trie: refactor stacktrie (#28233)

This change refactors stacktrie to separate the stacktrie itself from the
internal representation of nodes: a stacktrie is not a recursive structure
of stacktries, rather, a framework for representing and operating upon a set of nodes.

---------

Co-authored-by: Gary Rong <garyrong0905@gmail.com>
This commit is contained in:
Martin Holst Swende 2023-10-10 08:28:56 +02:00 committed by GitHub
parent 4e1e37323d
commit 08326794e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 244 additions and 235 deletions

View File

@ -17,11 +17,7 @@
package trie package trie
import ( import (
"bufio"
"bytes"
"encoding/gob"
"errors" "errors"
"io"
"sync" "sync"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
@ -29,171 +25,96 @@ import (
"github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/log"
) )
var ErrCommitDisabled = errors.New("no database for committing") var (
ErrCommitDisabled = errors.New("no database for committing")
var stPool = sync.Pool{ stPool = sync.Pool{New: func() any { return new(stNode) }}
New: func() interface{} { _ = types.TrieHasher((*StackTrie)(nil))
return NewStackTrie(nil) )
},
}
// NodeWriteFunc is used to provide all information of a dirty node for committing // NodeWriteFunc is used to provide all information of a dirty node for committing
// so that callers can flush nodes into database with desired scheme. // so that callers can flush nodes into database with desired scheme.
type NodeWriteFunc = func(owner common.Hash, path []byte, hash common.Hash, blob []byte) type NodeWriteFunc = func(owner common.Hash, path []byte, hash common.Hash, blob []byte)
func stackTrieFromPool(writeFn NodeWriteFunc, owner common.Hash) *StackTrie {
st := stPool.Get().(*StackTrie)
st.owner = owner
st.writeFn = writeFn
return st
}
func returnToPool(st *StackTrie) {
st.Reset()
stPool.Put(st)
}
// StackTrie is a trie implementation that expects keys to be inserted // StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted // in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses. // into, it will hash it and free up the memory it uses.
type StackTrie struct { type StackTrie struct {
owner common.Hash // the owner of the trie owner common.Hash // the owner of the trie
nodeType uint8 // node type (as in branch, ext, leaf)
val []byte // value contained by this node if it's a leaf
key []byte // key chunk covered by this (leaf|ext) node
children [16]*StackTrie // list of children (for branch and exts)
writeFn NodeWriteFunc // function for committing nodes, can be nil writeFn NodeWriteFunc // function for committing nodes, can be nil
root *stNode
h *hasher
} }
// NewStackTrie allocates and initializes an empty trie. // NewStackTrie allocates and initializes an empty trie.
func NewStackTrie(writeFn NodeWriteFunc) *StackTrie { func NewStackTrie(writeFn NodeWriteFunc) *StackTrie {
return &StackTrie{ return &StackTrie{
nodeType: emptyNode,
writeFn: writeFn, writeFn: writeFn,
root: stPool.Get().(*stNode),
h: newHasher(false),
} }
} }
// NewStackTrieWithOwner allocates and initializes an empty trie, but with // NewStackTrieWithOwner allocates and initializes an empty trie, but with
// the additional owner field. // the additional owner field.
func NewStackTrieWithOwner(writeFn NodeWriteFunc, owner common.Hash) *StackTrie { func NewStackTrieWithOwner(writeFn NodeWriteFunc, owner common.Hash) *StackTrie {
return &StackTrie{ stack := NewStackTrie(writeFn)
owner: owner, stack.owner = owner
nodeType: emptyNode, return stack
writeFn: writeFn,
}
} }
// NewFromBinary initialises a serialized stacktrie with the given db. // Update inserts a (key, value) pair into the stack trie.
func NewFromBinary(data []byte, writeFn NodeWriteFunc) (*StackTrie, error) { func (t *StackTrie) Update(key, value []byte) error {
var st StackTrie k := keybytesToHex(key)
if err := st.UnmarshalBinary(data); err != nil { if len(value) == 0 {
return nil, err panic("deletion not supported")
}
// If a database is used, we need to recursively add it to every child
if writeFn != nil {
st.setWriter(writeFn)
}
return &st, nil
}
// MarshalBinary implements encoding.BinaryMarshaler
func (st *StackTrie) MarshalBinary() (data []byte, err error) {
var (
b bytes.Buffer
w = bufio.NewWriter(&b)
)
if err := gob.NewEncoder(w).Encode(struct {
Owner common.Hash
NodeType uint8
Val []byte
Key []byte
}{
st.owner,
st.nodeType,
st.val,
st.key,
}); err != nil {
return nil, err
}
for _, child := range st.children {
if child == nil {
w.WriteByte(0)
continue
}
w.WriteByte(1)
if childData, err := child.MarshalBinary(); err != nil {
return nil, err
} else {
w.Write(childData)
}
}
w.Flush()
return b.Bytes(), nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler
func (st *StackTrie) UnmarshalBinary(data []byte) error {
r := bytes.NewReader(data)
return st.unmarshalBinary(r)
}
func (st *StackTrie) unmarshalBinary(r io.Reader) error {
var dec struct {
Owner common.Hash
NodeType uint8
Val []byte
Key []byte
}
if err := gob.NewDecoder(r).Decode(&dec); err != nil {
return err
}
st.owner = dec.Owner
st.nodeType = dec.NodeType
st.val = dec.Val
st.key = dec.Key
var hasChild = make([]byte, 1)
for i := range st.children {
if _, err := r.Read(hasChild); err != nil {
return err
} else if hasChild[0] == 0 {
continue
}
var child StackTrie
if err := child.unmarshalBinary(r); err != nil {
return err
}
st.children[i] = &child
} }
t.insert(t.root, k[:len(k)-1], value, nil)
return nil return nil
} }
func (st *StackTrie) setWriter(writeFn NodeWriteFunc) { // MustUpdate is a wrapper of Update and will omit any encountered error but
st.writeFn = writeFn // just print out an error message.
for _, child := range st.children { func (t *StackTrie) MustUpdate(key, value []byte) {
if child != nil { if err := t.Update(key, value); err != nil {
child.setWriter(writeFn) log.Error("Unhandled trie error in StackTrie.Update", "err", err)
}
} }
} }
func newLeaf(owner common.Hash, key, val []byte, writeFn NodeWriteFunc) *StackTrie { func (t *StackTrie) Reset() {
st := stackTrieFromPool(writeFn, owner) t.writeFn = nil
st.nodeType = leafNode t.root = stPool.Get().(*stNode)
}
// stNode represents a node within a StackTrie
type stNode struct {
typ uint8 // node type (as in branch, ext, leaf)
key []byte // key chunk covered by this (leaf|ext) node
val []byte // value contained by this node if it's a leaf
children [16]*stNode // list of children (for branch and exts)
}
// newLeaf constructs a leaf node with provided node key and value. The key
// will be deep-copied in the function and safe to modify afterwards, but
// value is not.
func newLeaf(key, val []byte) *stNode {
st := stPool.Get().(*stNode)
st.typ = leafNode
st.key = append(st.key, key...) st.key = append(st.key, key...)
st.val = val st.val = val
return st return st
} }
func newExt(owner common.Hash, key []byte, child *StackTrie, writeFn NodeWriteFunc) *StackTrie { // newExt constructs an extension node with provided node key and child. The
st := stackTrieFromPool(writeFn, owner) // key will be deep-copied in the function and safe to modify afterwards.
st.nodeType = extNode func newExt(key []byte, child *stNode) *stNode {
st := stPool.Get().(*stNode)
st.typ = extNode
st.key = append(st.key, key...) st.key = append(st.key, key...)
st.children[0] = child st.children[0] = child
return st return st
} }
// List all values that StackTrie#nodeType can hold // List all values that stNode#nodeType can hold
const ( const (
emptyNode = iota emptyNode = iota
branchNode branchNode
@ -202,59 +123,40 @@ const (
hashedNode hashedNode
) )
// Update inserts a (key, value) pair into the stack trie. func (n *stNode) reset() *stNode {
func (st *StackTrie) Update(key, value []byte) error { n.key = n.key[:0]
k := keybytesToHex(key) n.val = nil
if len(value) == 0 { for i := range n.children {
panic("deletion not supported") n.children[i] = nil
} }
st.insert(k[:len(k)-1], value, nil) n.typ = emptyNode
return nil return n
}
// MustUpdate is a wrapper of Update and will omit any encountered error but
// just print out an error message.
func (st *StackTrie) MustUpdate(key, value []byte) {
if err := st.Update(key, value); err != nil {
log.Error("Unhandled trie error in StackTrie.Update", "err", err)
}
}
func (st *StackTrie) Reset() {
st.owner = common.Hash{}
st.writeFn = nil
st.key = st.key[:0]
st.val = nil
for i := range st.children {
st.children[i] = nil
}
st.nodeType = emptyNode
} }
// Helper function that, given a full key, determines the index // Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from // at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key. // the same chunk in the full key.
func (st *StackTrie) getDiffIndex(key []byte) int { func (n *stNode) getDiffIndex(key []byte) int {
for idx, nibble := range st.key { for idx, nibble := range n.key {
if nibble != key[idx] { if nibble != key[idx] {
return idx return idx
} }
} }
return len(st.key) return len(n.key)
} }
// Helper function to that inserts a (key, value) pair into // Helper function to that inserts a (key, value) pair into
// the trie. // the trie.
func (st *StackTrie) insert(key, value []byte, prefix []byte) { func (t *StackTrie) insert(st *stNode, key, value []byte, prefix []byte) {
switch st.nodeType { switch st.typ {
case branchNode: /* Branch */ case branchNode: /* Branch */
idx := int(key[0]) idx := int(key[0])
// Unresolve elder siblings // Unresolve elder siblings
for i := idx - 1; i >= 0; i-- { for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil { if st.children[i] != nil {
if st.children[i].nodeType != hashedNode { if st.children[i].typ != hashedNode {
st.children[i].hash(append(prefix, byte(i))) t.hash(st.children[i], append(prefix, byte(i)))
} }
break break
} }
@ -262,9 +164,9 @@ func (st *StackTrie) insert(key, value []byte, prefix []byte) {
// Add new child // Add new child
if st.children[idx] == nil { if st.children[idx] == nil {
st.children[idx] = newLeaf(st.owner, key[1:], value, st.writeFn) st.children[idx] = newLeaf(key[1:], value)
} else { } else {
st.children[idx].insert(key[1:], value, append(prefix, key[0])) t.insert(st.children[idx], key[1:], value, append(prefix, key[0]))
} }
case extNode: /* Ext */ case extNode: /* Ext */
@ -279,46 +181,46 @@ func (st *StackTrie) insert(key, value []byte, prefix []byte) {
if diffidx == len(st.key) { if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into // Ext key and key segment are identical, recurse into
// the child node. // the child node.
st.children[0].insert(key[diffidx:], value, append(prefix, key[:diffidx]...)) t.insert(st.children[0], key[diffidx:], value, append(prefix, key[:diffidx]...))
return return
} }
// Save the original part. Depending if the break is // Save the original part. Depending if the break is
// at the extension's last byte or not, create an // at the extension's last byte or not, create an
// intermediate extension or use the extension's child // intermediate extension or use the extension's child
// node directly. // node directly.
var n *StackTrie var n *stNode
if diffidx < len(st.key)-1 { if diffidx < len(st.key)-1 {
// Break on the non-last byte, insert an intermediate // Break on the non-last byte, insert an intermediate
// extension. The path prefix of the newly-inserted // extension. The path prefix of the newly-inserted
// extension should also contain the different byte. // extension should also contain the different byte.
n = newExt(st.owner, st.key[diffidx+1:], st.children[0], st.writeFn) n = newExt(st.key[diffidx+1:], st.children[0])
n.hash(append(prefix, st.key[:diffidx+1]...)) t.hash(n, append(prefix, st.key[:diffidx+1]...))
} else { } else {
// Break on the last byte, no need to insert // Break on the last byte, no need to insert
// an extension node: reuse the current node. // an extension node: reuse the current node.
// The path prefix of the original part should // The path prefix of the original part should
// still be same. // still be same.
n = st.children[0] n = st.children[0]
n.hash(append(prefix, st.key...)) t.hash(n, append(prefix, st.key...))
} }
var p *StackTrie var p *stNode
if diffidx == 0 { if diffidx == 0 {
// the break is on the first byte, so // the break is on the first byte, so
// the current node is converted into // the current node is converted into
// a branch node. // a branch node.
st.children[0] = nil st.children[0] = nil
p = st p = st
st.nodeType = branchNode st.typ = branchNode
} else { } else {
// the common prefix is at least one byte // the common prefix is at least one byte
// long, insert a new intermediate branch // long, insert a new intermediate branch
// node. // node.
st.children[0] = stackTrieFromPool(st.writeFn, st.owner) st.children[0] = stPool.Get().(*stNode)
st.children[0].nodeType = branchNode st.children[0].typ = branchNode
p = st.children[0] p = st.children[0]
} }
// Create a leaf for the inserted part // Create a leaf for the inserted part
o := newLeaf(st.owner, key[diffidx+1:], value, st.writeFn) o := newLeaf(key[diffidx+1:], value)
// Insert both child leaves where they belong: // Insert both child leaves where they belong:
origIdx := st.key[diffidx] origIdx := st.key[diffidx]
@ -344,18 +246,18 @@ func (st *StackTrie) insert(key, value []byte, prefix []byte) {
// Check if the split occurs at the first nibble of the // Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary. // chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that // Otherwise, create that
var p *StackTrie var p *stNode
if diffidx == 0 { if diffidx == 0 {
// Convert current leaf into a branch // Convert current leaf into a branch
st.nodeType = branchNode st.typ = branchNode
p = st p = st
st.children[0] = nil st.children[0] = nil
} else { } else {
// Convert current node into an ext, // Convert current node into an ext,
// and insert a child branch node. // and insert a child branch node.
st.nodeType = extNode st.typ = extNode
st.children[0] = NewStackTrieWithOwner(st.writeFn, st.owner) st.children[0] = stPool.Get().(*stNode)
st.children[0].nodeType = branchNode st.children[0].typ = branchNode
p = st.children[0] p = st.children[0]
} }
@ -363,11 +265,11 @@ func (st *StackTrie) insert(key, value []byte, prefix []byte) {
// value and another containing the new value. The child leaf // value and another containing the new value. The child leaf
// is hashed directly in order to free up some memory. // is hashed directly in order to free up some memory.
origIdx := st.key[diffidx] origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(st.owner, st.key[diffidx+1:], st.val, st.writeFn) p.children[origIdx] = newLeaf(st.key[diffidx+1:], st.val)
p.children[origIdx].hash(append(prefix, st.key[:diffidx+1]...)) t.hash(p.children[origIdx], append(prefix, st.key[:diffidx+1]...))
newIdx := key[diffidx] newIdx := key[diffidx]
p.children[newIdx] = newLeaf(st.owner, key[diffidx+1:], value, st.writeFn) p.children[newIdx] = newLeaf(key[diffidx+1:], value)
// Finally, cut off the key part that has been passed // Finally, cut off the key part that has been passed
// over to the children. // over to the children.
@ -375,7 +277,7 @@ func (st *StackTrie) insert(key, value []byte, prefix []byte) {
st.val = nil st.val = nil
case emptyNode: /* Empty */ case emptyNode: /* Empty */
st.nodeType = leafNode st.typ = leafNode
st.key = key st.key = key
st.val = value st.val = value
@ -398,25 +300,18 @@ func (st *StackTrie) insert(key, value []byte, prefix []byte) {
// - And the 'st.type' will be 'hashedNode' AGAIN // - And the 'st.type' will be 'hashedNode' AGAIN
// //
// This method also sets 'st.type' to hashedNode, and clears 'st.key'. // This method also sets 'st.type' to hashedNode, and clears 'st.key'.
func (st *StackTrie) hash(path []byte) { func (t *StackTrie) hash(st *stNode, path []byte) {
h := newHasher(false)
defer returnHasherToPool(h)
st.hashRec(h, path)
}
func (st *StackTrie) hashRec(hasher *hasher, path []byte) {
// The switch below sets this to the RLP-encoding of this node. // The switch below sets this to the RLP-encoding of this node.
var encodedNode []byte var encodedNode []byte
switch st.nodeType { switch st.typ {
case hashedNode: case hashedNode:
return return
case emptyNode: case emptyNode:
st.val = types.EmptyRootHash.Bytes() st.val = types.EmptyRootHash.Bytes()
st.key = st.key[:0] st.key = st.key[:0]
st.nodeType = hashedNode st.typ = hashedNode
return return
case branchNode: case branchNode:
@ -426,23 +321,21 @@ func (st *StackTrie) hashRec(hasher *hasher, path []byte) {
nodes.Children[i] = nilValueNode nodes.Children[i] = nilValueNode
continue continue
} }
child.hashRec(hasher, append(path, byte(i))) t.hash(child, append(path, byte(i)))
if len(child.val) < 32 { if len(child.val) < 32 {
nodes.Children[i] = rawNode(child.val) nodes.Children[i] = rawNode(child.val)
} else { } else {
nodes.Children[i] = hashNode(child.val) nodes.Children[i] = hashNode(child.val)
} }
// Release child back to pool.
st.children[i] = nil st.children[i] = nil
returnToPool(child) stPool.Put(child.reset()) // Release child back to pool.
} }
nodes.encode(t.h.encbuf)
nodes.encode(hasher.encbuf) encodedNode = t.h.encodedBytes()
encodedNode = hasher.encodedBytes()
case extNode: case extNode:
st.children[0].hashRec(hasher, append(path, st.key...)) t.hash(st.children[0], append(path, st.key...))
n := shortNode{Key: hexToCompactInPlace(st.key)} n := shortNode{Key: hexToCompactInPlace(st.key)}
if len(st.children[0].val) < 32 { if len(st.children[0].val) < 32 {
@ -450,26 +343,24 @@ func (st *StackTrie) hashRec(hasher *hasher, path []byte) {
} else { } else {
n.Val = hashNode(st.children[0].val) n.Val = hashNode(st.children[0].val)
} }
n.encode(t.h.encbuf)
encodedNode = t.h.encodedBytes()
n.encode(hasher.encbuf) stPool.Put(st.children[0].reset()) // Release child back to pool.
encodedNode = hasher.encodedBytes()
// Release child back to pool.
returnToPool(st.children[0])
st.children[0] = nil st.children[0] = nil
case leafNode: case leafNode:
st.key = append(st.key, byte(16)) st.key = append(st.key, byte(16))
n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)} n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)}
n.encode(hasher.encbuf) n.encode(t.h.encbuf)
encodedNode = hasher.encodedBytes() encodedNode = t.h.encodedBytes()
default: default:
panic("invalid node type") panic("invalid node type")
} }
st.nodeType = hashedNode st.typ = hashedNode
st.key = st.key[:0] st.key = st.key[:0]
if len(encodedNode) < 32 { if len(encodedNode) < 32 {
st.val = common.CopyBytes(encodedNode) st.val = common.CopyBytes(encodedNode)
@ -478,18 +369,16 @@ func (st *StackTrie) hashRec(hasher *hasher, path []byte) {
// Write the hash to the 'val'. We allocate a new val here to not mutate // Write the hash to the 'val'. We allocate a new val here to not mutate
// input values // input values
st.val = hasher.hashData(encodedNode) st.val = t.h.hashData(encodedNode)
if st.writeFn != nil { if t.writeFn != nil {
st.writeFn(st.owner, path, common.BytesToHash(st.val), encodedNode) t.writeFn(t.owner, path, common.BytesToHash(st.val), encodedNode)
} }
} }
// Hash returns the hash of the current node. // Hash returns the hash of the current node.
func (st *StackTrie) Hash() (h common.Hash) { func (t *StackTrie) Hash() (h common.Hash) {
hasher := newHasher(false) st := t.root
defer returnHasherToPool(hasher) t.hash(st, nil)
st.hashRec(hasher, nil)
if len(st.val) == 32 { if len(st.val) == 32 {
copy(h[:], st.val) copy(h[:], st.val)
return h return h
@ -497,9 +386,9 @@ func (st *StackTrie) Hash() (h common.Hash) {
// If the node's RLP isn't 32 bytes long, the node will not // If the node's RLP isn't 32 bytes long, the node will not
// be hashed, and instead contain the rlp-encoding of the // be hashed, and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing. // node. For the top level node, we need to force the hashing.
hasher.sha.Reset() t.h.sha.Reset()
hasher.sha.Write(st.val) t.h.sha.Write(st.val)
hasher.sha.Read(h[:]) t.h.sha.Read(h[:])
return h return h
} }
@ -510,14 +399,12 @@ func (st *StackTrie) Hash() (h common.Hash) {
// //
// The associated database is expected, otherwise the whole commit // The associated database is expected, otherwise the whole commit
// functionality should be disabled. // functionality should be disabled.
func (st *StackTrie) Commit() (h common.Hash, err error) { func (t *StackTrie) Commit() (h common.Hash, err error) {
if st.writeFn == nil { if t.writeFn == nil {
return common.Hash{}, ErrCommitDisabled return common.Hash{}, ErrCommitDisabled
} }
hasher := newHasher(false) st := t.root
defer returnHasherToPool(hasher) t.hash(st, nil)
st.hashRec(hasher, nil)
if len(st.val) == 32 { if len(st.val) == 32 {
copy(h[:], st.val) copy(h[:], st.val)
return h, nil return h, nil
@ -525,10 +412,10 @@ func (st *StackTrie) Commit() (h common.Hash, err error) {
// If the node's RLP isn't 32 bytes long, the node will not // If the node's RLP isn't 32 bytes long, the node will not
// be hashed (and committed), and instead contain the rlp-encoding of the // be hashed (and committed), and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing+commit. // node. For the top level node, we need to force the hashing+commit.
hasher.sha.Reset() t.h.sha.Reset()
hasher.sha.Write(st.val) t.h.sha.Write(st.val)
hasher.sha.Read(h[:]) t.h.sha.Read(h[:])
st.writeFn(st.owner, nil, h, st.val) t.writeFn(t.owner, nil, h, st.val)
return h, nil return h, nil
} }

View File

@ -0,0 +1,120 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bufio"
"bytes"
"encoding"
"encoding/gob"
)
// Compile-time interface checks.
var (
_ = encoding.BinaryMarshaler((*StackTrie)(nil))
_ = encoding.BinaryUnmarshaler((*StackTrie)(nil))
)
// NewFromBinaryV2 initialises a serialized stacktrie with the given db.
// OBS! Format was changed along with the name of this constructor.
func NewFromBinaryV2(data []byte) (*StackTrie, error) {
stack := NewStackTrie(nil)
if err := stack.UnmarshalBinary(data); err != nil {
return nil, err
}
return stack, nil
}
// MarshalBinary implements encoding.BinaryMarshaler.
func (t *StackTrie) MarshalBinary() (data []byte, err error) {
var (
b bytes.Buffer
w = bufio.NewWriter(&b)
)
if err := gob.NewEncoder(w).Encode(t.owner); err != nil {
return nil, err
}
if err := t.root.marshalInto(w); err != nil {
return nil, err
}
w.Flush()
return b.Bytes(), nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
func (t *StackTrie) UnmarshalBinary(data []byte) error {
r := bytes.NewReader(data)
if err := gob.NewDecoder(r).Decode(&t.owner); err != nil {
return err
}
if err := t.root.unmarshalFrom(r); err != nil {
return err
}
return nil
}
type stackNodeMarshaling struct {
Typ uint8
Key []byte
Val []byte
}
func (n *stNode) marshalInto(w *bufio.Writer) (err error) {
enc := stackNodeMarshaling{
Typ: n.typ,
Key: n.key,
Val: n.val,
}
if err := gob.NewEncoder(w).Encode(enc); err != nil {
return err
}
for _, child := range n.children {
if child == nil {
w.WriteByte(0)
continue
}
w.WriteByte(1)
if err := child.marshalInto(w); err != nil {
return err
}
}
return nil
}
func (n *stNode) unmarshalFrom(r *bytes.Reader) error {
var dec stackNodeMarshaling
if err := gob.NewDecoder(r).Decode(&dec); err != nil {
return err
}
n.typ = dec.Typ
n.key = dec.Key
n.val = dec.Val
for i := range n.children {
if b, err := r.ReadByte(); err != nil {
return err
} else if b == 0 {
continue
}
var child stNode
if err := child.unmarshalFrom(r); err != nil {
return err
}
n.children[i] = &child
}
return nil
}

View File

@ -198,12 +198,11 @@ func TestStackTrieInsertAndHash(t *testing.T) {
{"000003", "XXXXXXXXXXXXXXXXXXXXXXXXXXXX", "962c0fffdeef7612a4f7bff1950d67e3e81c878e48b9ae45b3b374253b050bd8"}, {"000003", "XXXXXXXXXXXXXXXXXXXXXXXXXXXX", "962c0fffdeef7612a4f7bff1950d67e3e81c878e48b9ae45b3b374253b050bd8"},
}, },
} }
st := NewStackTrie(nil)
for i, test := range tests { for i, test := range tests {
// The StackTrie does not allow Insert(), Hash(), Insert(), ... // The StackTrie does not allow Insert(), Hash(), Insert(), ...
// so we will create new trie for every sequence length of inserts. // so we will create new trie for every sequence length of inserts.
for l := 1; l <= len(test); l++ { for l := 1; l <= len(test); l++ {
st.Reset() st := NewStackTrie(nil)
for j := 0; j < l; j++ { for j := 0; j < l; j++ {
kv := &test[j] kv := &test[j]
if err := st.Update(common.FromHex(kv.K), []byte(kv.V)); err != nil { if err := st.Update(common.FromHex(kv.K), []byte(kv.V)); err != nil {
@ -382,7 +381,7 @@ func TestStacktrieNotModifyValues(t *testing.T) {
// serialize/unserialize it a lot // serialize/unserialize it a lot
func TestStacktrieSerialization(t *testing.T) { func TestStacktrieSerialization(t *testing.T) {
var ( var (
st = NewStackTrie(nil) st = NewStackTrieWithOwner(nil, common.Hash{0x12})
nt = NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil)) nt = NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
keyB = big.NewInt(1) keyB = big.NewInt(1)
keyDelta = big.NewInt(1) keyDelta = big.NewInt(1)
@ -411,7 +410,7 @@ func TestStacktrieSerialization(t *testing.T) {
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
newSt, err := NewFromBinary(blob, nil) newSt, err := NewFromBinaryV2(blob)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -421,4 +420,7 @@ func TestStacktrieSerialization(t *testing.T) {
if have, want := st.Hash(), nt.Hash(); have != want { if have, want := st.Hash(), nt.Hash(); have != want {
t.Fatalf("have %#x want %#x", have, want) t.Fatalf("have %#x want %#x", have, want)
} }
if have, want := st.owner, (common.Hash{0x12}); have != want {
t.Fatalf("have %#x want %#x", have, want)
}
} }