Merge pull request #22762 from karalabe/snap-lower-complexity

core, eth, ethdb, trie: simplify range proofs
This commit is contained in:
Péter Szilágyi 2021-04-29 11:29:28 +03:00 committed by GitHub
commit 64b60c7995
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 149 additions and 237 deletions

View File

@ -176,11 +176,6 @@ func (b *tableBatch) Delete(key []byte) error {
return b.batch.Delete(append([]byte(b.prefix), key...))
}
// KeyCount retrieves the number of keys queued up for writing.
func (b *tableBatch) KeyCount() int {
return b.batch.KeyCount()
}
// ValueSize retrieves the amount of data queued up for writing.
func (b *tableBatch) ValueSize() int {
return b.batch.ValueSize()

View File

@ -368,7 +368,7 @@ func (dl *diskLayer) proveRange(stats *generatorStats, root common.Hash, prefix
}
// Verify the snapshot segment with range prover, ensure that all flat states
// in this range correspond to merkle trie.
_, cont, err := trie.VerifyRangeProof(root, origin, last, keys, vals, proof)
cont, err := trie.VerifyRangeProof(root, origin, last, keys, vals, proof)
return &proofResult{
keys: keys,
vals: vals,

View File

@ -204,7 +204,6 @@ type storageResponse struct {
hashes [][]common.Hash // Storage slot hashes in the returned range
slots [][][]byte // Storage slot values in the returned range
nodes []ethdb.KeyValueStore // Database containing the reconstructed trie nodes
cont bool // Whether the last storage range has a continuation
}
@ -680,12 +679,22 @@ func (s *Syncer) loadSyncStatus() {
}
s.tasks = progress.Tasks
for _, task := range s.tasks {
task.genBatch = s.db.NewBatch()
task.genBatch = ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.accountBytes += common.StorageSize(len(key) + len(value))
},
}
task.genTrie = trie.NewStackTrie(task.genBatch)
for _, subtasks := range task.SubTasks {
for _, subtask := range subtasks {
subtask.genBatch = s.db.NewBatch()
subtask.genBatch = ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
subtask.genTrie = trie.NewStackTrie(task.genBatch)
}
}
@ -729,7 +738,12 @@ func (s *Syncer) loadSyncStatus() {
// Make sure we don't overflow if the step is not a proper divisor
last = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
}
batch := s.db.NewBatch()
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.accountBytes += common.StorageSize(len(key) + len(value))
},
}
s.tasks = append(s.tasks, &accountTask{
Next: next,
Last: last,
@ -746,19 +760,14 @@ func (s *Syncer) loadSyncStatus() {
func (s *Syncer) saveSyncStatus() {
// Serialize any partial progress to disk before spinning down
for _, task := range s.tasks {
keys, bytes := task.genBatch.KeyCount(), task.genBatch.ValueSize()
if err := task.genBatch.Write(); err != nil {
log.Error("Failed to persist account slots", "err", err)
}
s.accountBytes += common.StorageSize(keys*common.HashLength + bytes)
for _, subtasks := range task.SubTasks {
for _, subtask := range subtasks {
keys, bytes := subtask.genBatch.KeyCount(), subtask.genBatch.ValueSize()
if err := subtask.genBatch.Write(); err != nil {
log.Error("Failed to persist storage slots", "err", err)
}
s.accountBytes += common.StorageSize(keys*common.HashLength + bytes)
}
}
}
@ -1763,12 +1772,15 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
if res.subTask != nil {
res.subTask.req = nil
}
batch := s.db.NewBatch()
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
var (
slots int
nodes int
bytes common.StorageSize
oldStorageBytes = s.storageBytes
)
// Iterate over all the accounts and reconstruct their storage tries from the
// delivered slots
@ -1829,7 +1841,12 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
r := newHashRange(lastKey, chunks)
// Our first task is the one that was just filled by this response.
batch := s.db.NewBatch()
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
tasks = append(tasks, &storageTask{
Next: common.Hash{},
Last: r.End(),
@ -1838,7 +1855,12 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
genTrie: trie.NewStackTrie(batch),
})
for r.Next() {
batch := s.db.NewBatch()
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
tasks = append(tasks, &storageTask{
Next: r.Start(),
Last: r.End(),
@ -1883,27 +1905,23 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
}
}
}
// Iterate over all the reconstructed trie nodes and push them to disk
// if the contract is fully delivered. If it's chunked, the trie nodes
// will be reconstructed later.
// Iterate over all the complete contracts, reconstruct the trie nodes and
// push them to disk. If the contract is chunked, the trie nodes will be
// reconstructed later.
slots += len(res.hashes[i])
if i < len(res.hashes)-1 || res.subTask == nil {
it := res.nodes[i].NewIterator(nil, nil)
for it.Next() {
batch.Put(it.Key(), it.Value())
bytes += common.StorageSize(common.HashLength + len(it.Value()))
nodes++
tr := trie.NewStackTrie(batch)
for j := 0; j < len(res.hashes[i]); j++ {
tr.Update(res.hashes[i][j][:], res.slots[i][j])
}
it.Release()
tr.Commit()
}
// Persist the received storage segements. These flat state maybe
// outdated during the sync, but it can be fixed later during the
// snapshot generation.
for j := 0; j < len(res.hashes[i]); j++ {
rawdb.WriteStorageSnapshot(batch, account, res.hashes[i][j], res.slots[i][j])
bytes += common.StorageSize(1 + 2*common.HashLength + len(res.slots[i][j]))
// If we're storing large contracts, generate the trie nodes
// on the fly to not trash the gluing points
@ -1926,15 +1944,11 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
}
}
}
if data := res.subTask.genBatch.ValueSize(); data > ethdb.IdealBatchSize || res.subTask.done {
keys := res.subTask.genBatch.KeyCount()
if res.subTask.genBatch.ValueSize() > ethdb.IdealBatchSize || res.subTask.done {
if err := res.subTask.genBatch.Write(); err != nil {
log.Error("Failed to persist stack slots", "err", err)
}
res.subTask.genBatch.Reset()
bytes += common.StorageSize(keys*common.HashLength + data)
nodes += keys
}
}
// Flush anything written just now and update the stats
@ -1942,9 +1956,8 @@ func (s *Syncer) processStorageResponse(res *storageResponse) {
log.Crit("Failed to persist storage slots", "err", err)
}
s.storageSynced += uint64(slots)
s.storageBytes += bytes
log.Debug("Persisted set of storage slots", "accounts", len(res.hashes), "slots", slots, "nodes", nodes, "bytes", bytes)
log.Debug("Persisted set of storage slots", "accounts", len(res.hashes), "slots", slots, "bytes", s.storageBytes-oldStorageBytes)
// If this delivery completed the last pending task, forward the account task
// to the next chunk
@ -2042,18 +2055,20 @@ func (s *Syncer) forwardAccountTask(task *accountTask) {
// Persist the received account segements. These flat state maybe
// outdated during the sync, but it can be fixed later during the
// snapshot generation.
var (
nodes int
bytes common.StorageSize
)
batch := s.db.NewBatch()
oldAccountBytes := s.accountBytes
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.accountBytes += common.StorageSize(len(key) + len(value))
},
}
for i, hash := range res.hashes {
if task.needCode[i] || task.needState[i] {
break
}
slim := snapshot.SlimAccountRLP(res.accounts[i].Nonce, res.accounts[i].Balance, res.accounts[i].Root, res.accounts[i].CodeHash)
rawdb.WriteAccountSnapshot(batch, hash, slim)
bytes += common.StorageSize(1 + common.HashLength + len(slim))
// If the task is complete, drop it into the stack trie to generate
// account trie nodes for it
@ -2069,7 +2084,6 @@ func (s *Syncer) forwardAccountTask(task *accountTask) {
if err := batch.Write(); err != nil {
log.Crit("Failed to persist accounts", "err", err)
}
s.accountBytes += bytes
s.accountSynced += uint64(len(res.accounts))
// Task filling persisted, push it the chunk marker forward to the first
@ -2091,17 +2105,13 @@ func (s *Syncer) forwardAccountTask(task *accountTask) {
log.Error("Failed to commit stack account", "err", err)
}
}
if data := task.genBatch.ValueSize(); data > ethdb.IdealBatchSize || task.done {
keys := task.genBatch.KeyCount()
if task.genBatch.ValueSize() > ethdb.IdealBatchSize || task.done {
if err := task.genBatch.Write(); err != nil {
log.Error("Failed to persist stack account", "err", err)
}
task.genBatch.Reset()
nodes += keys
bytes += common.StorageSize(keys*common.HashLength + data)
}
log.Debug("Persisted range of accounts", "accounts", len(res.accounts), "nodes", nodes, "bytes", bytes)
log.Debug("Persisted range of accounts", "accounts", len(res.accounts), "bytes", s.accountBytes-oldAccountBytes)
}
// OnAccounts is a callback method to invoke when a range of accounts are
@ -2176,7 +2186,7 @@ func (s *Syncer) OnAccounts(peer SyncPeer, id uint64, hashes []common.Hash, acco
if len(keys) > 0 {
end = keys[len(keys)-1]
}
_, cont, err := trie.VerifyRangeProof(root, req.origin[:], end, keys, accounts, proofdb)
cont, err := trie.VerifyRangeProof(root, req.origin[:], end, keys, accounts, proofdb)
if err != nil {
logger.Warn("Account range failed proof", "err", err)
// Signal this request as failed, and ready for rescheduling
@ -2393,10 +2403,8 @@ func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slo
s.lock.Unlock()
// Reconstruct the partial tries from the response and verify them
var (
dbs = make([]ethdb.KeyValueStore, len(hashes))
cont bool
)
var cont bool
for i := 0; i < len(hashes); i++ {
// Convert the keys and proofs into an internal format
keys := make([][]byte, len(hashes[i]))
@ -2413,7 +2421,7 @@ func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slo
if len(nodes) == 0 {
// No proof has been attached, the response must cover the entire key
// space and hash to the origin root.
dbs[i], _, err = trie.VerifyRangeProof(req.roots[i], nil, nil, keys, slots[i], nil)
_, err = trie.VerifyRangeProof(req.roots[i], nil, nil, keys, slots[i], nil)
if err != nil {
s.scheduleRevertStorageRequest(req) // reschedule request
logger.Warn("Storage slots failed proof", "err", err)
@ -2428,7 +2436,7 @@ func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slo
if len(keys) > 0 {
end = keys[len(keys)-1]
}
dbs[i], cont, err = trie.VerifyRangeProof(req.roots[i], req.origin[:], end, keys, slots[i], proofdb)
cont, err = trie.VerifyRangeProof(req.roots[i], req.origin[:], end, keys, slots[i], proofdb)
if err != nil {
s.scheduleRevertStorageRequest(req) // reschedule request
logger.Warn("Storage range failed proof", "err", err)
@ -2444,7 +2452,6 @@ func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slo
roots: req.roots,
hashes: hashes,
slots: slots,
nodes: dbs,
cont: cont,
}
select {

View File

@ -25,9 +25,6 @@ const IdealBatchSize = 100 * 1024
type Batch interface {
KeyValueWriter
// KeyCount retrieves the number of keys queued up for writing.
KeyCount() int
// ValueSize retrieves the amount of data queued up for writing.
ValueSize() int
@ -47,3 +44,28 @@ type Batcher interface {
// until a final write is called.
NewBatch() Batch
}
// HookedBatch wraps an arbitrary batch where each operation may be hooked into
// to monitor from black box code.
type HookedBatch struct {
Batch
OnPut func(key []byte, value []byte) // Callback if a key is inserted
OnDelete func(key []byte) // Callback if a key is deleted
}
// Put inserts the given value into the key-value data store.
func (b HookedBatch) Put(key []byte, value []byte) error {
if b.OnPut != nil {
b.OnPut(key, value)
}
return b.Batch.Put(key, value)
}
// Delete removes the key from the key-value data store.
func (b HookedBatch) Delete(key []byte) error {
if b.OnDelete != nil {
b.OnDelete(key)
}
return b.Batch.Delete(key)
}

View File

@ -448,7 +448,6 @@ func (db *Database) meter(refresh time.Duration) {
type batch struct {
db *leveldb.DB
b *leveldb.Batch
keys int
size int
}
@ -462,16 +461,10 @@ func (b *batch) Put(key, value []byte) error {
// Delete inserts the a key removal into the batch for later committing.
func (b *batch) Delete(key []byte) error {
b.b.Delete(key)
b.keys++
b.size += len(key)
return nil
}
// KeyCount retrieves the number of keys queued up for writing.
func (b *batch) KeyCount() int {
return b.keys
}
// ValueSize retrieves the amount of data queued up for writing.
func (b *batch) ValueSize() int {
return b.size
@ -485,7 +478,7 @@ func (b *batch) Write() error {
// Reset resets the batch for reuse.
func (b *batch) Reset() {
b.b.Reset()
b.keys, b.size = 0, 0
b.size = 0
}
// Replay replays the batch contents.

View File

@ -198,7 +198,6 @@ type keyvalue struct {
type batch struct {
db *Database
writes []keyvalue
keys int
size int
}
@ -212,16 +211,10 @@ func (b *batch) Put(key, value []byte) error {
// Delete inserts the a key removal into the batch for later committing.
func (b *batch) Delete(key []byte) error {
b.writes = append(b.writes, keyvalue{common.CopyBytes(key), nil, true})
b.keys++
b.size += len(key)
return nil
}
// KeyCount retrieves the number of keys queued up for writing.
func (b *batch) KeyCount() int {
return b.keys
}
// ValueSize retrieves the amount of data queued up for writing.
func (b *batch) ValueSize() int {
return b.size
@ -245,7 +238,7 @@ func (b *batch) Write() error {
// Reset resets the batch for reuse.
func (b *batch) Reset() {
b.writes = b.writes[:0]
b.keys, b.size = 0, 0
b.size = 0
}
// Replay replays the batch contents.

View File

@ -170,18 +170,11 @@ func (f *fuzzer) fuzz() int {
}
ok = 1
//nodes, subtrie
nodes, hasMore, err := trie.VerifyRangeProof(tr.Hash(), first, last, keys, vals, proof)
hasMore, err := trie.VerifyRangeProof(tr.Hash(), first, last, keys, vals, proof)
if err != nil {
if nodes != nil {
panic("err != nil && nodes != nil")
}
if hasMore {
panic("err != nil && hasMore == true")
}
} else {
if nodes == nil {
panic("err == nil && nodes == nil")
}
}
}
return ok

View File

@ -90,7 +90,6 @@ func (b *spongeBatch) Put(key, value []byte) error {
return nil
}
func (b *spongeBatch) Delete(key []byte) error { panic("implement me") }
func (b *spongeBatch) KeyCount() int { panic("not implemented") }
func (b *spongeBatch) ValueSize() int { return 100 }
func (b *spongeBatch) Write() error { return nil }
func (b *spongeBatch) Reset() {}

View File

@ -1,57 +0,0 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
// keyValueNotary tracks which keys have been accessed through a key-value reader
// with te scope of verifying if certain proof datasets are maliciously bloated.
type keyValueNotary struct {
ethdb.KeyValueReader
reads map[string]struct{}
}
// newKeyValueNotary wraps a key-value database with an access notary to track
// which items have bene accessed.
func newKeyValueNotary(db ethdb.KeyValueReader) *keyValueNotary {
return &keyValueNotary{
KeyValueReader: db,
reads: make(map[string]struct{}),
}
}
// Get retrieves an item from the underlying database, but also tracks it as an
// accessed slot for bloat checks.
func (k *keyValueNotary) Get(key []byte) ([]byte, error) {
k.reads[string(key)] = struct{}{}
return k.KeyValueReader.Get(key)
}
// Accessed returns s snapshot of the original key-value store containing only the
// data accessed through the notary.
func (k *keyValueNotary) Accessed() ethdb.KeyValueStore {
db := memorydb.New()
for keystr := range k.reads {
key := []byte(keystr)
val, _ := k.KeyValueReader.Get(key)
db.Put(key, val)
}
return db
}

View File

@ -464,108 +464,91 @@ func hasRightElement(node node, key []byte) bool {
//
// Except returning the error to indicate the proof is valid or not, the function will
// also return a flag to indicate whether there exists more accounts/slots in the trie.
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (ethdb.KeyValueStore, bool, error) {
//
// Note: This method does not verify that the proof is of minimal form. If the input
// proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
// data, then the proof will still be accepted.
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
if len(keys) != len(values) {
return nil, false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
}
// Ensure the received batch is monotonic increasing.
for i := 0; i < len(keys)-1; i++ {
if bytes.Compare(keys[i], keys[i+1]) >= 0 {
return nil, false, errors.New("range is not monotonically increasing")
return false, errors.New("range is not monotonically increasing")
}
}
// Create a key-value notary to track which items from the given proof the
// range prover actually needed to verify the data
notary := newKeyValueNotary(proof)
// Special case, there is no edge proof at all. The given range is expected
// to be the whole leaf-set in the trie.
if proof == nil {
var (
diskdb = memorydb.New()
tr = NewStackTrie(diskdb)
)
tr := NewStackTrie(nil)
for index, key := range keys {
tr.TryUpdate(key, values[index])
}
if have, want := tr.Hash(), rootHash; have != want {
return nil, false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
}
// Proof seems valid, serialize remaining nodes into the database
if _, err := tr.Commit(); err != nil {
return nil, false, err
}
return diskdb, false, nil // No more elements
return false, nil // No more elements
}
// Special case, there is a provided edge proof but zero key/value
// pairs, ensure there are no more accounts / slots in the trie.
if len(keys) == 0 {
root, val, err := proofToPath(rootHash, nil, firstKey, notary, true)
root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
if err != nil {
return nil, false, err
return false, err
}
if val != nil || hasRightElement(root, firstKey) {
return nil, false, errors.New("more entries available")
return false, errors.New("more entries available")
}
// Since the entire proof is a single path, we can construct a trie and a
// node database directly out of the inputs, no need to generate them
diskdb := notary.Accessed()
return diskdb, hasRightElement(root, firstKey), nil
return hasRightElement(root, firstKey), nil
}
// Special case, there is only one element and two edge keys are same.
// In this case, we can't construct two edge paths. So handle it here.
if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
root, val, err := proofToPath(rootHash, nil, firstKey, notary, false)
root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
if err != nil {
return nil, false, err
return false, err
}
if !bytes.Equal(firstKey, keys[0]) {
return nil, false, errors.New("correct proof but invalid key")
return false, errors.New("correct proof but invalid key")
}
if !bytes.Equal(val, values[0]) {
return nil, false, errors.New("correct proof but invalid data")
return false, errors.New("correct proof but invalid data")
}
// Since the entire proof is a single path, we can construct a trie and a
// node database directly out of the inputs, no need to generate them
diskdb := notary.Accessed()
return diskdb, hasRightElement(root, firstKey), nil
return hasRightElement(root, firstKey), nil
}
// Ok, in all other cases, we require two edge paths available.
// First check the validity of edge keys.
if bytes.Compare(firstKey, lastKey) >= 0 {
return nil, false, errors.New("invalid edge keys")
return false, errors.New("invalid edge keys")
}
// todo(rjl493456442) different length edge keys should be supported
if len(firstKey) != len(lastKey) {
return nil, false, errors.New("inconsistent edge keys")
return false, errors.New("inconsistent edge keys")
}
// Convert the edge proofs to edge trie paths. Then we can
// have the same tree architecture with the original one.
// For the first edge proof, non-existent proof is allowed.
root, _, err := proofToPath(rootHash, nil, firstKey, notary, true)
root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
if err != nil {
return nil, false, err
return false, err
}
// Pass the root node here, the second path will be merged
// with the first one. For the last edge proof, non-existent
// proof is also allowed.
root, _, err = proofToPath(rootHash, root, lastKey, notary, true)
root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
if err != nil {
return nil, false, err
return false, err
}
// Remove all internal references. All the removed parts should
// be re-filled(or re-constructed) by the given leaves range.
empty, err := unsetInternal(root, firstKey, lastKey)
if err != nil {
return nil, false, err
return false, err
}
// Rebuild the trie with the leaf stream, the shape of trie
// should be same with the original one.
var (
diskdb = memorydb.New()
triedb = NewDatabase(diskdb)
)
tr := &Trie{root: root, db: triedb}
tr := &Trie{root: root, db: NewDatabase(memorydb.New())}
if empty {
tr.root = nil
}
@ -573,16 +556,9 @@ func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, key
tr.TryUpdate(key, values[index])
}
if tr.Hash() != rootHash {
return nil, false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
}
// Proof seems valid, serialize all the nodes into the database
if _, err := tr.Commit(nil); err != nil {
return nil, false, err
}
if err := triedb.Commit(rootHash, false, nil); err != nil {
return nil, false, err
}
return diskdb, hasRightElement(root, keys[len(keys)-1]), nil
return hasRightElement(root, keys[len(keys)-1]), nil
}
// get returns the child of the given node. Return nil if the

View File

@ -182,7 +182,7 @@ func TestRangeProof(t *testing.T) {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
@ -233,7 +233,7 @@ func TestRangeProofWithNonExistentProof(t *testing.T) {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
if err != nil {
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
@ -254,7 +254,7 @@ func TestRangeProofWithNonExistentProof(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
_, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
if err != nil {
t.Fatal("Failed to verify whole rang with non-existent edges")
}
@ -289,7 +289,7 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
_, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
if err == nil {
t.Fatalf("Expected to detect the error, got nil")
}
@ -311,7 +311,7 @@ func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, _, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
_, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
if err == nil {
t.Fatalf("Expected to detect the error, got nil")
}
@ -335,7 +335,7 @@ func TestOneElementRangeProof(t *testing.T) {
if err := trie.Prove(entries[start].k, 0, proof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
_, _, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
_, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -350,7 +350,7 @@ func TestOneElementRangeProof(t *testing.T) {
if err := trie.Prove(entries[start].k, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
_, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -365,7 +365,7 @@ func TestOneElementRangeProof(t *testing.T) {
if err := trie.Prove(last, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
_, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -380,7 +380,7 @@ func TestOneElementRangeProof(t *testing.T) {
if err := trie.Prove(last, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -399,7 +399,7 @@ func TestOneElementRangeProof(t *testing.T) {
if err := tinyTrie.Prove(last, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
_, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -421,7 +421,7 @@ func TestAllElementsProof(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
_, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -434,7 +434,7 @@ func TestAllElementsProof(t *testing.T) {
if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
_, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -449,7 +449,7 @@ func TestAllElementsProof(t *testing.T) {
if err := trie.Prove(last, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
_, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -482,7 +482,7 @@ func TestSingleSideRangeProof(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
_, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -518,7 +518,7 @@ func TestReverseSingleSideRangeProof(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
_, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -590,7 +590,7 @@ func TestBadRangeProof(t *testing.T) {
index = mrand.Intn(end - start)
vals[index] = nil
}
_, _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
if err == nil {
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
}
@ -624,7 +624,7 @@ func TestGappedRangeProof(t *testing.T) {
keys = append(keys, entries[i].k)
vals = append(vals, entries[i].v)
}
_, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
if err == nil {
t.Fatal("expect error, got nil")
}
@ -651,7 +651,7 @@ func TestSameSideProofs(t *testing.T) {
if err := trie.Prove(last, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
_, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
if err == nil {
t.Fatalf("Expected error, got nil")
}
@ -667,7 +667,7 @@ func TestSameSideProofs(t *testing.T) {
if err := trie.Prove(last, 0, proof); err != nil {
t.Fatalf("Failed to prove the last node %v", err)
}
_, _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
if err == nil {
t.Fatalf("Expected error, got nil")
}
@ -735,7 +735,7 @@ func TestHasRightElement(t *testing.T) {
k = append(k, entries[i].k)
v = append(v, entries[i].v)
}
_, hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
if err != nil {
t.Fatalf("Expected no error, got %v", err)
}
@ -768,25 +768,19 @@ func TestEmptyRangeProof(t *testing.T) {
if err := trie.Prove(first, 0, proof); err != nil {
t.Fatalf("Failed to prove the first node %v", err)
}
db, _, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
_, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
if c.err && err == nil {
t.Fatalf("Expected error, got nil")
}
if !c.err && err != nil {
t.Fatalf("Expected no error, got %v", err)
}
// If no error was returned, ensure the returned database contains
// the entire proof, since there's no value
if !c.err {
if memdb := db.(*memorydb.Database); memdb.Len() != proof.Len() {
t.Errorf("database entry count mismatch: have %d, want %d", memdb.Len(), proof.Len())
}
}
}
}
// TestBloatedProof tests a malicious proof, where the proof is more or less the
// whole trie.
// whole trie. Previously we didn't accept such packets, but the new APIs do, so
// lets leave this test as a bit weird, but present.
func TestBloatedProof(t *testing.T) {
// Use a small trie
trie, kvs := nonRandomTrie(100)
@ -814,10 +808,8 @@ func TestBloatedProof(t *testing.T) {
trie.Prove(keys[0], 0, want)
trie.Prove(keys[len(keys)-1], 0, want)
db, _, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
// The db should not contain anything of the bloated data
if used := db.(*memorydb.Database); used.Len() != want.Len() {
t.Fatalf("notary proof size mismatch: have %d, want %d", used.Len(), want.Len())
if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil {
t.Fatalf("expected bloated proof to succeed, got %v", err)
}
}
@ -921,7 +913,7 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
if err != nil {
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
}
@ -948,7 +940,7 @@ func benchmarkVerifyRangeNoProof(b *testing.B, size int) {
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
if err != nil {
b.Fatalf("Expected no error, got %v", err)
}

View File

@ -706,7 +706,6 @@ func (b *spongeBatch) Put(key, value []byte) error {
return nil
}
func (b *spongeBatch) Delete(key []byte) error { panic("implement me") }
func (b *spongeBatch) KeyCount() int { return 100 }
func (b *spongeBatch) ValueSize() int { return 100 }
func (b *spongeBatch) Write() error { return nil }
func (b *spongeBatch) Reset() {}