forked from cerc-io/plugeth
trie: add difference iterator (#3637)
This PR implements a differenceIterator, which allows iterating over trie nodes that exist in one trie but not in another. This is a prerequisite for most GC strategies, in order to find obsolete nodes.
This commit is contained in:
parent
024d41d0c2
commit
555273495b
@ -31,15 +31,14 @@ import (
|
||||
type NodeIterator struct {
|
||||
state *StateDB // State being iterated
|
||||
|
||||
stateIt *trie.NodeIterator // Primary iterator for the global state trie
|
||||
dataIt *trie.NodeIterator // Secondary iterator for the data trie of a contract
|
||||
stateIt trie.NodeIterator // Primary iterator for the global state trie
|
||||
dataIt trie.NodeIterator // Secondary iterator for the data trie of a contract
|
||||
|
||||
accountHash common.Hash // Hash of the node containing the account
|
||||
codeHash common.Hash // Hash of the contract source code
|
||||
code []byte // Source code associated with a contract
|
||||
|
||||
Hash common.Hash // Hash of the current entry being iterated (nil if not standalone)
|
||||
Entry interface{} // Current state entry being iterated (internal representation)
|
||||
Parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
|
||||
|
||||
Error error // Failure set in case of an internal error in the iterator
|
||||
@ -80,9 +79,9 @@ func (it *NodeIterator) step() error {
|
||||
}
|
||||
// If we had data nodes previously, we surely have at least state nodes
|
||||
if it.dataIt != nil {
|
||||
if cont := it.dataIt.Next(); !cont {
|
||||
if it.dataIt.Error != nil {
|
||||
return it.dataIt.Error
|
||||
if cont := it.dataIt.Next(true); !cont {
|
||||
if it.dataIt.Error() != nil {
|
||||
return it.dataIt.Error()
|
||||
}
|
||||
it.dataIt = nil
|
||||
}
|
||||
@ -94,15 +93,15 @@ func (it *NodeIterator) step() error {
|
||||
return nil
|
||||
}
|
||||
// Step to the next state trie node, terminating if we're out of nodes
|
||||
if cont := it.stateIt.Next(); !cont {
|
||||
if it.stateIt.Error != nil {
|
||||
return it.stateIt.Error
|
||||
if cont := it.stateIt.Next(true); !cont {
|
||||
if it.stateIt.Error() != nil {
|
||||
return it.stateIt.Error()
|
||||
}
|
||||
it.state, it.stateIt = nil, nil
|
||||
return nil
|
||||
}
|
||||
// If the state trie node is an internal entry, leave as is
|
||||
if !it.stateIt.Leaf {
|
||||
if !it.stateIt.Leaf() {
|
||||
return nil
|
||||
}
|
||||
// Otherwise we've reached an account node, initiate data iteration
|
||||
@ -112,7 +111,7 @@ func (it *NodeIterator) step() error {
|
||||
Root common.Hash
|
||||
CodeHash []byte
|
||||
}
|
||||
if err := rlp.Decode(bytes.NewReader(it.stateIt.LeafBlob), &account); err != nil {
|
||||
if err := rlp.Decode(bytes.NewReader(it.stateIt.LeafBlob()), &account); err != nil {
|
||||
return err
|
||||
}
|
||||
dataTrie, err := trie.New(account.Root, it.state.db)
|
||||
@ -120,7 +119,7 @@ func (it *NodeIterator) step() error {
|
||||
return err
|
||||
}
|
||||
it.dataIt = trie.NewNodeIterator(dataTrie)
|
||||
if !it.dataIt.Next() {
|
||||
if !it.dataIt.Next(true) {
|
||||
it.dataIt = nil
|
||||
}
|
||||
if !bytes.Equal(account.CodeHash, emptyCodeHash) {
|
||||
@ -130,7 +129,7 @@ func (it *NodeIterator) step() error {
|
||||
return fmt.Errorf("code %x: %v", account.CodeHash, err)
|
||||
}
|
||||
}
|
||||
it.accountHash = it.stateIt.Parent
|
||||
it.accountHash = it.stateIt.Parent()
|
||||
return nil
|
||||
}
|
||||
|
||||
@ -138,7 +137,7 @@ func (it *NodeIterator) step() error {
|
||||
// The method returns whether there are any more data left for inspection.
|
||||
func (it *NodeIterator) retrieve() bool {
|
||||
// Clear out any previously set values
|
||||
it.Hash, it.Entry = common.Hash{}, nil
|
||||
it.Hash = common.Hash{}
|
||||
|
||||
// If the iteration's done, return no available data
|
||||
if it.state == nil {
|
||||
@ -147,14 +146,14 @@ func (it *NodeIterator) retrieve() bool {
|
||||
// Otherwise retrieve the current entry
|
||||
switch {
|
||||
case it.dataIt != nil:
|
||||
it.Hash, it.Entry, it.Parent = it.dataIt.Hash, it.dataIt.Node, it.dataIt.Parent
|
||||
it.Hash, it.Parent = it.dataIt.Hash(), it.dataIt.Parent()
|
||||
if it.Parent == (common.Hash{}) {
|
||||
it.Parent = it.accountHash
|
||||
}
|
||||
case it.code != nil:
|
||||
it.Hash, it.Entry, it.Parent = it.codeHash, it.code, it.accountHash
|
||||
it.Hash, it.Parent = it.codeHash, it.accountHash
|
||||
case it.stateIt != nil:
|
||||
it.Hash, it.Entry, it.Parent = it.stateIt.Hash, it.stateIt.Node, it.stateIt.Parent
|
||||
it.Hash, it.Parent = it.stateIt.Hash(), it.stateIt.Parent()
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
313
trie/iterator.go
313
trie/iterator.go
@ -16,13 +16,14 @@
|
||||
|
||||
package trie
|
||||
|
||||
import "github.com/ethereum/go-ethereum/common"
|
||||
import (
|
||||
"bytes"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
)
|
||||
|
||||
// Iterator is a key-value trie iterator that traverses a Trie.
|
||||
type Iterator struct {
|
||||
trie *Trie
|
||||
nodeIt *NodeIterator
|
||||
keyBuf []byte
|
||||
nodeIt NodeIterator
|
||||
|
||||
Key []byte // Current data key on which the iterator is positioned on
|
||||
Value []byte // Current data value on which the iterator is positioned on
|
||||
@ -31,19 +32,23 @@ type Iterator struct {
|
||||
// NewIterator creates a new key-value iterator.
|
||||
func NewIterator(trie *Trie) *Iterator {
|
||||
return &Iterator{
|
||||
trie: trie,
|
||||
nodeIt: NewNodeIterator(trie),
|
||||
keyBuf: make([]byte, 0, 64),
|
||||
Key: nil,
|
||||
}
|
||||
}
|
||||
|
||||
// FromNodeIterator creates a new key-value iterator from a node iterator
|
||||
func NewIteratorFromNodeIterator(it NodeIterator) *Iterator {
|
||||
return &Iterator{
|
||||
nodeIt: it,
|
||||
}
|
||||
}
|
||||
|
||||
// Next moves the iterator forward one key-value entry.
|
||||
func (it *Iterator) Next() bool {
|
||||
for it.nodeIt.Next() {
|
||||
if it.nodeIt.Leaf {
|
||||
it.Key = it.makeKey()
|
||||
it.Value = it.nodeIt.LeafBlob
|
||||
for it.nodeIt.Next(true) {
|
||||
if it.nodeIt.Leaf() {
|
||||
it.Key = decodeCompact(it.nodeIt.Path())
|
||||
it.Value = it.nodeIt.LeafBlob()
|
||||
return true
|
||||
}
|
||||
}
|
||||
@ -52,23 +57,25 @@ func (it *Iterator) Next() bool {
|
||||
return false
|
||||
}
|
||||
|
||||
func (it *Iterator) makeKey() []byte {
|
||||
key := it.keyBuf[:0]
|
||||
for _, se := range it.nodeIt.stack {
|
||||
switch node := se.node.(type) {
|
||||
case *fullNode:
|
||||
if se.child <= 16 {
|
||||
key = append(key, byte(se.child))
|
||||
}
|
||||
case *shortNode:
|
||||
if hasTerm(node.Key) {
|
||||
key = append(key, node.Key[:len(node.Key)-1]...)
|
||||
} else {
|
||||
key = append(key, node.Key...)
|
||||
}
|
||||
}
|
||||
}
|
||||
return decodeCompact(key)
|
||||
// NodeIterator is an iterator to traverse the trie pre-order.
|
||||
type NodeIterator interface {
|
||||
// Hash returns the hash of the current node
|
||||
Hash() common.Hash
|
||||
// Parent returns the hash of the parent of the current node
|
||||
Parent() common.Hash
|
||||
// Leaf returns true iff the current node is a leaf node.
|
||||
Leaf() bool
|
||||
// LeafBlob returns the contents of the node, if it is a leaf.
|
||||
// Callers must not retain references to the return value after calling Next()
|
||||
LeafBlob() []byte
|
||||
// Path returns the hex-encoded path to the current node.
|
||||
// Callers must not retain references to the return value after calling Next()
|
||||
Path() []byte
|
||||
// Next moves the iterator to the next node. If the parameter is false, any child
|
||||
// nodes will be skipped.
|
||||
Next(bool) bool
|
||||
// Error returns the error status of the iterator.
|
||||
Error() error
|
||||
}
|
||||
|
||||
// nodeIteratorState represents the iteration state at one particular node of the
|
||||
@ -78,48 +85,95 @@ type nodeIteratorState struct {
|
||||
node node // Trie node being iterated
|
||||
parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
|
||||
child int // Child to be processed next
|
||||
pathlen int // Length of the path to this node
|
||||
}
|
||||
|
||||
// NodeIterator is an iterator to traverse the trie post-order.
|
||||
type NodeIterator struct {
|
||||
type nodeIterator struct {
|
||||
trie *Trie // Trie being iterated
|
||||
stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
|
||||
|
||||
Hash common.Hash // Hash of the current node being iterated (nil if not standalone)
|
||||
Node node // Current node being iterated (internal representation)
|
||||
Parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
|
||||
Leaf bool // Flag whether the current node is a value (data) node
|
||||
LeafBlob []byte // Data blob contained within a leaf (otherwise nil)
|
||||
err error // Failure set in case of an internal error in the iterator
|
||||
|
||||
Error error // Failure set in case of an internal error in the iterator
|
||||
path []byte // Path to the current node
|
||||
}
|
||||
|
||||
// NewNodeIterator creates an post-order trie iterator.
|
||||
func NewNodeIterator(trie *Trie) *NodeIterator {
|
||||
func NewNodeIterator(trie *Trie) NodeIterator {
|
||||
if trie.Hash() == emptyState {
|
||||
return new(NodeIterator)
|
||||
return new(nodeIterator)
|
||||
}
|
||||
return &NodeIterator{trie: trie}
|
||||
return &nodeIterator{trie: trie}
|
||||
}
|
||||
|
||||
// Hash returns the hash of the current node
|
||||
func (it *nodeIterator) Hash() common.Hash {
|
||||
if len(it.stack) == 0 {
|
||||
return common.Hash{}
|
||||
}
|
||||
|
||||
return it.stack[len(it.stack)-1].hash
|
||||
}
|
||||
|
||||
// Parent returns the hash of the parent node
|
||||
func (it *nodeIterator) Parent() common.Hash {
|
||||
if len(it.stack) == 0 {
|
||||
return common.Hash{}
|
||||
}
|
||||
|
||||
return it.stack[len(it.stack)-1].parent
|
||||
}
|
||||
|
||||
// Leaf returns true if the current node is a leaf
|
||||
func (it *nodeIterator) Leaf() bool {
|
||||
if len(it.stack) == 0 {
|
||||
return false
|
||||
}
|
||||
|
||||
_, ok := it.stack[len(it.stack)-1].node.(valueNode)
|
||||
return ok
|
||||
}
|
||||
|
||||
// LeafBlob returns the data for the current node, if it is a leaf
|
||||
func (it *nodeIterator) LeafBlob() []byte {
|
||||
if len(it.stack) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||
return []byte(node)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Path returns the hex-encoded path to the current node
|
||||
func (it *nodeIterator) Path() []byte {
|
||||
return it.path
|
||||
}
|
||||
|
||||
// Error returns the error set in case of an internal error in the iterator
|
||||
func (it *nodeIterator) Error() error {
|
||||
return it.err
|
||||
}
|
||||
|
||||
// Next moves the iterator to the next node, returning whether there are any
|
||||
// further nodes. In case of an internal error this method returns false and
|
||||
// sets the Error field to the encountered failure.
|
||||
func (it *NodeIterator) Next() bool {
|
||||
// sets the Error field to the encountered failure. If `descend` is false,
|
||||
// skips iterating over any subnodes of the current node.
|
||||
func (it *nodeIterator) Next(descend bool) bool {
|
||||
// If the iterator failed previously, don't do anything
|
||||
if it.Error != nil {
|
||||
if it.err != nil {
|
||||
return false
|
||||
}
|
||||
// Otherwise step forward with the iterator and report any errors
|
||||
if err := it.step(); err != nil {
|
||||
it.Error = err
|
||||
if err := it.step(descend); err != nil {
|
||||
it.err = err
|
||||
return false
|
||||
}
|
||||
return it.retrieve()
|
||||
return it.trie != nil
|
||||
}
|
||||
|
||||
// step moves the iterator to the next node of the trie.
|
||||
func (it *NodeIterator) step() error {
|
||||
func (it *nodeIterator) step(descend bool) error {
|
||||
if it.trie == nil {
|
||||
// Abort if we reached the end of the iteration
|
||||
return nil
|
||||
@ -132,57 +186,67 @@ func (it *NodeIterator) step() error {
|
||||
state.hash = root
|
||||
}
|
||||
it.stack = append(it.stack, state)
|
||||
} else {
|
||||
// Continue iterating at the previous node otherwise.
|
||||
return nil
|
||||
}
|
||||
|
||||
if !descend {
|
||||
// If we're skipping children, pop the current node first
|
||||
it.path = it.path[:it.stack[len(it.stack)-1].pathlen]
|
||||
it.stack = it.stack[:len(it.stack)-1]
|
||||
}
|
||||
|
||||
// Continue iteration to the next child
|
||||
outer:
|
||||
for {
|
||||
if len(it.stack) == 0 {
|
||||
it.trie = nil
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// Continue iteration to the next child
|
||||
for {
|
||||
parent := it.stack[len(it.stack)-1]
|
||||
ancestor := parent.hash
|
||||
if (ancestor == common.Hash{}) {
|
||||
ancestor = parent.parent
|
||||
}
|
||||
if node, ok := parent.node.(*fullNode); ok {
|
||||
// Full node, traverse all children, then the node itself
|
||||
if parent.child >= len(node.Children) {
|
||||
break
|
||||
}
|
||||
// Full node, iterate over children
|
||||
for parent.child++; parent.child < len(node.Children); parent.child++ {
|
||||
if current := node.Children[parent.child]; current != nil {
|
||||
child := node.Children[parent.child]
|
||||
if child != nil {
|
||||
hash, _ := child.cache()
|
||||
it.stack = append(it.stack, &nodeIteratorState{
|
||||
hash: common.BytesToHash(node.flags.hash),
|
||||
node: current,
|
||||
hash: common.BytesToHash(hash),
|
||||
node: child,
|
||||
parent: ancestor,
|
||||
child: -1,
|
||||
pathlen: len(it.path),
|
||||
})
|
||||
break
|
||||
it.path = append(it.path, byte(parent.child))
|
||||
break outer
|
||||
}
|
||||
}
|
||||
} else if node, ok := parent.node.(*shortNode); ok {
|
||||
// Short node, traverse the pointer singleton child, then the node itself
|
||||
if parent.child >= 0 {
|
||||
break
|
||||
}
|
||||
// Short node, return the pointer singleton child
|
||||
if parent.child < 0 {
|
||||
parent.child++
|
||||
hash, _ := node.Val.cache()
|
||||
it.stack = append(it.stack, &nodeIteratorState{
|
||||
hash: common.BytesToHash(node.flags.hash),
|
||||
hash: common.BytesToHash(hash),
|
||||
node: node.Val,
|
||||
parent: ancestor,
|
||||
child: -1,
|
||||
pathlen: len(it.path),
|
||||
})
|
||||
} else if hash, ok := parent.node.(hashNode); ok {
|
||||
// Hash node, resolve the hash child from the database, then the node itself
|
||||
if parent.child >= 0 {
|
||||
if hasTerm(node.Key) {
|
||||
it.path = append(it.path, node.Key[:len(node.Key)-1]...)
|
||||
} else {
|
||||
it.path = append(it.path, node.Key...)
|
||||
}
|
||||
break
|
||||
}
|
||||
} else if hash, ok := parent.node.(hashNode); ok {
|
||||
// Hash node, resolve the hash child from the database
|
||||
if parent.child < 0 {
|
||||
parent.child++
|
||||
|
||||
node, err := it.trie.resolveHash(hash, nil, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
@ -192,33 +256,110 @@ func (it *NodeIterator) step() error {
|
||||
node: node,
|
||||
parent: ancestor,
|
||||
child: -1,
|
||||
pathlen: len(it.path),
|
||||
})
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
it.path = it.path[:parent.pathlen]
|
||||
it.stack = it.stack[:len(it.stack)-1]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// retrieve pulls and caches the current trie node the iterator is traversing.
|
||||
// In case of a value node, the additional leaf blob is also populated with the
|
||||
// data contents for external interpretation.
|
||||
//
|
||||
// The method returns whether there are any more data left for inspection.
|
||||
func (it *NodeIterator) retrieve() bool {
|
||||
// Clear out any previously set values
|
||||
it.Hash, it.Node, it.Parent, it.Leaf, it.LeafBlob = common.Hash{}, nil, common.Hash{}, false, nil
|
||||
type differenceIterator struct {
|
||||
a, b NodeIterator // Nodes returned are those in b - a.
|
||||
eof bool // Indicates a has run out of elements
|
||||
count int // Number of nodes scanned on either trie
|
||||
}
|
||||
|
||||
// If the iteration's done, return no available data
|
||||
if it.trie == nil {
|
||||
// NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
|
||||
// are not in a. Returns the iterator, and a pointer to an integer recording the number
|
||||
// of nodes seen.
|
||||
func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
|
||||
a.Next(true)
|
||||
it := &differenceIterator{
|
||||
a: a,
|
||||
b: b,
|
||||
}
|
||||
return it, &it.count
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Hash() common.Hash {
|
||||
return it.b.Hash()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Parent() common.Hash {
|
||||
return it.b.Parent()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Leaf() bool {
|
||||
return it.b.Leaf()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) LeafBlob() []byte {
|
||||
return it.b.LeafBlob()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Path() []byte {
|
||||
return it.b.Path()
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Next(bool) bool {
|
||||
// Invariants:
|
||||
// - We always advance at least one element in b.
|
||||
// - At the start of this function, a's path is lexically greater than b's.
|
||||
if !it.b.Next(true) {
|
||||
return false
|
||||
}
|
||||
// Otherwise retrieve the current node and resolve leaf accessors
|
||||
state := it.stack[len(it.stack)-1]
|
||||
it.count += 1
|
||||
|
||||
it.Hash, it.Node, it.Parent = state.hash, state.node, state.parent
|
||||
if value, ok := it.Node.(valueNode); ok {
|
||||
it.Leaf, it.LeafBlob = true, []byte(value)
|
||||
}
|
||||
if it.eof {
|
||||
// a has reached eof, so we just return all elements from b
|
||||
return true
|
||||
}
|
||||
|
||||
for {
|
||||
apath, bpath := it.a.Path(), it.b.Path()
|
||||
switch bytes.Compare(apath, bpath) {
|
||||
case -1:
|
||||
// b jumped past a; advance a
|
||||
if !it.a.Next(true) {
|
||||
it.eof = true
|
||||
return true
|
||||
}
|
||||
it.count += 1
|
||||
case 1:
|
||||
// b is before a
|
||||
return true
|
||||
case 0:
|
||||
if it.a.Hash() != it.b.Hash() || it.a.Leaf() != it.b.Leaf() {
|
||||
// Keys are identical, but hashes or leaf status differs
|
||||
return true
|
||||
}
|
||||
if it.a.Leaf() && it.b.Leaf() && !bytes.Equal(it.a.LeafBlob(), it.b.LeafBlob()) {
|
||||
// Both are leaf nodes, but with different values
|
||||
return true
|
||||
}
|
||||
|
||||
// a and b are identical; skip this whole subtree if the nodes have hashes
|
||||
hasHash := it.a.Hash() == common.Hash{}
|
||||
if !it.b.Next(hasHash) {
|
||||
return false
|
||||
}
|
||||
it.count += 1
|
||||
if !it.a.Next(hasHash) {
|
||||
it.eof = true
|
||||
return true
|
||||
}
|
||||
it.count += 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (it *differenceIterator) Error() error {
|
||||
if err := it.a.Error(); err != nil {
|
||||
return err
|
||||
}
|
||||
return it.b.Error()
|
||||
}
|
||||
|
@ -99,9 +99,9 @@ func TestNodeIteratorCoverage(t *testing.T) {
|
||||
|
||||
// Gather all the node hashes found by the iterator
|
||||
hashes := make(map[common.Hash]struct{})
|
||||
for it := NewNodeIterator(trie); it.Next(); {
|
||||
if it.Hash != (common.Hash{}) {
|
||||
hashes[it.Hash] = struct{}{}
|
||||
for it := NewNodeIterator(trie); it.Next(true); {
|
||||
if it.Hash() != (common.Hash{}) {
|
||||
hashes[it.Hash()] = struct{}{}
|
||||
}
|
||||
}
|
||||
// Cross check the hashes and the database itself
|
||||
@ -116,3 +116,60 @@ func TestNodeIteratorCoverage(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestDifferenceIterator(t *testing.T) {
|
||||
triea := newEmpty()
|
||||
valsa := []struct{ k, v string }{
|
||||
{"bar", "b"},
|
||||
{"barb", "ba"},
|
||||
{"bars", "bb"},
|
||||
{"bard", "bc"},
|
||||
{"fab", "z"},
|
||||
{"foo", "a"},
|
||||
{"food", "ab"},
|
||||
{"foos", "aa"},
|
||||
}
|
||||
for _, val := range valsa {
|
||||
triea.Update([]byte(val.k), []byte(val.v))
|
||||
}
|
||||
triea.Commit()
|
||||
|
||||
trieb := newEmpty()
|
||||
valsb := []struct{ k, v string }{
|
||||
{"aardvark", "c"},
|
||||
{"bar", "b"},
|
||||
{"barb", "bd"},
|
||||
{"bars", "be"},
|
||||
{"fab", "z"},
|
||||
{"foo", "a"},
|
||||
{"foos", "aa"},
|
||||
{"food", "ab"},
|
||||
{"jars", "d"},
|
||||
}
|
||||
for _, val := range valsb {
|
||||
trieb.Update([]byte(val.k), []byte(val.v))
|
||||
}
|
||||
trieb.Commit()
|
||||
|
||||
found := make(map[string]string)
|
||||
di, _ := NewDifferenceIterator(NewNodeIterator(triea), NewNodeIterator(trieb))
|
||||
it := NewIteratorFromNodeIterator(di)
|
||||
for it.Next() {
|
||||
found[string(it.Key)] = string(it.Value)
|
||||
}
|
||||
|
||||
all := []struct{ k, v string }{
|
||||
{"aardvark", "c"},
|
||||
{"barb", "bd"},
|
||||
{"bars", "be"},
|
||||
{"jars", "d"},
|
||||
}
|
||||
for _, item := range all {
|
||||
if found[item.k] != item.v {
|
||||
t.Errorf("iterator value mismatch for %s: got %q want %q", item.k, found[item.k], item.v)
|
||||
}
|
||||
}
|
||||
if len(found) != len(all) {
|
||||
t.Errorf("iterator count mismatch: got %d values, want %d", len(found), len(all))
|
||||
}
|
||||
}
|
||||
|
@ -159,7 +159,7 @@ func (t *SecureTrie) Iterator() *Iterator {
|
||||
return t.trie.Iterator()
|
||||
}
|
||||
|
||||
func (t *SecureTrie) NodeIterator() *NodeIterator {
|
||||
func (t *SecureTrie) NodeIterator() NodeIterator {
|
||||
return NewNodeIterator(&t.trie)
|
||||
}
|
||||
|
||||
|
@ -81,9 +81,9 @@ func checkTrieConsistency(db Database, root common.Hash) error {
|
||||
return nil // // Consider a non existent state consistent
|
||||
}
|
||||
it := NewNodeIterator(trie)
|
||||
for it.Next() {
|
||||
for it.Next(true) {
|
||||
}
|
||||
return it.Error
|
||||
return it.Error()
|
||||
}
|
||||
|
||||
// Tests that an empty trie is not scheduled for syncing.
|
||||
|
Loading…
Reference in New Issue
Block a user