Fatalf("original event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Ensure that adding an underpriced transaction fails
tx := dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[1])
if err := pool.AddRemote(tx); err != ErrUnderpriced { // Pend K0:0, K0:1, K2:0; Que K1:1
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
}
// Ensure that adding high priced transactions drops cheap ones, but not own
tx = pricedTransaction(0, 100000, big.NewInt(2), keys[1])
if err := pool.AddRemote(tx); err != nil { // +K1:0, -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que -
t.Fatalf("failed to add well priced transaction: %v", err)
}
tx = pricedTransaction(2, 100000, big.NewInt(3), keys[1])
if err := pool.AddRemote(tx); err != nil { // +K1:2, -K0:1 => Pend K0:0 K1:0, K2:0; Que K1:2
t.Fatalf("failed to add well priced transaction: %v", err)
}
tx = dynamicFeeTx(3, 100000, big.NewInt(4), big.NewInt(1), keys[1])
if err := pool.AddRemote(tx); err != nil { // +K1:3, -K1:0 => Pend K0:0 K2:0; Que K1:2 K1:3
t.Fatalf("failed to add well priced transaction: %v", err)
}
pending, queued = pool.Stats()
if pending != 2 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
}
if queued != 2 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
}
if err := validateEvents(events, 1); err != nil {
t.Fatalf("additional event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Ensure that adding local transactions can push out even higher priced ones
ltx = dynamicFeeTx(1, 100000, big.NewInt(0), big.NewInt(0), keys[2])
if err := pool.AddLocal(ltx); err != nil {
t.Fatalf("failed to append underpriced local transaction: %v", err)
}
ltx = dynamicFeeTx(0, 100000, big.NewInt(0), big.NewInt(0), keys[3])
if err := pool.AddLocal(ltx); err != nil {
t.Fatalf("failed to add new underpriced local transaction: %v", err)
}
pending, queued = pool.Stats()
if pending != 3 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
}
if queued != 1 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
}
if err := validateEvents(events, 2); err != nil {
t.Fatalf("local event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests whether highest fee cap transaction is retained after a batch of high effective
// tip transactions are added and vice versa
func TestDualHeapEviction(t *testing.T) {
t.Parallel()
pool, _ := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
pool.config.GlobalSlots = 10
pool.config.GlobalQueue = 10
var (
highTip, highCap *types.Transaction
baseFee int
)
check := func(tx *types.Transaction, name string) {
if pool.all.GetRemote(tx.Hash()) == nil {
t.Fatalf("highest %s transaction evicted from the pool", name)
}
}
add := func(urgent bool) {
txs := make([]*types.Transaction, 20)
for i := range txs {
// Create a test accounts and fund it
key, _ := crypto.GenerateKey()
testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000000))
if urgent {
txs[i] = dynamicFeeTx(0, 100000, big.NewInt(int64(baseFee+1+i)), big.NewInt(int64(1+i)), key)
highTip = txs[i]
} else {
txs[i] = dynamicFeeTx(0, 100000, big.NewInt(int64(baseFee+200+i)), big.NewInt(1), key)
highCap = txs[i]
}
}
pool.AddRemotes(txs)
pending, queued := pool.Stats()
if pending+queued != 20 {
t.Fatalf("transaction count mismatch: have %d, want %d", pending+queued, 10)
}
}
add(false)
for baseFee = 0; baseFee <= 1000; baseFee += 100 {
pool.priced.SetBaseFee(big.NewInt(int64(baseFee)))
add(true)
check(highCap, "fee cap")
add(false)
check(highTip, "effective tip")
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that the pool rejects duplicate transactions. // Tests that the pool rejects duplicate transactions.
func TestTransactionDeduplication(t *testing.T) { func TestTransactionDeduplication(t *testing.T) {
t.Parallel() t.Parallel()
@ -1614,7 +1973,7 @@ func TestTransactionDeduplication(t *testing.T) {
// Create a test account to add transactions with // Create a test account to add transactions with
key, _ := crypto.GenerateKey() key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000)) testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
// Create a batch of transactions and add a few of them // Create a batch of transactions and add a few of them
txs := make([]*types.Transaction, 16) txs := make([]*types.Transaction, 16)
@ -1685,7 +2044,7 @@ func TestTransactionReplacement(t *testing.T) {
// Create a test account to add transactions with // Create a test account to add transactions with
key, _ := crypto.GenerateKey() key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000)) testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too) // Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
price := int64(100) price := int64(100)
@ -1746,6 +2105,116 @@ func TestTransactionReplacement(t *testing.T) {
} }
} }
// Tests that the pool rejects replacement dynamic fee transactions that don't
// meet the minimum price bump required.
func TestTransactionReplacementDynamicFee(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
pool, key := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
// Keep track of transaction events to ensure all executables get announced
events := make(chan NewTxsEvent, 32)
sub := pool.txFeed.Subscribe(events)
defer sub.Unsubscribe()
// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
feeCap := int64(100)
feeCapThreshold := (feeCap * (100 + int64(testTxPoolConfig.PriceBump))) / 100
tip := int64(60)
tipThreshold := (tip * (100 + int64(testTxPoolConfig.PriceBump))) / 100
// Run the following identical checks for both the pending and queue pools:
// 1. Send initial tx => accept
// 2. Don't bump tip or fee cap => discard
// 3. Bump both more than min => accept
// 4. Check events match expected (2 new executable txs during pending, 0 during queue)
// 5. Send new tx with larger tip and feeCap => accept
// 6. Bump tip max allowed so it's still underpriced => discard
// 7. Bump fee cap max allowed so it's still underpriced => discard
// 8. Bump tip min for acceptance => discard
// 9. Bump feecap min for acceptance => discard
// 10. Bump feecap and tip min for acceptance => accept
// 11. Check events match expected (2 new executable txs during pending, 0 during queue)
stages := []string{"pending", "queued"}
for _, stage := range stages {
// Since state is empty, 0 nonce txs are "executable" and can go
// into pending immediately. 2 nonce txs are "happed
nonce := uint64(0)
if stage == "queued" {
nonce = 2
}
// 1. Send initial tx => accept
tx := dynamicFeeTx(nonce, 100000, big.NewInt(2), big.NewInt(1), key)
if err := pool.addRemoteSync(tx); err != nil {
t.Fatalf("failed to add original cheap %s transaction: %v", stage, err)
}
// 2. Don't bump tip or feecap => discard
tx = dynamicFeeTx(nonce, 100001, big.NewInt(2), big.NewInt(1), key)
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
t.Fatalf("original cheap %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
}
// 3. Bump both more than min => accept
tx = dynamicFeeTx(nonce, 100000, big.NewInt(3), big.NewInt(2), key)
if err := pool.AddRemote(tx); err != nil {
t.Fatalf("failed to replace original cheap %s transaction: %v", stage, err)
}
// 4. Check events match expected (2 new executable txs during pending, 0 during queue)
count := 2
if stage == "queued" {
count = 0
}
if err := validateEvents(events, count); err != nil {
t.Fatalf("cheap %s replacement event firing failed: %v", stage, err)
}
// 5. Send new tx with larger tip and feeCap => accept
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCap), big.NewInt(tip), key)
if err := pool.addRemoteSync(tx); err != nil {
t.Fatalf("failed to add original proper %s transaction: %v", stage, err)
}
// 6. Bump tip max allowed so it's still underpriced => discard
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCap), big.NewInt(tipThreshold-1), key)
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
}
// 7. Bump fee cap max allowed so it's still underpriced => discard
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCapThreshold-1), big.NewInt(tip), key)
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
}
// 8. Bump tip min for acceptance => accept
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCap), big.NewInt(tipThreshold), key)
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
}
// 9. Bump fee cap min for acceptance => accept
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCapThreshold), big.NewInt(tip), key)
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
}
// 10. Check events match expected (3 new executable txs during pending, 0 during queue)
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCapThreshold), big.NewInt(tipThreshold), key)
if err := pool.AddRemote(tx); err != nil {
t.Fatalf("failed to replace original cheap %s transaction: %v", stage, err)
}
// 11. Check events match expected (3 new executable txs during pending, 0 during queue)
count = 2
if stage == "queued" {
count = 0
}
if err := validateEvents(events, count); err != nil {
t.Fatalf("replacement %s event firing failed: %v", stage, err)
}
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that local transactions are journaled to disk, but remote transactions // Tests that local transactions are journaled to disk, but remote transactions
// get discarded between restarts. // get discarded between restarts.
func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) } func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) }
@ -1781,8 +2250,8 @@ func testTransactionJournaling(t *testing.T, nolocals bool) {
local, _ := crypto.GenerateKey() local, _ := crypto.GenerateKey()
remote, _ := crypto.GenerateKey() remote, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000)) testAddBalance(pool, crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000)) testAddBalance(pool, crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
// Add three local and a remote transactions and ensure they are queued up // Add three local and a remote transactions and ensure they are queued up
if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil { if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil {
@ -1875,7 +2344,7 @@ func TestTransactionStatusCheck(t *testing.T) {
keys := make([]*ecdsa.PrivateKey, 3) keys := make([]*ecdsa.PrivateKey, 3)
for i := 0; i < len(keys); i++ { for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey() keys[i], _ = crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
} }
// Generate and queue a batch of transactions, both pending and queued // Generate and queue a batch of transactions, both pending and queued
txs := types.Transactions{} txs := types.Transactions{}
@ -1945,7 +2414,7 @@ func benchmarkPendingDemotion(b *testing.B, size int) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000)) testAddBalance(pool, account, big.NewInt(1000000))
for i := 0; i < size; i++ { for i := 0; i < size; i++ {
tx := transaction(uint64(i), 100000, key) tx := transaction(uint64(i), 100000, key)
@ -1970,7 +2439,7 @@ func benchmarkFuturePromotion(b *testing.B, size int) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000)) testAddBalance(pool, account, big.NewInt(1000000))
for i := 0; i < size; i++ { for i := 0; i < size; i++ {
tx := transaction(uint64(1+i), 100000, key) tx := transaction(uint64(1+i), 100000, key)
@ -1998,7 +2467,7 @@ func benchmarkPoolBatchInsert(b *testing.B, size int, local bool) {
defer pool.Stop() defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey) account := crypto.PubkeyToAddress(key.PublicKey)
pool.currentState.AddBalance(account, big.NewInt(1000000)) testAddBalance(pool, account, big.NewInt(1000000))
batches := make([]types.Transactions, b.N) batches := make([]types.Transactions, b.N)
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
@ -2039,13 +2508,13 @@ func BenchmarkInsertRemoteWithAllLocals(b *testing.B) {
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
b.StopTimer() b.StopTimer()
pool, _ := setupTxPool() pool, _ := setupTxPool()
pool.currentState.AddBalance(account, big.NewInt(100000000)) testAddBalance(pool, account, big.NewInt(100000000))
for _, local := range locals { for _, local := range locals {
pool.AddLocal(local) pool.AddLocal(local)
} }
b.StartTimer() b.StartTimer()
// Assign a high enough balance for testing // Assign a high enough balance for testing
pool.currentState.AddBalance(remoteAddr, big.NewInt(100000000)) testAddBalance(pool, remoteAddr, big.NewInt(100000000))
for i := 0; i < len(remotes); i++ { for i := 0; i < len(remotes); i++ {
pool.AddRemotes([]*types.Transaction{remotes[i]}) pool.AddRemotes([]*types.Transaction{remotes[i]})
} }

View File

@ -300,33 +300,60 @@ func (tx *Transaction) Cost() *big.Int {
return total return total
} }
// EffectiveTip returns the effective miner tip for the given base fee.
// Returns error in case of a negative effective miner tip.
func (tx *Transaction) EffectiveTip(baseFee *big.Int) (*big.Int, error) {
if baseFee == nil {
return tx.Tip(), nil
}
feeCap := tx.FeeCap()
if feeCap.Cmp(baseFee) == -1 {
return nil, ErrFeeCapTooLow
}
return math.BigMin(tx.Tip(), feeCap.Sub(feeCap, baseFee)), nil
}
// RawSignatureValues returns the V, R, S signature values of the transaction. // RawSignatureValues returns the V, R, S signature values of the transaction.
// The return values should not be modified by the caller. // The return values should not be modified by the caller.
func (tx *Transaction) RawSignatureValues() (v, r, s *big.Int) { func (tx *Transaction) RawSignatureValues() (v, r, s *big.Int) {
return tx.inner.rawSignatureValues() return tx.inner.rawSignatureValues()
} }
// GasPriceCmp compares the gas prices of two transactions. // FeeCapCmp compares the fee cap of two transactions.
func (tx *Transaction) GasPriceCmp(other *Transaction) int { func (tx *Transaction) FeeCapCmp(other *Transaction) int {
return tx.inner.gasPrice().Cmp(other.inner.gasPrice()) return tx.inner.feeCap().Cmp(other.inner.feeCap())
} }
// GasPriceIntCmp compares the gas price of the transaction against the given price. // FeeCapIntCmp compares the fee cap of the transaction against the given fee cap.
func (tx *Transaction) GasPriceIntCmp(other *big.Int) int { func (tx *Transaction) FeeCapIntCmp(other *big.Int) int {
return tx.inner.gasPrice().Cmp(other) return tx.inner.feeCap().Cmp(other)
}
// TipCmp compares the tip of two transactions.
func (tx *Transaction) TipCmp(other *Transaction) int {
return tx.inner.tip().Cmp(other.inner.tip())
}
// TipIntCmp compares the tip of the transaction against the given tip.
func (tx *Transaction) TipIntCmp(other *big.Int) int {
return tx.inner.tip().Cmp(other)
}
// EffectiveTip returns the effective miner tip for the given base fee.
// Note: if the effective tip is negative, this method returns both error
// the actual negative value, _and_ ErrFeeCapTooLow
func (tx *Transaction) EffectiveTip(baseFee *big.Int) (*big.Int, error) {
if baseFee == nil {
return tx.Tip(), nil
}
var err error
feeCap := tx.FeeCap()
if feeCap.Cmp(baseFee) == -1 {
err = ErrFeeCapTooLow
}
return math.BigMin(tx.Tip(), feeCap.Sub(feeCap, baseFee)), err
}
// EffectiveTipValue is identical to EffectiveTip, but does not return an
// error in case the effective tip is negative
func (tx *Transaction) EffectiveTipValue(baseFee *big.Int) *big.Int {
effectiveTip, _ := tx.EffectiveTip(baseFee)
return effectiveTip
}
// EffectiveTipCmp compares the effective tip of two transactions assuming the given base fee.
func (tx *Transaction) EffectiveTipCmp(other *Transaction, baseFee *big.Int) int {
if baseFee == nil {
return tx.TipCmp(other)
}
return tx.EffectiveTipValue(baseFee).Cmp(other.EffectiveTipValue(baseFee))
} }
// Hash returns the transaction hash. // Hash returns the transaction hash.

View File

@ -188,7 +188,7 @@ type transactionsByGasPrice []*types.Transaction
func (t transactionsByGasPrice) Len() int { return len(t) } func (t transactionsByGasPrice) Len() int { return len(t) }
func (t transactionsByGasPrice) Swap(i, j int) { t[i], t[j] = t[j], t[i] } func (t transactionsByGasPrice) Swap(i, j int) { t[i], t[j] = t[j], t[i] }
func (t transactionsByGasPrice) Less(i, j int) bool { return t[i].GasPriceCmp(t[j]) < 0 } func (t transactionsByGasPrice) Less(i, j int) bool { return t[i].FeeCapCmp(t[j]) < 0 }
// getBlockPrices calculates the lowest transaction gas price in a given block // getBlockPrices calculates the lowest transaction gas price in a given block
// and sends it to the result channel. If the block is empty or all transactions // and sends it to the result channel. If the block is empty or all transactions
@ -210,7 +210,7 @@ func (gpo *Oracle) getBlockPrices(ctx context.Context, signer types.Signer, bloc
var prices []*big.Int var prices []*big.Int
for _, tx := range txs { for _, tx := range txs {
if ignoreUnder != nil && tx.GasPriceIntCmp(ignoreUnder) == -1 { if ignoreUnder != nil && tx.GasPrice().Cmp(ignoreUnder) == -1 {
continue continue
} }
sender, err := types.Sender(signer, tx) sender, err := types.Sender(signer, tx)