forked from cerc-io/plugeth
swarm/pss: negihbourhood addressing simulation tests (#19278)
* swarm/pss: fixed bug in pss.process, test added * swarm/pss: test case updated * swarm/pss: WaitTillSnapshotRecreated() func added * swarm/pss: snapshot test updated * swarm/pss: WaitTillSnapshotLoaded() fixed * swarm/pss: gofmt applied * swarm/pss: refactoring, file renamed * swarm/pss: input data fixed * swarm/pss: race condition fixed * swarm/pss: test timeout increased * swarm/pss: eliminated the global variables * swarm/pss: tests added * swarm/pss: comments added * swarm/pss: comment fixed * swarm/pss: refactored according to review * swarm/pss: style fix * swarm/pss: increased timeout
This commit is contained in:
parent
3d067b0cea
commit
6e401792ce
@ -18,12 +18,14 @@ package simulation
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"encoding/hex"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/log"
|
||||
"github.com/ethereum/go-ethereum/p2p/enode"
|
||||
"github.com/ethereum/go-ethereum/p2p/simulations"
|
||||
"github.com/ethereum/go-ethereum/swarm/network"
|
||||
)
|
||||
|
||||
@ -96,3 +98,106 @@ func (s *Simulation) kademlias() (ks map[enode.ID]*network.Kademlia) {
|
||||
}
|
||||
return ks
|
||||
}
|
||||
|
||||
// WaitTillSnapshotRecreated is blocking until all the connections specified
|
||||
// in the snapshot are registered in the kademlia.
|
||||
// It differs from WaitTillHealthy, which waits only until all the kademlias are
|
||||
// healthy (it might happen even before all the connections are established).
|
||||
func (s *Simulation) WaitTillSnapshotRecreated(ctx context.Context, snap simulations.Snapshot) error {
|
||||
expected := getSnapshotConnections(snap.Conns)
|
||||
ticker := time.NewTicker(150 * time.Millisecond)
|
||||
defer ticker.Stop()
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
return ctx.Err()
|
||||
case <-ticker.C:
|
||||
actual := s.getActualConnections()
|
||||
if isAllDeployed(expected, actual) {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Simulation) getActualConnections() (res []uint64) {
|
||||
kademlias := s.kademlias()
|
||||
for base, k := range kademlias {
|
||||
k.EachConn(base[:], 256, func(p *network.Peer, _ int) bool {
|
||||
res = append(res, getConnectionHash(base, p.ID()))
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
// only list those connections that appear twice (both peers should recognize connection as active)
|
||||
res = removeDuplicatesAndSingletons(res)
|
||||
return res
|
||||
}
|
||||
|
||||
func getSnapshotConnections(conns []simulations.Conn) (res []uint64) {
|
||||
for _, c := range conns {
|
||||
res = append(res, getConnectionHash(c.One, c.Other))
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// returns an integer connection identifier (similar to 8-byte hash)
|
||||
func getConnectionHash(a, b enode.ID) uint64 {
|
||||
var h [8]byte
|
||||
for i := 0; i < 8; i++ {
|
||||
h[i] = a[i] ^ b[i]
|
||||
}
|
||||
res := binary.LittleEndian.Uint64(h[:])
|
||||
return res
|
||||
}
|
||||
|
||||
// returns true if all connections in expected are listed in actual
|
||||
func isAllDeployed(expected []uint64, actual []uint64) bool {
|
||||
if len(expected) == 0 {
|
||||
return true
|
||||
}
|
||||
|
||||
exp := make([]uint64, len(expected))
|
||||
copy(exp, expected)
|
||||
for _, c := range actual {
|
||||
// remove value c from exp
|
||||
for i := 0; i < len(exp); i++ {
|
||||
if exp[i] == c {
|
||||
exp = removeListElement(exp, i)
|
||||
if len(exp) == 0 {
|
||||
return true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return len(exp) == 0
|
||||
}
|
||||
|
||||
func removeListElement(arr []uint64, i int) []uint64 {
|
||||
last := len(arr) - 1
|
||||
arr[i] = arr[last]
|
||||
arr = arr[:last]
|
||||
return arr
|
||||
}
|
||||
|
||||
func removeDuplicatesAndSingletons(arr []uint64) []uint64 {
|
||||
for i := 0; i < len(arr); {
|
||||
found := false
|
||||
for j := i + 1; j < len(arr); j++ {
|
||||
if arr[i] == arr[j] {
|
||||
arr = removeListElement(arr, j) // remove duplicate
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if found {
|
||||
i++
|
||||
} else {
|
||||
arr = removeListElement(arr, i) // remove singleton
|
||||
}
|
||||
}
|
||||
|
||||
return arr
|
||||
}
|
||||
|
@ -144,3 +144,166 @@ func createSimServiceMap(discovery bool) map[string]ServiceFunc {
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// TestWaitTillSnapshotRecreated tests that we indeed have a network
|
||||
// configuration specified in the snapshot file, after we wait for it.
|
||||
//
|
||||
// First we create a first simulation
|
||||
// Run it as nodes connected in a ring
|
||||
// Wait until the network is healthy
|
||||
// Then we create a snapshot
|
||||
// With this snapshot we create a new simulation
|
||||
// Call WaitTillSnapshotRecreated() function and wait until it returns
|
||||
// Iterate the nodes and check if all the connections are successfully recreated
|
||||
func TestWaitTillSnapshotRecreated(t *testing.T) {
|
||||
var err error
|
||||
sim := New(createSimServiceMap(true))
|
||||
_, err = sim.AddNodesAndConnectRing(16)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 60*time.Second)
|
||||
defer cancel()
|
||||
_, err = sim.WaitTillHealthy(ctx)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
originalConnections := sim.getActualConnections()
|
||||
snap, err := sim.Net.Snapshot()
|
||||
sim.Close()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
controlSim := New(createSimServiceMap(false))
|
||||
defer controlSim.Close()
|
||||
err = controlSim.Net.Load(snap)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
err = controlSim.WaitTillSnapshotRecreated(ctx, *snap)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
controlConnections := controlSim.getActualConnections()
|
||||
|
||||
for _, c := range originalConnections {
|
||||
if !exist(controlConnections, c) {
|
||||
t.Fatal("connection was not recreated")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// exist returns true if val is found in arr
|
||||
func exist(arr []uint64, val uint64) bool {
|
||||
for _, c := range arr {
|
||||
if c == val {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func TestRemoveDuplicatesAndSingletons(t *testing.T) {
|
||||
singletons := []uint64{
|
||||
0x3c127c6f6cb026b0,
|
||||
0x0f45190d72e71fc5,
|
||||
0xb0184c02449e0bb6,
|
||||
0xa85c7b84239c54d3,
|
||||
0xe3b0c44298fc1c14,
|
||||
0x9afbf4c8996fb924,
|
||||
0x27ae41e4649b934c,
|
||||
0xa495991b7852b855,
|
||||
}
|
||||
|
||||
doubles := []uint64{
|
||||
0x1b879f878de7fc7a,
|
||||
0xc6791470521bdab4,
|
||||
0xdd34b0ee39bbccc6,
|
||||
0x4d904fbf0f31da10,
|
||||
0x6403c2560432c8f8,
|
||||
0x18954e33cf3ad847,
|
||||
0x90db00e98dc7a8a6,
|
||||
0x92886b0dfcc1809b,
|
||||
}
|
||||
|
||||
var arr []uint64
|
||||
arr = append(arr, doubles...)
|
||||
arr = append(arr, singletons...)
|
||||
arr = append(arr, doubles...)
|
||||
arr = removeDuplicatesAndSingletons(arr)
|
||||
|
||||
for _, i := range singletons {
|
||||
if exist(arr, i) {
|
||||
t.Fatalf("singleton not removed: %d", i)
|
||||
}
|
||||
}
|
||||
|
||||
for _, i := range doubles {
|
||||
if !exist(arr, i) {
|
||||
t.Fatalf("wrong value removed: %d", i)
|
||||
}
|
||||
}
|
||||
|
||||
for j := 0; j < len(doubles); j++ {
|
||||
v := doubles[j] + singletons[j]
|
||||
if exist(arr, v) {
|
||||
t.Fatalf("non-existing value found, index: %d", j)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestIsAllDeployed(t *testing.T) {
|
||||
a := []uint64{
|
||||
0x3c127c6f6cb026b0,
|
||||
0x0f45190d72e71fc5,
|
||||
0xb0184c02449e0bb6,
|
||||
0xa85c7b84239c54d3,
|
||||
0xe3b0c44298fc1c14,
|
||||
0x9afbf4c8996fb924,
|
||||
0x27ae41e4649b934c,
|
||||
0xa495991b7852b855,
|
||||
}
|
||||
|
||||
b := []uint64{
|
||||
0x1b879f878de7fc7a,
|
||||
0xc6791470521bdab4,
|
||||
0xdd34b0ee39bbccc6,
|
||||
0x4d904fbf0f31da10,
|
||||
0x6403c2560432c8f8,
|
||||
0x18954e33cf3ad847,
|
||||
0x90db00e98dc7a8a6,
|
||||
0x92886b0dfcc1809b,
|
||||
}
|
||||
|
||||
var c []uint64
|
||||
c = append(c, a...)
|
||||
c = append(c, b...)
|
||||
|
||||
if !isAllDeployed(a, c) {
|
||||
t.Fatal("isAllDeployed failed")
|
||||
}
|
||||
|
||||
if !isAllDeployed(b, c) {
|
||||
t.Fatal("isAllDeployed failed")
|
||||
}
|
||||
|
||||
if isAllDeployed(c, a) {
|
||||
t.Fatal("isAllDeployed failed: false positive")
|
||||
}
|
||||
|
||||
if isAllDeployed(c, b) {
|
||||
t.Fatal("isAllDeployed failed: false positive")
|
||||
}
|
||||
|
||||
c = c[2:]
|
||||
|
||||
if isAllDeployed(a, c) {
|
||||
t.Fatal("isAllDeployed failed: false positive")
|
||||
}
|
||||
|
||||
if !isAllDeployed(b, c) {
|
||||
t.Fatal("isAllDeployed failed")
|
||||
}
|
||||
}
|
||||
|
465
swarm/pss/prox_test.go
Normal file
465
swarm/pss/prox_test.go
Normal file
@ -0,0 +1,465 @@
|
||||
package pss
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/common/hexutil"
|
||||
"github.com/ethereum/go-ethereum/log"
|
||||
"github.com/ethereum/go-ethereum/node"
|
||||
"github.com/ethereum/go-ethereum/p2p"
|
||||
"github.com/ethereum/go-ethereum/p2p/enode"
|
||||
"github.com/ethereum/go-ethereum/p2p/simulations"
|
||||
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
|
||||
"github.com/ethereum/go-ethereum/rpc"
|
||||
"github.com/ethereum/go-ethereum/swarm/network"
|
||||
"github.com/ethereum/go-ethereum/swarm/network/simulation"
|
||||
"github.com/ethereum/go-ethereum/swarm/pot"
|
||||
"github.com/ethereum/go-ethereum/swarm/state"
|
||||
)
|
||||
|
||||
// needed to make the enode id of the receiving node available to the handler for triggers
|
||||
type handlerContextFunc func(*testData, *adapters.NodeConfig) *handler
|
||||
|
||||
// struct to notify reception of messages to simulation driver
|
||||
// TODO To make code cleaner:
|
||||
// - consider a separate pss unwrap to message event in sim framework (this will make eventual message propagation analysis with pss easier/possible in the future)
|
||||
// - consider also test api calls to inspect handling results of messages
|
||||
type handlerNotification struct {
|
||||
id enode.ID
|
||||
serial uint64
|
||||
}
|
||||
|
||||
type testData struct {
|
||||
mu sync.Mutex
|
||||
sim *simulation.Simulation
|
||||
handlerDone bool // set to true on termination of the simulation run
|
||||
requiredMessages int
|
||||
allowedMessages int
|
||||
messageCount int
|
||||
kademlias map[enode.ID]*network.Kademlia
|
||||
nodeAddrs map[enode.ID][]byte // make predictable overlay addresses from the generated random enode ids
|
||||
recipients map[int][]enode.ID // for logging output only
|
||||
allowed map[int][]enode.ID // allowed recipients
|
||||
expectedMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
|
||||
allowedMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
|
||||
senders map[int]enode.ID // originating nodes of the messages (intention is to choose as far as possible from the receiving neighborhood)
|
||||
handlerC chan handlerNotification // passes message from pss message handler to simulation driver
|
||||
doneC chan struct{} // terminates the handler channel listener
|
||||
errC chan error // error to pass to main sim thread
|
||||
msgC chan handlerNotification // message receipt notification to main sim thread
|
||||
msgs [][]byte // recipient addresses of messages
|
||||
}
|
||||
|
||||
var (
|
||||
pof = pot.DefaultPof(256) // generate messages and index them
|
||||
topic = BytesToTopic([]byte{0xf3, 0x9e, 0x06, 0x82})
|
||||
)
|
||||
|
||||
func (d *testData) getMsgCount() int {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
return d.messageCount
|
||||
}
|
||||
|
||||
func (d *testData) incrementMsgCount() int {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
d.messageCount++
|
||||
return d.messageCount
|
||||
}
|
||||
|
||||
func (d *testData) isDone() bool {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
return d.handlerDone
|
||||
}
|
||||
|
||||
func (d *testData) setDone() {
|
||||
d.mu.Lock()
|
||||
defer d.mu.Unlock()
|
||||
d.handlerDone = true
|
||||
}
|
||||
|
||||
func getCmdParams(t *testing.T) (int, int) {
|
||||
args := strings.Split(t.Name(), "/")
|
||||
msgCount, err := strconv.ParseInt(args[2], 10, 16)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
nodeCount, err := strconv.ParseInt(args[1], 10, 16)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
return int(msgCount), int(nodeCount)
|
||||
}
|
||||
|
||||
func readSnapshot(t *testing.T, nodeCount int) simulations.Snapshot {
|
||||
f, err := os.Open(fmt.Sprintf("testdata/snapshot_%d.json", nodeCount))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
jsonbyte, err := ioutil.ReadAll(f)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
var snap simulations.Snapshot
|
||||
err = json.Unmarshal(jsonbyte, &snap)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
return snap
|
||||
}
|
||||
|
||||
func newTestData() *testData {
|
||||
return &testData{
|
||||
kademlias: make(map[enode.ID]*network.Kademlia),
|
||||
nodeAddrs: make(map[enode.ID][]byte),
|
||||
recipients: make(map[int][]enode.ID),
|
||||
allowed: make(map[int][]enode.ID),
|
||||
expectedMsgs: make(map[enode.ID][]uint64),
|
||||
allowedMsgs: make(map[enode.ID][]uint64),
|
||||
senders: make(map[int]enode.ID),
|
||||
handlerC: make(chan handlerNotification),
|
||||
doneC: make(chan struct{}),
|
||||
errC: make(chan error),
|
||||
msgC: make(chan handlerNotification),
|
||||
}
|
||||
}
|
||||
|
||||
func (d *testData) init(msgCount int) {
|
||||
log.Debug("TestProxNetwork start")
|
||||
|
||||
for _, nodeId := range d.sim.NodeIDs() {
|
||||
d.nodeAddrs[nodeId] = nodeIDToAddr(nodeId)
|
||||
}
|
||||
|
||||
for i := 0; i < int(msgCount); i++ {
|
||||
msgAddr := pot.RandomAddress() // we choose message addresses randomly
|
||||
d.msgs = append(d.msgs, msgAddr.Bytes())
|
||||
smallestPo := 256
|
||||
var targets []enode.ID
|
||||
var closestPO int
|
||||
|
||||
// loop through all nodes and find the required and allowed recipients of each message
|
||||
// (for more information, please see the comment to the main test function)
|
||||
for _, nod := range d.sim.Net.GetNodes() {
|
||||
po, _ := pof(d.msgs[i], d.nodeAddrs[nod.ID()], 0)
|
||||
depth := d.kademlias[nod.ID()].NeighbourhoodDepth()
|
||||
|
||||
// only nodes with closest IDs (wrt the msg address) will be required recipients
|
||||
if po > closestPO {
|
||||
closestPO = po
|
||||
targets = nil
|
||||
targets = append(targets, nod.ID())
|
||||
} else if po == closestPO {
|
||||
targets = append(targets, nod.ID())
|
||||
}
|
||||
|
||||
if po >= depth {
|
||||
d.allowedMessages++
|
||||
d.allowed[i] = append(d.allowed[i], nod.ID())
|
||||
d.allowedMsgs[nod.ID()] = append(d.allowedMsgs[nod.ID()], uint64(i))
|
||||
}
|
||||
|
||||
// a node with the smallest PO (wrt msg) will be the sender,
|
||||
// in order to increase the distance the msg must travel
|
||||
if po < smallestPo {
|
||||
smallestPo = po
|
||||
d.senders[i] = nod.ID()
|
||||
}
|
||||
}
|
||||
|
||||
d.requiredMessages += len(targets)
|
||||
for _, id := range targets {
|
||||
d.recipients[i] = append(d.recipients[i], id)
|
||||
d.expectedMsgs[id] = append(d.expectedMsgs[id], uint64(i))
|
||||
}
|
||||
|
||||
log.Debug("nn for msg", "targets", len(d.recipients[i]), "msgidx", i, "msg", common.Bytes2Hex(msgAddr[:8]), "sender", d.senders[i], "senderpo", smallestPo)
|
||||
}
|
||||
log.Debug("msgs to receive", "count", d.requiredMessages)
|
||||
}
|
||||
|
||||
// Here we test specific functionality of the pss, setting the prox property of
|
||||
// the handler. The tests generate a number of messages with random addresses.
|
||||
// Then, for each message it calculates which nodes have the msg address
|
||||
// within its nearest neighborhood depth, and stores those nodes as possible
|
||||
// recipients. Those nodes that are the closest to the message address (nodes
|
||||
// belonging to the deepest PO wrt the msg address) are stored as required
|
||||
// recipients. The difference between allowed and required recipients results
|
||||
// from the fact that the nearest neighbours are not necessarily reciprocal.
|
||||
// Upon sending the messages, the test verifies that the respective message is
|
||||
// passed to the message handlers of these required recipients. The test fails
|
||||
// if a message is handled by recipient which is not listed among the allowed
|
||||
// recipients of this particular message. It also fails after timeout, if not
|
||||
// all the required recipients have received their respective messages.
|
||||
//
|
||||
// For example, if proximity order of certain msg address is 4, and node X
|
||||
// has PO=5 wrt the message address, and nodes Y and Z have PO=6, then:
|
||||
// nodes Y and Z will be considered required recipients of the msg,
|
||||
// whereas nodes X, Y and Z will be allowed recipients.
|
||||
func TestProxNetwork(t *testing.T) {
|
||||
t.Run("16/16", testProxNetwork)
|
||||
}
|
||||
|
||||
// params in run name: nodes/msgs
|
||||
func TestProxNetworkLong(t *testing.T) {
|
||||
if !*longrunning {
|
||||
t.Skip("run with --longrunning flag to run extensive network tests")
|
||||
}
|
||||
t.Run("8/100", testProxNetwork)
|
||||
t.Run("16/100", testProxNetwork)
|
||||
t.Run("32/100", testProxNetwork)
|
||||
t.Run("64/100", testProxNetwork)
|
||||
t.Run("128/100", testProxNetwork)
|
||||
}
|
||||
|
||||
func testProxNetwork(t *testing.T) {
|
||||
tstdata := newTestData()
|
||||
msgCount, nodeCount := getCmdParams(t)
|
||||
handlerContextFuncs := make(map[Topic]handlerContextFunc)
|
||||
handlerContextFuncs[topic] = nodeMsgHandler
|
||||
services := newProxServices(tstdata, true, handlerContextFuncs, tstdata.kademlias)
|
||||
tstdata.sim = simulation.New(services)
|
||||
defer tstdata.sim.Close()
|
||||
err := tstdata.sim.UploadSnapshot(fmt.Sprintf("testdata/snapshot_%d.json", nodeCount))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
|
||||
defer cancel()
|
||||
snap := readSnapshot(t, nodeCount)
|
||||
err = tstdata.sim.WaitTillSnapshotRecreated(ctx, snap)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to recreate snapshot: %s", err)
|
||||
}
|
||||
tstdata.init(msgCount) // initialize the test data
|
||||
wrapper := func(c context.Context, _ *simulation.Simulation) error {
|
||||
return testRoutine(tstdata, c)
|
||||
}
|
||||
result := tstdata.sim.Run(ctx, wrapper) // call the main test function
|
||||
if result.Error != nil {
|
||||
// context deadline exceeded
|
||||
// however, it might just mean that not all possible messages are received
|
||||
// now we must check if all required messages are received
|
||||
cnt := tstdata.getMsgCount()
|
||||
log.Debug("TestProxNetwork finnished", "rcv", cnt)
|
||||
if cnt < tstdata.requiredMessages {
|
||||
t.Fatal(result.Error)
|
||||
}
|
||||
}
|
||||
t.Logf("completed %d", result.Duration)
|
||||
}
|
||||
|
||||
func (tstdata *testData) sendAllMsgs() {
|
||||
for i, msg := range tstdata.msgs {
|
||||
log.Debug("sending msg", "idx", i, "from", tstdata.senders[i])
|
||||
nodeClient, err := tstdata.sim.Net.GetNode(tstdata.senders[i]).Client()
|
||||
if err != nil {
|
||||
tstdata.errC <- err
|
||||
}
|
||||
var uvarByte [8]byte
|
||||
binary.PutUvarint(uvarByte[:], uint64(i))
|
||||
nodeClient.Call(nil, "pss_sendRaw", hexutil.Encode(msg), hexutil.Encode(topic[:]), hexutil.Encode(uvarByte[:]))
|
||||
}
|
||||
log.Debug("all messages sent")
|
||||
}
|
||||
|
||||
// testRoutine is the main test function, called by Simulation.Run()
|
||||
func testRoutine(tstdata *testData, ctx context.Context) error {
|
||||
go handlerChannelListener(tstdata, ctx)
|
||||
go tstdata.sendAllMsgs()
|
||||
received := 0
|
||||
|
||||
// collect incoming messages and terminate with corresponding status when message handler listener ends
|
||||
for {
|
||||
select {
|
||||
case err := <-tstdata.errC:
|
||||
return err
|
||||
case hn := <-tstdata.msgC:
|
||||
received++
|
||||
log.Debug("msg received", "msgs_received", received, "total_expected", tstdata.requiredMessages, "id", hn.id, "serial", hn.serial)
|
||||
if received == tstdata.allowedMessages {
|
||||
close(tstdata.doneC)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func handlerChannelListener(tstdata *testData, ctx context.Context) {
|
||||
for {
|
||||
select {
|
||||
case <-tstdata.doneC: // graceful exit
|
||||
tstdata.setDone()
|
||||
tstdata.errC <- nil
|
||||
return
|
||||
|
||||
case <-ctx.Done(): // timeout or cancel
|
||||
tstdata.setDone()
|
||||
tstdata.errC <- ctx.Err()
|
||||
return
|
||||
|
||||
// incoming message from pss message handler
|
||||
case handlerNotification := <-tstdata.handlerC:
|
||||
// check if recipient has already received all its messages and notify to fail the test if so
|
||||
aMsgs := tstdata.allowedMsgs[handlerNotification.id]
|
||||
if len(aMsgs) == 0 {
|
||||
tstdata.setDone()
|
||||
tstdata.errC <- fmt.Errorf("too many messages received by recipient %x", handlerNotification.id)
|
||||
return
|
||||
}
|
||||
|
||||
// check if message serial is in expected messages for this recipient and notify to fail the test if not
|
||||
idx := -1
|
||||
for i, msg := range aMsgs {
|
||||
if handlerNotification.serial == msg {
|
||||
idx = i
|
||||
break
|
||||
}
|
||||
}
|
||||
if idx == -1 {
|
||||
tstdata.setDone()
|
||||
tstdata.errC <- fmt.Errorf("message %d received by wrong recipient %v", handlerNotification.serial, handlerNotification.id)
|
||||
return
|
||||
}
|
||||
|
||||
// message is ok, so remove that message serial from the recipient expectation array and notify the main sim thread
|
||||
aMsgs[idx] = aMsgs[len(aMsgs)-1]
|
||||
aMsgs = aMsgs[:len(aMsgs)-1]
|
||||
tstdata.msgC <- handlerNotification
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func nodeMsgHandler(tstdata *testData, config *adapters.NodeConfig) *handler {
|
||||
return &handler{
|
||||
f: func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
|
||||
cnt := tstdata.incrementMsgCount()
|
||||
log.Debug("nodeMsgHandler rcv", "cnt", cnt)
|
||||
|
||||
// using simple serial in message body, makes it easy to keep track of who's getting what
|
||||
serial, c := binary.Uvarint(msg)
|
||||
if c <= 0 {
|
||||
log.Crit(fmt.Sprintf("corrupt message received by %x (uvarint parse returned %d)", config.ID, c))
|
||||
}
|
||||
|
||||
if tstdata.isDone() {
|
||||
return errors.New("handlers aborted") // terminate if simulation is over
|
||||
}
|
||||
|
||||
// pass message context to the listener in the simulation
|
||||
tstdata.handlerC <- handlerNotification{
|
||||
id: config.ID,
|
||||
serial: serial,
|
||||
}
|
||||
return nil
|
||||
},
|
||||
caps: &handlerCaps{
|
||||
raw: true, // we use raw messages for simplicity
|
||||
prox: true,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// an adaptation of the same services setup as in pss_test.go
|
||||
// replaces pss_test.go when those tests are rewritten to the new swarm/network/simulation package
|
||||
func newProxServices(tstdata *testData, allowRaw bool, handlerContextFuncs map[Topic]handlerContextFunc, kademlias map[enode.ID]*network.Kademlia) map[string]simulation.ServiceFunc {
|
||||
stateStore := state.NewInmemoryStore()
|
||||
kademlia := func(id enode.ID) *network.Kademlia {
|
||||
if k, ok := kademlias[id]; ok {
|
||||
return k
|
||||
}
|
||||
params := network.NewKadParams()
|
||||
params.MaxBinSize = 3
|
||||
params.MinBinSize = 1
|
||||
params.MaxRetries = 1000
|
||||
params.RetryExponent = 2
|
||||
params.RetryInterval = 1000000
|
||||
kademlias[id] = network.NewKademlia(id[:], params)
|
||||
return kademlias[id]
|
||||
}
|
||||
return map[string]simulation.ServiceFunc{
|
||||
"bzz": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
|
||||
// normally translation of enode id to swarm address is concealed by the network package
|
||||
// however, we need to keep track of it in the test driver as well.
|
||||
// if the translation in the network package changes, that can cause these tests to unpredictably fail
|
||||
// therefore we keep a local copy of the translation here
|
||||
addr := network.NewAddr(ctx.Config.Node())
|
||||
addr.OAddr = nodeIDToAddr(ctx.Config.Node().ID())
|
||||
hp := network.NewHiveParams()
|
||||
hp.Discovery = false
|
||||
config := &network.BzzConfig{
|
||||
OverlayAddr: addr.Over(),
|
||||
UnderlayAddr: addr.Under(),
|
||||
HiveParams: hp,
|
||||
}
|
||||
return network.NewBzz(config, kademlia(ctx.Config.ID), stateStore, nil, nil), nil, nil
|
||||
},
|
||||
"pss": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
|
||||
// execadapter does not exec init()
|
||||
initTest()
|
||||
|
||||
// create keys in whisper and set up the pss object
|
||||
ctxlocal, cancel := context.WithTimeout(context.Background(), time.Second*3)
|
||||
defer cancel()
|
||||
keys, err := wapi.NewKeyPair(ctxlocal)
|
||||
privkey, err := w.GetPrivateKey(keys)
|
||||
pssp := NewPssParams().WithPrivateKey(privkey)
|
||||
pssp.AllowRaw = allowRaw
|
||||
pskad := kademlia(ctx.Config.ID)
|
||||
ps, err := NewPss(pskad, pssp)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
b.Store(simulation.BucketKeyKademlia, pskad)
|
||||
|
||||
// register the handlers we've been passed
|
||||
var deregisters []func()
|
||||
for tpc, hndlrFunc := range handlerContextFuncs {
|
||||
deregisters = append(deregisters, ps.Register(&tpc, hndlrFunc(tstdata, ctx.Config)))
|
||||
}
|
||||
|
||||
// if handshake mode is set, add the controller
|
||||
// TODO: This should be hooked to the handshake test file
|
||||
if useHandshake {
|
||||
SetHandshakeController(ps, NewHandshakeParams())
|
||||
}
|
||||
|
||||
// we expose some api calls for cheating
|
||||
ps.addAPI(rpc.API{
|
||||
Namespace: "psstest",
|
||||
Version: "0.3",
|
||||
Service: NewAPITest(ps),
|
||||
Public: false,
|
||||
})
|
||||
|
||||
// return Pss and cleanups
|
||||
return ps, func() {
|
||||
// run the handler deregister functions in reverse order
|
||||
for i := len(deregisters); i > 0; i-- {
|
||||
deregisters[i-1]()
|
||||
}
|
||||
}, nil
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// makes sure we create the addresses the same way in driver and service setup
|
||||
func nodeIDToAddr(id enode.ID) []byte {
|
||||
return id.Bytes()
|
||||
}
|
@ -415,11 +415,11 @@ func (p *Pss) handlePssMsg(ctx context.Context, msg interface{}) error {
|
||||
}
|
||||
isRecipient := p.isSelfPossibleRecipient(pssmsg, isProx)
|
||||
if !isRecipient {
|
||||
log.Trace("pss was for someone else :'( ... forwarding", "pss", common.ToHex(p.BaseAddr()), "prox", isProx)
|
||||
log.Trace("pss msg forwarding ===>", "pss", common.ToHex(p.BaseAddr()), "prox", isProx)
|
||||
return p.enqueue(pssmsg)
|
||||
}
|
||||
|
||||
log.Trace("pss for us, yay! ... let's process!", "pss", common.ToHex(p.BaseAddr()), "prox", isProx, "raw", isRaw, "topic", label(pssmsg.Payload.Topic[:]))
|
||||
log.Trace("pss msg processing <===", "pss", common.ToHex(p.BaseAddr()), "prox", isProx, "raw", isRaw, "topic", label(pssmsg.Payload.Topic[:]))
|
||||
if err := p.process(pssmsg, isRaw, isProx); err != nil {
|
||||
qerr := p.enqueue(pssmsg)
|
||||
if qerr != nil {
|
||||
@ -463,14 +463,11 @@ func (p *Pss) process(pssmsg *PssMsg, raw bool, prox bool) error {
|
||||
payload = recvmsg.Payload
|
||||
}
|
||||
|
||||
if len(pssmsg.To) < addressLength {
|
||||
if err := p.enqueue(pssmsg); err != nil {
|
||||
return err
|
||||
}
|
||||
if len(pssmsg.To) < addressLength || prox {
|
||||
err = p.enqueue(pssmsg)
|
||||
}
|
||||
p.executeHandlers(psstopic, payload, from, raw, prox, asymmetric, keyid)
|
||||
|
||||
return nil
|
||||
return err
|
||||
}
|
||||
|
||||
// copy all registered handlers for respective topic in order to avoid data race or deadlock
|
||||
|
Loading…
Reference in New Issue
Block a user