trie: extend range proofs with non-existence (#21000)

* trie: implement range proof with non-existent edge proof

* trie: fix cornercase

* trie: consider empty range

* trie: add singleSide test

* trie: support all-elements range proof

* trie: fix typo

* trie: tiny typos and formulations

Co-authored-by: Péter Szilágyi <peterke@gmail.com>
This commit is contained in:
gary rong 2020-05-20 20:45:38 +08:00 committed by GitHub
parent 0a99efa61f
commit 65ce550b37
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 494 additions and 95 deletions

2
go.sum
View File

@ -202,6 +202,8 @@ golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5h
golang.org/x/sys v0.0.0-20181107165924-66b7b1311ac8/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20181107165924-66b7b1311ac8/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527 h1:uYVVQ9WP/Ds2ROhcaGPeIdVq0RIXVLwsHlnvJ+cT1So=
golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd h1:xhmwyvizuTgC2qz7ZlMluP20uW+C3Rm0FD/WLDX8884= golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd h1:xhmwyvizuTgC2qz7ZlMluP20uW+C3Rm0FD/WLDX8884=
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=

View File

@ -133,7 +133,7 @@ func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader)
// The main purpose of this function is recovering a node // The main purpose of this function is recovering a node
// path from the merkle proof stream. All necessary nodes // path from the merkle proof stream. All necessary nodes
// will be resolved and leave the remaining as hashnode. // will be resolved and leave the remaining as hashnode.
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader) (node, error) { func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, error) {
// resolveNode retrieves and resolves trie node from merkle proof stream // resolveNode retrieves and resolves trie node from merkle proof stream
resolveNode := func(hash common.Hash) (node, error) { resolveNode := func(hash common.Hash) (node, error) {
buf, _ := proofDb.Get(hash[:]) buf, _ := proofDb.Get(hash[:])
@ -146,7 +146,8 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
} }
return n, err return n, err
} }
// If the root node is empty, resolve it first // If the root node is empty, resolve it first.
// Root node must be included in the proof.
if root == nil { if root == nil {
n, err := resolveNode(rootHash) n, err := resolveNode(rootHash)
if err != nil { if err != nil {
@ -165,7 +166,13 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
keyrest, child = get(parent, key, false) keyrest, child = get(parent, key, false)
switch cld := child.(type) { switch cld := child.(type) {
case nil: case nil:
// The trie doesn't contain the key. // The trie doesn't contain the key. It's possible
// the proof is a non-existing proof, but at least
// we can prove all resolved nodes are correct, it's
// enough for us to prove range.
if allowNonExistent {
return root, nil
}
return nil, errors.New("the node is not contained in trie") return nil, errors.New("the node is not contained in trie")
case *shortNode: case *shortNode:
key, parent = keyrest, child // Already resolved key, parent = keyrest, child // Already resolved
@ -205,7 +212,7 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
// since the node content might be modified. Besides it can happen that some // since the node content might be modified. Besides it can happen that some
// fullnodes only have one child which is disallowed. But if the proof is valid, // fullnodes only have one child which is disallowed. But if the proof is valid,
// the missing children will be filled, otherwise it will be thrown anyway. // the missing children will be filled, otherwise it will be thrown anyway.
func unsetInternal(node node, left []byte, right []byte) error { func unsetInternal(n node, left []byte, right []byte) error {
left, right = keybytesToHex(left), keybytesToHex(right) left, right = keybytesToHex(left), keybytesToHex(right)
// todo(rjl493456442) different length edge keys should be supported // todo(rjl493456442) different length edge keys should be supported
@ -214,25 +221,37 @@ func unsetInternal(node node, left []byte, right []byte) error {
} }
// Step down to the fork point // Step down to the fork point
prefix, pos := prefixLen(left, right), 0 prefix, pos := prefixLen(left, right), 0
var parent node
for { for {
if pos >= prefix { if pos >= prefix {
break break
} }
switch n := (node).(type) { switch rn := (n).(type) {
case *shortNode: case *shortNode:
if len(left)-pos < len(n.Key) || !bytes.Equal(n.Key, left[pos:pos+len(n.Key)]) { if len(right)-pos < len(rn.Key) || !bytes.Equal(rn.Key, right[pos:pos+len(rn.Key)]) {
return errors.New("invalid edge path") return errors.New("invalid edge path")
} }
n.flags = nodeFlag{dirty: true} // Special case, the non-existent proof points to the same path
node, pos = n.Val, pos+len(n.Key) // as the existent proof, but the path of existent proof is longer.
// In this case, truncate the extra path(it should be recovered
// by node insertion).
if len(left)-pos < len(rn.Key) || !bytes.Equal(rn.Key, left[pos:pos+len(rn.Key)]) {
fn := parent.(*fullNode)
fn.Children[left[pos-1]] = nil
return nil
}
rn.flags = nodeFlag{dirty: true}
parent = n
n, pos = rn.Val, pos+len(rn.Key)
case *fullNode: case *fullNode:
n.flags = nodeFlag{dirty: true} rn.flags = nodeFlag{dirty: true}
node, pos = n.Children[left[pos]], pos+1 parent = n
n, pos = rn.Children[right[pos]], pos+1
default: default:
panic(fmt.Sprintf("%T: invalid node: %v", node, node)) panic(fmt.Sprintf("%T: invalid node: %v", n, n))
} }
} }
fn, ok := node.(*fullNode) fn, ok := n.(*fullNode)
if !ok { if !ok {
return errors.New("the fork point must be a fullnode") return errors.New("the fork point must be a fullnode")
} }
@ -241,50 +260,164 @@ func unsetInternal(node node, left []byte, right []byte) error {
fn.Children[i] = nil fn.Children[i] = nil
} }
fn.flags = nodeFlag{dirty: true} fn.flags = nodeFlag{dirty: true}
unset(fn.Children[left[prefix]], left[prefix+1:], false) if err := unset(fn, fn.Children[left[prefix]], left[prefix:], 1, false); err != nil {
unset(fn.Children[right[prefix]], right[prefix+1:], true) return err
}
if err := unset(fn, fn.Children[right[prefix]], right[prefix:], 1, true); err != nil {
return err
}
return nil return nil
} }
// unset removes all internal node references either the left most or right most. // unset removes all internal node references either the left most or right most.
func unset(root node, rest []byte, removeLeft bool) { // If we try to unset all right most references, it can meet these scenarios:
switch rn := root.(type) { //
// - The given path is existent in the trie, unset the associated shortnode
// - The given path is non-existent in the trie
// - the fork point is a fullnode, the corresponding child pointed by path
// is nil, return
// - the fork point is a shortnode, the key of shortnode is less than path,
// keep the entire branch and return.
// - the fork point is a shortnode, the key of shortnode is greater than path,
// unset the entire branch.
//
// If we try to unset all left most references, then the given path should
// be existent.
func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
switch cld := child.(type) {
case *fullNode: case *fullNode:
if removeLeft { if removeLeft {
for i := 0; i < int(rest[0]); i++ { for i := 0; i < int(key[pos]); i++ {
rn.Children[i] = nil cld.Children[i] = nil
} }
rn.flags = nodeFlag{dirty: true} cld.flags = nodeFlag{dirty: true}
} else { } else {
for i := rest[0] + 1; i < 16; i++ { for i := key[pos] + 1; i < 16; i++ {
rn.Children[i] = nil cld.Children[i] = nil
} }
rn.flags = nodeFlag{dirty: true} cld.flags = nodeFlag{dirty: true}
} }
unset(rn.Children[rest[0]], rest[1:], removeLeft) return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
case *shortNode: case *shortNode:
rn.flags = nodeFlag{dirty: true} if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
if _, ok := rn.Val.(valueNode); ok { // Find the fork point, it's an non-existent branch.
rn.Val = nilValueNode if removeLeft {
return return errors.New("invalid right edge proof")
}
if bytes.Compare(cld.Key, key[pos:]) > 0 {
// The key of fork shortnode is greater than the
// path(it belongs to the range), unset the entrie
// branch. The parent must be a fullnode.
fn := parent.(*fullNode)
fn.Children[key[pos-1]] = nil
} else {
// The key of fork shortnode is less than the
// path(it doesn't belong to the range), keep
// it with the cached hash available.
return nil
}
} }
unset(rn.Val, rest[len(rn.Key):], removeLeft) if _, ok := cld.Val.(valueNode); ok {
case hashNode, nil, valueNode: fn := parent.(*fullNode)
panic("it shouldn't happen") fn.Children[key[pos-1]] = nil
return nil
}
cld.flags = nodeFlag{dirty: true}
return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
case nil:
// If the node is nil, it's a child of the fork point
// fullnode(it's an non-existent branch).
if removeLeft {
return errors.New("invalid right edge proof")
}
return nil
default:
panic("it shouldn't happen") // hashNode, valueNode
} }
} }
// VerifyRangeProof checks whether the given leave nodes and edge proofs // VerifyRangeProof checks whether the given leaf nodes and edge proofs
// can prove the given trie leaves range is matched with given root hash // can prove the given trie leaves range is matched with given root hash
// and the range is consecutive(no gap inside). // and the range is consecutive(no gap inside).
func VerifyRangeProof(rootHash common.Hash, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error { //
// Note the given first edge proof can be non-existing proof. For example
// the first proof is for an non-existent values 0x03. The given batch
// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove. But the
// last edge proof should always be an existent proof.
//
// The firstKey is paired with firstProof, not necessarily the same as keys[0]
// (unless firstProof is an existent proof).
//
// Expect the normal case, this function can also be used to verify the following
// range proofs:
//
// - All elements proof. In this case the left and right proof can be nil, but the
// range should be all the leaves in the trie.
//
// - Zero element proof(left edge proof should be a non-existent proof). In this
// case if there are still some other leaves available on the right side, then
// an error will be returned.
//
// - One element proof. In this case no matter the left edge proof is a non-existent
// proof or not, we can always verify the correctness of the proof.
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error {
if len(keys) != len(values) { if len(keys) != len(values) {
return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)) return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
} }
if len(keys) == 0 { // Special case, there is no edge proof at all. The given range is expected
return fmt.Errorf("nothing to verify") // to be the whole leaf-set in the trie.
if firstProof == nil && lastProof == nil {
emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
if err != nil {
return err
}
for index, key := range keys {
emptytrie.TryUpdate(key, values[index])
}
if emptytrie.Hash() != rootHash {
return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash())
}
return nil
} }
if len(keys) == 1 { // Special case, there is a provided non-existence proof and zero key/value
// pairs, meaning there are no more accounts / slots in the trie.
if len(keys) == 0 {
// Recover the non-existent proof to a path, ensure there is nothing left
root, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
if err != nil {
return err
}
node, pos, firstKey := root, 0, keybytesToHex(firstKey)
for node != nil {
switch rn := node.(type) {
case *fullNode:
for i := firstKey[pos] + 1; i < 16; i++ {
if rn.Children[i] != nil {
return errors.New("more leaves available")
}
}
node, pos = rn.Children[firstKey[pos]], pos+1
case *shortNode:
if len(firstKey)-pos < len(rn.Key) || !bytes.Equal(rn.Key, firstKey[pos:pos+len(rn.Key)]) {
if bytes.Compare(rn.Key, firstKey[pos:]) < 0 {
node = nil
continue
} else {
return errors.New("more leaves available")
}
}
node, pos = rn.Val, pos+len(rn.Key)
case valueNode, hashNode:
return errors.New("more leaves available")
}
}
// Yeah, although we receive nothing, but we can prove
// there is no more leaf in the trie, return nil.
return nil
}
// Special case, there is only one element and left edge
// proof is an existent one.
if len(keys) == 1 && bytes.Equal(keys[0], firstKey) {
value, err := VerifyProof(rootHash, keys[0], firstProof) value, err := VerifyProof(rootHash, keys[0], firstProof)
if err != nil { if err != nil {
return err return err
@ -296,19 +429,21 @@ func VerifyRangeProof(rootHash common.Hash, keys [][]byte, values [][]byte, firs
} }
// Convert the edge proofs to edge trie paths. Then we can // Convert the edge proofs to edge trie paths. Then we can
// have the same tree architecture with the original one. // have the same tree architecture with the original one.
root, err := proofToPath(rootHash, nil, keys[0], firstProof) // For the first edge proof, non-existent proof is allowed.
root, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
if err != nil { if err != nil {
return err return err
} }
// Pass the root node here, the second path will be merged // Pass the root node here, the second path will be merged
// with the first one. // with the first one. For the last edge proof, non-existent
root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof) // proof is not allowed.
root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false)
if err != nil { if err != nil {
return err return err
} }
// Remove all internal references. All the removed parts should // Remove all internal references. All the removed parts should
// be re-filled(or re-constructed) by the given leaves range. // be re-filled(or re-constructed) by the given leaves range.
if err := unsetInternal(root, keys[0], keys[len(keys)-1]); err != nil { if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil {
return err return err
} }
// Rebuild the trie with the leave stream, the shape of trie // Rebuild the trie with the leave stream, the shape of trie
@ -318,7 +453,7 @@ func VerifyRangeProof(rootHash common.Hash, keys [][]byte, values [][]byte, firs
newtrie.TryUpdate(key, values[index]) newtrie.TryUpdate(key, values[index])
} }
if newtrie.Hash() != rootHash { if newtrie.Hash() != rootHash {
return fmt.Errorf("invalid proof, wanthash %x, got %x", rootHash, newtrie.Hash()) return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash())
} }
return nil return nil
} }

View File

@ -98,12 +98,65 @@ func TestOneElementProof(t *testing.T) {
} }
} }
func TestBadProof(t *testing.T) {
trie, vals := randomTrie(800)
root := trie.Hash()
for i, prover := range makeProvers(trie) {
for _, kv := range vals {
proof := prover(kv.k)
if proof == nil {
t.Fatalf("prover %d: nil proof", i)
}
it := proof.NewIterator(nil, nil)
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
it.Next()
}
key := it.Key()
val, _ := proof.Get(key)
proof.Delete(key)
it.Release()
mutateByte(val)
proof.Put(crypto.Keccak256(val), val)
if _, err := VerifyProof(root, kv.k, proof); err == nil {
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
}
}
}
}
// Tests that missing keys can also be proven. The test explicitly uses a single
// entry trie and checks for missing keys both before and after the single entry.
func TestMissingKeyProof(t *testing.T) {
trie := new(Trie)
updateString(trie, "k", "v")
for i, key := range []string{"a", "j", "l", "z"} {
proof := memorydb.New()
trie.Prove([]byte(key), 0, proof)
if proof.Len() != 1 {
t.Errorf("test %d: proof should have one element", i)
}
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
if err != nil {
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
}
if val != nil {
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
}
}
}
type entrySlice []*kv type entrySlice []*kv
func (p entrySlice) Len() int { return len(p) } func (p entrySlice) Len() int { return len(p) }
func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 } func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// TestRangeProof tests normal range proof with both edge proofs
// as the existent proof. The test cases are generated randomly.
func TestRangeProof(t *testing.T) { func TestRangeProof(t *testing.T) {
trie, vals := randomTrie(4096) trie, vals := randomTrie(4096)
var entries entrySlice var entries entrySlice
@ -130,13 +183,253 @@ func TestRangeProof(t *testing.T) {
keys = append(keys, entries[i].k) keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v) vals = append(vals, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof) err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err != nil { if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
} }
} }
} }
// TestRangeProof tests normal range proof with the first edge proof
// as the non-existent proof. The test cases are generated randomly.
func TestRangeProofWithNonExistentProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
for i := 0; i < 500; i++ {
start := mrand.Intn(len(entries))
end := mrand.Intn(len(entries)-start) + start
if start == end {
continue
}
firstProof, lastProof := memorydb.New(), memorydb.New()
first := decreseKey(common.CopyBytes(entries[start].k))
if start != 0 && bytes.Equal(first, entries[start-1].k) {
continue
}
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var keys [][]byte
var vals [][]byte
for i := start; i < end; i++ {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
err := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
}
}
// TestRangeProofWithInvalidNonExistentProof tests such scenarios:
// - The last edge proof is an non-existent proof
// - There exists a gap between the first element and the left edge proof
func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
// Case 1
start, end := 100, 200
first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k))
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(last, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
var k [][]byte
var v [][]byte
for i := start; i < end; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
if err == nil {
t.Fatalf("Expected to detect the error, got nil")
}
// Case 2
start, end = 100, 200
first = decreseKey(common.CopyBytes(entries[start].k))
firstProof, lastProof = memorydb.New(), memorydb.New()
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
start = 105 // Gap created
k = make([][]byte, 0)
v = make([][]byte, 0)
for i := start; i < end; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
if err == nil {
t.Fatalf("Expected to detect the error, got nil")
}
}
// TestOneElementRangeProof tests the proof with only one
// element. The first edge proof can be existent one or
// non-existent one.
func TestOneElementRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
// One element with existent edge proof
start := 1000
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
err := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
// One element with non-existent edge proof
start = 1000
first := decreseKey(common.CopyBytes(entries[start].k))
firstProof, lastProof = memorydb.New(), memorydb.New()
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
err = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
// TestEmptyRangeProof tests the range proof with "no" element.
// The first edge proof must be a non-existent proof.
func TestEmptyRangeProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
var cases = []struct {
pos int
err bool
}{
{len(entries) - 1, false},
{500, true},
}
for _, c := range cases {
firstProof := memorydb.New()
first := increseKey(common.CopyBytes(entries[c.pos].k))
if err := trie.Prove(first, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
err := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil)
if c.err && err == nil {
t.Fatalf("Expected error, got nil")
}
if !c.err && err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
}
// TestAllElementsProof tests the range proof with all elements.
// The edge proofs can be nil.
func TestAllElementsProof(t *testing.T) {
trie, vals := randomTrie(4096)
var entries entrySlice
for _, kv := range vals {
entries = append(entries, kv)
}
sort.Sort(entries)
var k [][]byte
var v [][]byte
for i := 0; i < len(entries); i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
// Even with edge proofs, it should still work.
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(entries[0].k, 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
err = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
// TestSingleSideRangeProof tests the range starts from zero.
func TestSingleSideRangeProof(t *testing.T) {
trie := new(Trie)
var entries entrySlice
for i := 0; i < 4096; i++ {
value := &kv{randBytes(32), randBytes(20), false}
trie.Update(value.k, value.v)
entries = append(entries, value)
}
sort.Sort(entries)
var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
for _, pos := range cases {
firstProof, lastProof := memorydb.New(), memorydb.New()
if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
k := make([][]byte, 0)
v := make([][]byte, 0)
for i := 0; i <= pos; i++ {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
}
}
// TestBadRangeProof tests a few cases which the proof is wrong.
// The prover is expected to detect the error.
func TestBadRangeProof(t *testing.T) { func TestBadRangeProof(t *testing.T) {
trie, vals := randomTrie(4096) trie, vals := randomTrie(4096)
var entries entrySlice var entries entrySlice
@ -208,7 +501,7 @@ func TestBadRangeProof(t *testing.T) {
index = mrand.Intn(end - start) index = mrand.Intn(end - start)
vals[index] = nil vals[index] = nil
} }
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof) err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err == nil { if err == nil {
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1) t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
} }
@ -242,63 +535,12 @@ func TestGappedRangeProof(t *testing.T) {
keys = append(keys, entries[i].k) keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v) vals = append(vals, entries[i].v)
} }
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof) err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
if err == nil { if err == nil {
t.Fatal("expect error, got nil") t.Fatal("expect error, got nil")
} }
} }
func TestBadProof(t *testing.T) {
trie, vals := randomTrie(800)
root := trie.Hash()
for i, prover := range makeProvers(trie) {
for _, kv := range vals {
proof := prover(kv.k)
if proof == nil {
t.Fatalf("prover %d: nil proof", i)
}
it := proof.NewIterator(nil, nil)
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
it.Next()
}
key := it.Key()
val, _ := proof.Get(key)
proof.Delete(key)
it.Release()
mutateByte(val)
proof.Put(crypto.Keccak256(val), val)
if _, err := VerifyProof(root, kv.k, proof); err == nil {
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
}
}
}
}
// Tests that missing keys can also be proven. The test explicitly uses a single
// entry trie and checks for missing keys both before and after the single entry.
func TestMissingKeyProof(t *testing.T) {
trie := new(Trie)
updateString(trie, "k", "v")
for i, key := range []string{"a", "j", "l", "z"} {
proof := memorydb.New()
trie.Prove([]byte(key), 0, proof)
if proof.Len() != 1 {
t.Errorf("test %d: proof should have one element", i)
}
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
if err != nil {
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
}
if val != nil {
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
}
}
}
// mutateByte changes one byte in b. // mutateByte changes one byte in b.
func mutateByte(b []byte) { func mutateByte(b []byte) {
for r := mrand.Intn(len(b)); ; { for r := mrand.Intn(len(b)); ; {
@ -310,6 +552,26 @@ func mutateByte(b []byte) {
} }
} }
func increseKey(key []byte) []byte {
for i := len(key) - 1; i >= 0; i-- {
key[i]++
if key[i] != 0x0 {
break
}
}
return key
}
func decreseKey(key []byte) []byte {
for i := len(key) - 1; i >= 0; i-- {
key[i]--
if key[i] != 0xff {
break
}
}
return key
}
func BenchmarkProve(b *testing.B) { func BenchmarkProve(b *testing.B) {
trie, vals := randomTrie(100) trie, vals := randomTrie(100)
var keys []string var keys []string
@ -379,7 +641,7 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) {
b.ResetTimer() b.ResetTimer()
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
err := VerifyRangeProof(trie.Hash(), keys, values, firstProof, lastProof) err := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
if err != nil { if err != nil {
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
} }