trie: separate hashes and committer, collapse on commit

* trie:  make db insert use size instead of full data

* core/state: minor optimization in state onleaf allocation

* trie: implement dedicated committer and hasher

* trie: use dedicated committer/hasher

* trie: linter nitpicks

* core/state, trie: avoid unnecessary storage trie load+commit

* trie: review feedback, mainly docs + minor changes

* trie: start deprecating old hasher

* trie: fix misspell+lint

* trie: deprecate hasher.go, make proof framework use new hasher

* trie: rename pure_committer/hasher to committer/hasher

* trie, core/state: fix review concerns

* trie: more review concerns

* trie: make commit collapse into hashnode, don't touch dirtyness

* trie: goimports fixes

* trie: remove panics
This commit is contained in:
Martin Holst Swende 2020-02-03 16:28:30 +01:00 committed by GitHub
parent 4cc89a5a32
commit 5a9c96454e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 462 additions and 161 deletions

View File

@ -272,10 +272,13 @@ func (s *stateObject) finalise() {
}
// updateTrie writes cached storage modifications into the object's storage trie.
// It will return nil if the trie has not been loaded and no changes have been made
func (s *stateObject) updateTrie(db Database) Trie {
// Make sure all dirty slots are finalized into the pending storage area
s.finalise()
if len(s.pendingStorage) == 0 {
return s.trie
}
// Track the amount of time wasted on updating the storge trie
if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.StorageUpdates += time.Since(start) }(time.Now())
@ -305,8 +308,10 @@ func (s *stateObject) updateTrie(db Database) Trie {
// UpdateRoot sets the trie root to the current root hash of
func (s *stateObject) updateRoot(db Database) {
s.updateTrie(db)
// If nothing changed, don't bother with hashing anything
if s.updateTrie(db) == nil {
return
}
// Track the amount of time wasted on hashing the storge trie
if metrics.EnabledExpensive {
defer func(start time.Time) { s.db.StorageHashes += time.Since(start) }(time.Now())
@ -317,7 +322,10 @@ func (s *stateObject) updateRoot(db Database) {
// CommitTrie the storage trie of the object to db.
// This updates the trie root.
func (s *stateObject) CommitTrie(db Database) error {
s.updateTrie(db)
// If nothing changed, don't bother with hashing anything
if s.updateTrie(db) == nil {
return nil
}
if s.dbErr != nil {
return s.dbErr
}

View File

@ -330,7 +330,8 @@ func (s *StateDB) StorageTrie(addr common.Address) Trie {
return nil
}
cpy := stateObject.deepCopy(s)
return cpy.updateTrie(s.db)
cpy.updateTrie(s.db)
return cpy.getTrie(s.db)
}
func (s *StateDB) HasSuicided(addr common.Address) bool {
@ -750,8 +751,10 @@ func (s *StateDB) Commit(deleteEmptyObjects bool) (common.Hash, error) {
if metrics.EnabledExpensive {
defer func(start time.Time) { s.AccountCommits += time.Since(start) }(time.Now())
}
// The onleaf func is called _serially_, so we can reuse the same account
// for unmarshalling every time.
var account Account
return s.trie.Commit(func(leaf []byte, parent common.Hash) error {
var account Account
if err := rlp.DecodeBytes(leaf, &account); err != nil {
return nil
}

279
trie/committer.go Normal file
View File

@ -0,0 +1,279 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/sha3"
)
// leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
// some paralellism but not incur too much memory overhead.
const leafChanSize = 200
// leaf represents a trie leaf value
type leaf struct {
size int // size of the rlp data (estimate)
hash common.Hash // hash of rlp data
node node // the node to commit
vnodes bool // set to true if the node (possibly) contains a valueNode
}
// committer is a type used for the trie Commit operation. A committer has some
// internal preallocated temp space, and also a callback that is invoked when
// leaves are committed. The leafs are passed through the `leafCh`, to allow
// some level of paralellism.
// By 'some level' of parallelism, it's still the case that all leaves will be
// processed sequentially - onleaf will never be called in parallel or out of order.
type committer struct {
tmp sliceBuffer
sha keccakState
onleaf LeafCallback
leafCh chan *leaf
}
// committers live in a global sync.Pool
var committerPool = sync.Pool{
New: func() interface{} {
return &committer{
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
sha: sha3.NewLegacyKeccak256().(keccakState),
}
},
}
// newCommitter creates a new committer or picks one from the pool.
func newCommitter() *committer {
return committerPool.Get().(*committer)
}
func returnCommitterToPool(h *committer) {
h.onleaf = nil
h.leafCh = nil
committerPool.Put(h)
}
// commitNeeded returns 'false' if the given node is already in sync with db
func (c *committer) commitNeeded(n node) bool {
hash, dirty := n.cache()
return hash == nil || dirty
}
// commit collapses a node down into a hash node and inserts it into the database
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
if db == nil {
return nil, errors.New("no db provided")
}
h, err := c.commit(n, db, true)
if err != nil {
return nil, err
}
return h.(hashNode), nil
}
// commit collapses a node down into a hash node and inserts it into the database
func (c *committer) commit(n node, db *Database, force bool) (node, error) {
// if this path is clean, use available cached data
hash, dirty := n.cache()
if hash != nil && !dirty {
return hash, nil
}
// Commit children, then parent, and remove remove the dirty flag.
switch cn := n.(type) {
case *shortNode:
// Commit child
collapsed := cn.copy()
if _, ok := cn.Val.(valueNode); !ok {
if childV, err := c.commit(cn.Val, db, false); err != nil {
return nil, err
} else {
collapsed.Val = childV
}
}
// The key needs to be copied, since we're delivering it to database
collapsed.Key = hexToCompact(cn.Key)
hashedNode := c.store(collapsed, db, force, true)
if hn, ok := hashedNode.(hashNode); ok {
return hn, nil
} else {
return collapsed, nil
}
case *fullNode:
hashedKids, hasVnodes, err := c.commitChildren(cn, db, force)
if err != nil {
return nil, err
}
collapsed := cn.copy()
collapsed.Children = hashedKids
hashedNode := c.store(collapsed, db, force, hasVnodes)
if hn, ok := hashedNode.(hashNode); ok {
return hn, nil
} else {
return collapsed, nil
}
case valueNode:
return c.store(cn, db, force, false), nil
// hashnodes aren't stored
case hashNode:
return cn, nil
}
return hash, nil
}
// commitChildren commits the children of the given fullnode
func (c *committer) commitChildren(n *fullNode, db *Database, force bool) ([17]node, bool, error) {
var children [17]node
var hasValueNodeChildren = false
for i, child := range n.Children {
if child == nil {
continue
}
hnode, err := c.commit(child, db, false)
if err != nil {
return children, false, err
}
children[i] = hnode
if _, ok := hnode.(valueNode); ok {
hasValueNodeChildren = true
}
}
return children, hasValueNodeChildren, nil
}
// store hashes the node n and if we have a storage layer specified, it writes
// the key/value pair to it and tracks any node->child references as well as any
// node->external trie references.
func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren bool) node {
// Larger nodes are replaced by their hash and stored in the database.
var (
hash, _ = n.cache()
size int
)
if hash == nil {
if vn, ok := n.(valueNode); ok {
c.tmp.Reset()
if err := rlp.Encode(&c.tmp, vn); err != nil {
panic("encode error: " + err.Error())
}
size = len(c.tmp)
if size < 32 && !force {
return n // Nodes smaller than 32 bytes are stored inside their parent
}
hash = c.makeHashNode(c.tmp)
} else {
// This was not generated - must be a small node stored in the parent
// No need to do anything here
return n
}
} else {
// We have the hash already, estimate the RLP encoding-size of the node.
// The size is used for mem tracking, does not need to be exact
size = estimateSize(n)
}
// If we're using channel-based leaf-reporting, send to channel.
// The leaf channel will be active only when there an active leaf-callback
if c.leafCh != nil {
c.leafCh <- &leaf{
size: size,
hash: common.BytesToHash(hash),
node: n,
vnodes: hasVnodeChildren,
}
} else if db != nil {
// No leaf-callback used, but there's still a database. Do serial
// insertion
db.lock.Lock()
db.insert(common.BytesToHash(hash), size, n)
db.lock.Unlock()
}
return hash
}
// commitLoop does the actual insert + leaf callback for nodes
func (c *committer) commitLoop(db *Database) {
for item := range c.leafCh {
var (
hash = item.hash
size = item.size
n = item.node
hasVnodes = item.vnodes
)
// We are pooling the trie nodes into an intermediate memory cache
db.lock.Lock()
db.insert(hash, size, n)
db.lock.Unlock()
if c.onleaf != nil && hasVnodes {
switch n := n.(type) {
case *shortNode:
if child, ok := n.Val.(valueNode); ok {
c.onleaf(child, hash)
}
case *fullNode:
for i := 0; i < 16; i++ {
if child, ok := n.Children[i].(valueNode); ok {
c.onleaf(child, hash)
}
}
}
}
}
}
func (c *committer) makeHashNode(data []byte) hashNode {
n := make(hashNode, c.sha.Size())
c.sha.Reset()
c.sha.Write(data)
c.sha.Read(n)
return n
}
// estimateSize estimates the size of an rlp-encoded node, without actually
// rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
// with 1000 leafs, the only errors above 1% are on small shortnodes, where this
// method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
func estimateSize(n node) int {
switch n := n.(type) {
case *shortNode:
// A short node contains a compacted key, and a value.
return 3 + len(n.Key) + estimateSize(n.Val)
case *fullNode:
// A full node contains up to 16 hashes (some nils), and a key
s := 3
for i := 0; i < 16; i++ {
if child := n.Children[i]; child != nil {
s += estimateSize(child)
} else {
s += 1
}
}
return s
case valueNode:
return 1 + len(n)
case hashNode:
return 1 + len(n)
default:
panic(fmt.Sprintf("node type %T", n))
}
}

View File

@ -310,24 +310,24 @@ func (db *Database) InsertBlob(hash common.Hash, blob []byte) {
db.lock.Lock()
defer db.lock.Unlock()
db.insert(hash, blob, rawNode(blob))
db.insert(hash, len(blob), rawNode(blob))
}
// insert inserts a collapsed trie node into the memory database. This method is
// a more generic version of InsertBlob, supporting both raw blob insertions as
// well ex trie node insertions. The blob must always be specified to allow proper
// well ex trie node insertions. The blob size must be specified to allow proper
// size tracking.
func (db *Database) insert(hash common.Hash, blob []byte, node node) {
func (db *Database) insert(hash common.Hash, size int, node node) {
// If the node's already cached, skip
if _, ok := db.dirties[hash]; ok {
return
}
memcacheDirtyWriteMeter.Mark(int64(len(blob)))
memcacheDirtyWriteMeter.Mark(int64(size))
// Create the cached entry for this node
entry := &cachedNode{
node: simplifyNode(node),
size: uint16(len(blob)),
size: uint16(size),
flushPrev: db.newest,
}
entry.forChilds(func(child common.Hash) {

View File

@ -1,4 +1,4 @@
// Copyright 2016 The go-ethereum Authors
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
@ -20,17 +20,10 @@ import (
"hash"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/sha3"
)
type hasher struct {
tmp sliceBuffer
sha keccakState
onleaf LeafCallback
}
// keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
// Read to get a variable amount of data from the hash state. Read is faster than Sum
// because it doesn't copy the internal state, but also modifies the internal state.
@ -50,7 +43,14 @@ func (b *sliceBuffer) Reset() {
*b = (*b)[:0]
}
// hashers live in a global db.
// hasher is a type used for the trie Hash operation. A hasher has some
// internal preallocated temp space
type hasher struct {
sha keccakState
tmp sliceBuffer
}
// hasherPool holds pureHashers
var hasherPool = sync.Pool{
New: func() interface{} {
return &hasher{
@ -60,9 +60,8 @@ var hasherPool = sync.Pool{
},
}
func newHasher(onleaf LeafCallback) *hasher {
func newHasher() *hasher {
h := hasherPool.Get().(*hasher)
h.onleaf = onleaf
return h
}
@ -72,144 +71,126 @@ func returnHasherToPool(h *hasher) {
// hash collapses a node down into a hash node, also returning a copy of the
// original node initialized with the computed hash to replace the original one.
func (h *hasher) hash(n node, db *Database, force bool) (node, node, error) {
// If we're not storing the node, just hashing, use available cached data
if hash, dirty := n.cache(); hash != nil {
if db == nil {
return hash, n, nil
}
if !dirty {
switch n.(type) {
case *fullNode, *shortNode:
return hash, hash, nil
default:
return hash, n, nil
}
}
func (h *hasher) hash(n node, force bool) (hashed node, cached node) {
// We're not storing the node, just hashing, use available cached data
if hash, _ := n.cache(); hash != nil {
return hash, n
}
// Trie not processed yet or needs storage, walk the children
collapsed, cached, err := h.hashChildren(n, db)
if err != nil {
return hashNode{}, n, err
}
hashed, err := h.store(collapsed, db, force)
if err != nil {
return hashNode{}, n, err
}
// Cache the hash of the node for later reuse and remove
// the dirty flag in commit mode. It's fine to assign these values directly
// without copying the node first because hashChildren copies it.
cachedHash, _ := hashed.(hashNode)
switch cn := cached.(type) {
switch n := n.(type) {
case *shortNode:
cn.flags.hash = cachedHash
if db != nil {
cn.flags.dirty = false
collapsed, cached := h.hashShortNodeChildren(n)
hashed := h.shortnodeToHash(collapsed, force)
// We need to retain the possibly _not_ hashed node, in case it was too
// small to be hashed
if hn, ok := hashed.(hashNode); ok {
cached.flags.hash = hn
} else {
cached.flags.hash = nil
}
return hashed, cached
case *fullNode:
cn.flags.hash = cachedHash
if db != nil {
cn.flags.dirty = false
collapsed, cached := h.hashFullNodeChildren(n)
hashed = h.fullnodeToHash(collapsed, force)
if hn, ok := hashed.(hashNode); ok {
cached.flags.hash = hn
} else {
cached.flags.hash = nil
}
}
return hashed, cached, nil
}
// hashChildren replaces the children of a node with their hashes if the encoded
// size of the child is larger than a hash, returning the collapsed node as well
// as a replacement for the original node with the child hashes cached in.
func (h *hasher) hashChildren(original node, db *Database) (node, node, error) {
var err error
switch n := original.(type) {
case *shortNode:
// Hash the short node's child, caching the newly hashed subtree
collapsed, cached := n.copy(), n.copy()
collapsed.Key = hexToCompact(n.Key)
cached.Key = common.CopyBytes(n.Key)
if _, ok := n.Val.(valueNode); !ok {
collapsed.Val, cached.Val, err = h.hash(n.Val, db, false)
if err != nil {
return original, original, err
}
}
return collapsed, cached, nil
case *fullNode:
// Hash the full node's children, caching the newly hashed subtrees
collapsed, cached := n.copy(), n.copy()
for i := 0; i < 16; i++ {
if n.Children[i] != nil {
collapsed.Children[i], cached.Children[i], err = h.hash(n.Children[i], db, false)
if err != nil {
return original, original, err
}
}
}
cached.Children[16] = n.Children[16]
return collapsed, cached, nil
return hashed, cached
default:
// Value and hash nodes don't have children so they're left as were
return n, original, nil
return n, n
}
}
// store hashes the node n and if we have a storage layer specified, it writes
// the key/value pair to it and tracks any node->child references as well as any
// node->external trie references.
func (h *hasher) store(n node, db *Database, force bool) (node, error) {
// Don't store hashes or empty nodes.
if _, isHash := n.(hashNode); n == nil || isHash {
return n, nil
// hashShortNodeChildren collapses the short node. The returned collapsed node
// holds a live reference to the Key, and must not be modified.
// The cached
func (h *hasher) hashShortNodeChildren(n *shortNode) (collapsed, cached *shortNode) {
// Hash the short node's child, caching the newly hashed subtree
collapsed, cached = n.copy(), n.copy()
// Previously, we did copy this one. We don't seem to need to actually
// do that, since we don't overwrite/reuse keys
//cached.Key = common.CopyBytes(n.Key)
collapsed.Key = hexToCompact(n.Key)
// Unless the child is a valuenode or hashnode, hash it
switch n.Val.(type) {
case *fullNode, *shortNode:
collapsed.Val, cached.Val = h.hash(n.Val, false)
}
// Generate the RLP encoding of the node
return collapsed, cached
}
func (h *hasher) hashFullNodeChildren(n *fullNode) (collapsed *fullNode, cached *fullNode) {
// Hash the full node's children, caching the newly hashed subtrees
cached = n.copy()
collapsed = n.copy()
for i := 0; i < 16; i++ {
if child := n.Children[i]; child != nil {
collapsed.Children[i], cached.Children[i] = h.hash(child, false)
} else {
collapsed.Children[i] = nilValueNode
}
}
cached.Children[16] = n.Children[16]
return collapsed, cached
}
// shortnodeToHash creates a hashNode from a shortNode. The supplied shortnode
// should have hex-type Key, which will be converted (without modification)
// into compact form for RLP encoding.
// If the rlp data is smaller than 32 bytes, `nil` is returned.
func (h *hasher) shortnodeToHash(n *shortNode, force bool) node {
h.tmp.Reset()
if err := rlp.Encode(&h.tmp, n); err != nil {
panic("encode error: " + err.Error())
}
if len(h.tmp) < 32 && !force {
return n, nil // Nodes smaller than 32 bytes are stored inside their parent
return n // Nodes smaller than 32 bytes are stored inside their parent
}
// Larger nodes are replaced by their hash and stored in the database.
hash, _ := n.cache()
if hash == nil {
hash = h.makeHashNode(h.tmp)
}
if db != nil {
// We are pooling the trie nodes into an intermediate memory cache
hash := common.BytesToHash(hash)
db.lock.Lock()
db.insert(hash, h.tmp, n)
db.lock.Unlock()
// Track external references from account->storage trie
if h.onleaf != nil {
switch n := n.(type) {
case *shortNode:
if child, ok := n.Val.(valueNode); ok {
h.onleaf(child, hash)
}
case *fullNode:
for i := 0; i < 16; i++ {
if child, ok := n.Children[i].(valueNode); ok {
h.onleaf(child, hash)
}
}
}
}
}
return hash, nil
return h.hashData(h.tmp)
}
func (h *hasher) makeHashNode(data []byte) hashNode {
n := make(hashNode, h.sha.Size())
// shortnodeToHash is used to creates a hashNode from a set of hashNodes, (which
// may contain nil values)
func (h *hasher) fullnodeToHash(n *fullNode, force bool) node {
h.tmp.Reset()
// Generate the RLP encoding of the node
if err := n.EncodeRLP(&h.tmp); err != nil {
panic("encode error: " + err.Error())
}
if len(h.tmp) < 32 && !force {
return n // Nodes smaller than 32 bytes are stored inside their parent
}
return h.hashData(h.tmp)
}
// hashData hashes the provided data
func (h *hasher) hashData(data []byte) hashNode {
n := make(hashNode, 32)
h.sha.Reset()
h.sha.Write(data)
h.sha.Read(n)
return n
}
// proofHash is used to construct trie proofs, and returns the 'collapsed'
// node (for later RLP encoding) aswell as the hashed node -- unless the
// node is smaller than 32 bytes, in which case it will be returned as is.
// This method does not do anything on value- or hash-nodes.
func (h *hasher) proofHash(original node) (collapsed, hashed node) {
switch n := original.(type) {
case *shortNode:
sn, _ := h.hashShortNodeChildren(n)
return sn, h.shortnodeToHash(sn, false)
case *fullNode:
fn, _ := h.hashFullNodeChildren(n)
return fn, h.fullnodeToHash(fn, false)
default:
// Value and hash nodes don't have children so they're left as were
return n, n
}
}

View File

@ -182,15 +182,13 @@ func (it *nodeIterator) LeafBlob() []byte {
func (it *nodeIterator) LeafProof() [][]byte {
if len(it.stack) > 0 {
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
hasher := newHasher(nil)
hasher := newHasher()
defer returnHasherToPool(hasher)
proofs := make([][]byte, 0, len(it.stack))
for i, item := range it.stack[:len(it.stack)-1] {
// Gather nodes that end up as hash nodes (or the root)
node, _, _ := hasher.hashChildren(item.node, nil)
hashed, _ := hasher.store(node, nil, false)
node, hashed := hasher.proofHash(item.node)
if _, ok := hashed.(hashNode); ok || i == 0 {
enc, _ := rlp.EncodeToBytes(node)
proofs = append(proofs, enc)

View File

@ -64,26 +64,24 @@ func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) e
panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
}
}
hasher := newHasher(nil)
hasher := newHasher()
defer returnHasherToPool(hasher)
for i, n := range nodes {
// Don't bother checking for errors here since hasher panics
// if encoding doesn't work and we're not writing to any database.
n, _, _ = hasher.hashChildren(n, nil)
hn, _ := hasher.store(n, nil, false)
if fromLevel > 0 {
fromLevel--
continue
}
var hn node
n, hn = hasher.proofHash(n)
if hash, ok := hn.(hashNode); ok || i == 0 {
// If the node's database encoding is a hash (or is the
// root node), it becomes a proof element.
if fromLevel > 0 {
fromLevel--
} else {
enc, _ := rlp.EncodeToBytes(n)
if !ok {
hash = hasher.makeHashNode(enc)
}
proofDb.Put(hash, enc)
enc, _ := rlp.EncodeToBytes(n)
if !ok {
hash = hasher.hashData(enc)
}
proofDb.Put(hash, enc)
}
}
return nil

View File

@ -176,7 +176,7 @@ func (t *SecureTrie) NodeIterator(start []byte) NodeIterator {
// The caller must not hold onto the return value because it will become
// invalid on the next call to hashKey or secKey.
func (t *SecureTrie) hashKey(key []byte) []byte {
h := newHasher(nil)
h := newHasher()
h.sha.Reset()
h.sha.Write(key)
buf := h.sha.Sum(t.hashKeyBuf[:0])

View File

@ -20,6 +20,7 @@ package trie
import (
"bytes"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
@ -415,19 +416,52 @@ func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) {
if t.db == nil {
panic("commit called on trie with nil database")
}
hash, cached, err := t.hashRoot(t.db, onleaf)
if t.root == nil {
return emptyRoot, nil
}
rootHash := t.Hash()
h := newCommitter()
defer returnCommitterToPool(h)
// Do a quick check if we really need to commit, before we spin
// up goroutines. This can happen e.g. if we load a trie for reading storage
// values, but don't write to it.
if !h.commitNeeded(t.root) {
return rootHash, nil
}
var wg sync.WaitGroup
if onleaf != nil {
h.onleaf = onleaf
h.leafCh = make(chan *leaf, leafChanSize)
wg.Add(1)
go func() {
defer wg.Done()
h.commitLoop(t.db)
}()
}
var newRoot hashNode
newRoot, err = h.Commit(t.root, t.db)
if onleaf != nil {
// The leafch is created in newCommitter if there was an onleaf callback
// provided. The commitLoop only _reads_ from it, and the commit
// operation was the sole writer. Therefore, it's safe to close this
// channel here.
close(h.leafCh)
wg.Wait()
}
if err != nil {
return common.Hash{}, err
}
t.root = cached
return common.BytesToHash(hash.(hashNode)), nil
t.root = newRoot
return rootHash, nil
}
// hashRoot calculates the root hash of the given trie
func (t *Trie) hashRoot(db *Database, onleaf LeafCallback) (node, node, error) {
if t.root == nil {
return hashNode(emptyRoot.Bytes()), nil, nil
}
h := newHasher(onleaf)
h := newHasher()
defer returnHasherToPool(h)
return h.hash(t.root, db, true)
hashed, cached := h.hash(t.root, true)
return hashed, cached, nil
}