key generation abstracted out, for testing with deterministic keys

This commit is contained in:
zelig 2015-01-29 03:16:10 +00:00 committed by Felix Lange
parent 488a042736
commit 2e48d39fc7
2 changed files with 92 additions and 12 deletions

View File

@ -1,6 +1,7 @@
package p2p
import (
// "binary"
"crypto/ecdsa"
"crypto/rand"
"fmt"
@ -38,6 +39,33 @@ func (self hexkey) String() string {
return fmt.Sprintf("(%d) %x", len(self), []byte(self))
}
var nonceF = func(b []byte) (n int, err error) {
return rand.Read(b)
}
var step = 0
var detnonceF = func(b []byte) (n int, err error) {
step++
copy(b, crypto.Sha3([]byte("privacy"+string(step))))
fmt.Printf("detkey %v: %v\n", step, hexkey(b))
return
}
var keyF = func() (priv *ecdsa.PrivateKey, err error) {
priv, err = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
if err != nil {
return
}
return
}
var detkeyF = func() (priv *ecdsa.PrivateKey, err error) {
s := make([]byte, 32)
detnonceF(s)
priv = crypto.ToECDSA(s)
return
}
/*
NewSecureSession(connection, privateKey, remotePublicKey, sessionToken, initiator) is called when the peer connection starts to set up a secure session by performing a crypto handshake.
@ -53,7 +81,6 @@ NewSecureSession(connection, privateKey, remotePublicKey, sessionToken, initiato
It returns a secretRW which implements the MsgReadWriter interface.
*/
func NewSecureSession(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePubKeyS []byte, sessionToken []byte, initiator bool) (token []byte, rw *secretRW, err error) {
var auth, initNonce, recNonce []byte
var read int
@ -178,7 +205,8 @@ func startHandshake(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte
// allocate msgLen long message,
var msg []byte = make([]byte, msgLen)
initNonce = msg[msgLen-shaLen-1 : msgLen-1]
if _, err = rand.Read(initNonce); err != nil {
fmt.Printf("init-nonce: ")
if _, err = nonceF(initNonce); err != nil {
return
}
// create known message
@ -187,7 +215,8 @@ func startHandshake(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte
var sharedSecret = Xor(sessionToken, initNonce)
// generate random keypair to use for signing
if randomPrvKey, err = crypto.GenerateKey(); err != nil {
fmt.Printf("init-random-ecdhe-private-key: ")
if randomPrvKey, err = keyF(); err != nil {
return
}
// sign shared secret (message known to both parties): shared-secret
@ -278,11 +307,13 @@ func respondToHandshake(auth []byte, prvKey *ecdsa.PrivateKey, remotePubKeyS, se
var resp = make([]byte, resLen)
// generate shaLen long nonce
respNonce = resp[pubLen : pubLen+shaLen]
if _, err = rand.Read(respNonce); err != nil {
fmt.Printf("rec-nonce: ")
if _, err = nonceF(respNonce); err != nil {
return
}
// generate random keypair for session
if randomPrivKey, err = crypto.GenerateKey(); err != nil {
fmt.Printf("rec-random-ecdhe-private-key: ")
if randomPrivKey, err = keyF(); err != nil {
return
}
// responder auth message

View File

@ -2,9 +2,7 @@ package p2p
import (
"bytes"
// "crypto/ecdsa"
// "crypto/elliptic"
// "crypto/rand"
"crypto/ecdsa"
"fmt"
"net"
"testing"
@ -71,11 +69,60 @@ func TestSharedSecret(t *testing.T) {
}
func TestCryptoHandshake(t *testing.T) {
testCryptoHandshakeWithGen(false, t)
}
func TestTokenCryptoHandshake(t *testing.T) {
testCryptoHandshakeWithGen(true, t)
}
func TestDetCryptoHandshake(t *testing.T) {
defer testlog(t).detach()
tmpkeyF := keyF
keyF = detkeyF
tmpnonceF := nonceF
nonceF = detnonceF
testCryptoHandshakeWithGen(false, t)
keyF = tmpkeyF
nonceF = tmpnonceF
}
func TestDetTokenCryptoHandshake(t *testing.T) {
defer testlog(t).detach()
tmpkeyF := keyF
keyF = detkeyF
tmpnonceF := nonceF
nonceF = detnonceF
testCryptoHandshakeWithGen(true, t)
keyF = tmpkeyF
nonceF = tmpnonceF
}
func testCryptoHandshakeWithGen(token bool, t *testing.T) {
fmt.Printf("init-private-key: ")
prv0, err := keyF()
if err != nil {
t.Errorf("%v", err)
return
}
fmt.Printf("rec-private-key: ")
prv1, err := keyF()
if err != nil {
t.Errorf("%v", err)
return
}
var nonce []byte
if token {
fmt.Printf("session-token: ")
nonce = make([]byte, shaLen)
nonceF(nonce)
}
testCryptoHandshake(prv0, prv1, nonce, t)
}
func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *testing.T) {
var err error
var sessionToken []byte
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
pub0s := crypto.FromECDSAPub(pub0)
@ -87,12 +134,14 @@ func TestCryptoHandshake(t *testing.T) {
if err != nil {
t.Errorf("%v", err)
}
fmt.Printf("-> %v\n", hexkey(auth))
// receiver reads auth and responds with response
response, remoteRecNonce, remoteInitNonce, remoteRandomPrivKey, remoteInitRandomPubKey, err := respondToHandshake(auth, prv1, pub0s, sessionToken)
if err != nil {
t.Errorf("%v", err)
}
fmt.Printf("<- %v\n", hexkey(response))
// initiator reads receiver's response and the key exchange completes
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0)
@ -111,7 +160,7 @@ func TestCryptoHandshake(t *testing.T) {
t.Errorf("%v", err)
}
fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
// fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
// fmt.Printf("\nauth %x\ninitNonce %x\nresponse%x\nremoteRecNonce %x\nremoteInitNonce %x\nremoteRandomPubKey %x\nrecNonce %x\nremoteInitRandomPubKey %x\ninitSessionToken %x\n\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, remoteInitRandomPubKey, initSessionToken)