forked from cerc-io/plugeth
trie: polishes to trie committer (#21351)
* trie: update tests to check commit integrity * trie: polish committer * trie: fix typo * trie: remove hasvalue notion According to the benchmarks, type assertion between the pointer and interface is extremely fast. BenchmarkIntmethod-12 1000000000 1.91 ns/op BenchmarkInterface-12 1000000000 2.13 ns/op BenchmarkTypeSwitch-12 1000000000 1.81 ns/op BenchmarkTypeAssertion-12 2000000000 1.78 ns/op So the overhead for asserting whether the shortnode has "valuenode" child is super tiny. No necessary to have another field. * trie: linter nitpicks Co-authored-by: Martin Holst Swende <martin@swende.se>
This commit is contained in:
parent
dad26582b6
commit
053ed9cc84
@ -23,7 +23,6 @@ import (
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
"golang.org/x/crypto/sha3"
|
||||
)
|
||||
|
||||
@ -33,10 +32,9 @@ const leafChanSize = 200
|
||||
|
||||
// leaf represents a trie leaf value
|
||||
type leaf struct {
|
||||
size int // size of the rlp data (estimate)
|
||||
hash common.Hash // hash of rlp data
|
||||
node node // the node to commit
|
||||
vnodes bool // set to true if the node (possibly) contains a valueNode
|
||||
size int // size of the rlp data (estimate)
|
||||
hash common.Hash // hash of rlp data
|
||||
node node // the node to commit
|
||||
}
|
||||
|
||||
// committer is a type used for the trie Commit operation. A committer has some
|
||||
@ -74,18 +72,12 @@ func returnCommitterToPool(h *committer) {
|
||||
committerPool.Put(h)
|
||||
}
|
||||
|
||||
// commitNeeded returns 'false' if the given node is already in sync with db
|
||||
func (c *committer) commitNeeded(n node) bool {
|
||||
hash, dirty := n.cache()
|
||||
return hash == nil || dirty
|
||||
}
|
||||
|
||||
// commit collapses a node down into a hash node and inserts it into the database
|
||||
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
|
||||
if db == nil {
|
||||
return nil, errors.New("no db provided")
|
||||
}
|
||||
h, err := c.commit(n, db, true)
|
||||
h, err := c.commit(n, db)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -93,7 +85,7 @@ func (c *committer) Commit(n node, db *Database) (hashNode, error) {
|
||||
}
|
||||
|
||||
// commit collapses a node down into a hash node and inserts it into the database
|
||||
func (c *committer) commit(n node, db *Database, force bool) (node, error) {
|
||||
func (c *committer) commit(n node, db *Database) (node, error) {
|
||||
// if this path is clean, use available cached data
|
||||
hash, dirty := n.cache()
|
||||
if hash != nil && !dirty {
|
||||
@ -104,8 +96,11 @@ func (c *committer) commit(n node, db *Database, force bool) (node, error) {
|
||||
case *shortNode:
|
||||
// Commit child
|
||||
collapsed := cn.copy()
|
||||
if _, ok := cn.Val.(valueNode); !ok {
|
||||
childV, err := c.commit(cn.Val, db, false)
|
||||
|
||||
// If the child is fullnode, recursively commit.
|
||||
// Otherwise it can only be hashNode or valueNode.
|
||||
if _, ok := cn.Val.(*fullNode); ok {
|
||||
childV, err := c.commit(cn.Val, db)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -113,78 +108,78 @@ func (c *committer) commit(n node, db *Database, force bool) (node, error) {
|
||||
}
|
||||
// The key needs to be copied, since we're delivering it to database
|
||||
collapsed.Key = hexToCompact(cn.Key)
|
||||
hashedNode := c.store(collapsed, db, force, true)
|
||||
hashedNode := c.store(collapsed, db)
|
||||
if hn, ok := hashedNode.(hashNode); ok {
|
||||
return hn, nil
|
||||
}
|
||||
return collapsed, nil
|
||||
case *fullNode:
|
||||
hashedKids, hasVnodes, err := c.commitChildren(cn, db, force)
|
||||
hashedKids, err := c.commitChildren(cn, db)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
collapsed := cn.copy()
|
||||
collapsed.Children = hashedKids
|
||||
|
||||
hashedNode := c.store(collapsed, db, force, hasVnodes)
|
||||
hashedNode := c.store(collapsed, db)
|
||||
if hn, ok := hashedNode.(hashNode); ok {
|
||||
return hn, nil
|
||||
}
|
||||
return collapsed, nil
|
||||
case valueNode:
|
||||
return c.store(cn, db, force, false), nil
|
||||
// hashnodes aren't stored
|
||||
case hashNode:
|
||||
return cn, nil
|
||||
default:
|
||||
// nil, valuenode shouldn't be committed
|
||||
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
|
||||
}
|
||||
return hash, nil
|
||||
}
|
||||
|
||||
// commitChildren commits the children of the given fullnode
|
||||
func (c *committer) commitChildren(n *fullNode, db *Database, force bool) ([17]node, bool, error) {
|
||||
func (c *committer) commitChildren(n *fullNode, db *Database) ([17]node, error) {
|
||||
var children [17]node
|
||||
var hasValueNodeChildren = false
|
||||
for i, child := range n.Children {
|
||||
for i := 0; i < 16; i++ {
|
||||
child := n.Children[i]
|
||||
if child == nil {
|
||||
continue
|
||||
}
|
||||
hnode, err := c.commit(child, db, false)
|
||||
// If it's the hashed child, save the hash value directly.
|
||||
// Note: it's impossible that the child in range [0, 15]
|
||||
// is a valuenode.
|
||||
if hn, ok := child.(hashNode); ok {
|
||||
children[i] = hn
|
||||
continue
|
||||
}
|
||||
// Commit the child recursively and store the "hashed" value.
|
||||
// Note the returned node can be some embedded nodes, so it's
|
||||
// possible the type is not hashnode.
|
||||
hashed, err := c.commit(child, db)
|
||||
if err != nil {
|
||||
return children, false, err
|
||||
}
|
||||
children[i] = hnode
|
||||
if _, ok := hnode.(valueNode); ok {
|
||||
hasValueNodeChildren = true
|
||||
return children, err
|
||||
}
|
||||
children[i] = hashed
|
||||
}
|
||||
return children, hasValueNodeChildren, nil
|
||||
// For the 17th child, it's possible the type is valuenode.
|
||||
if n.Children[16] != nil {
|
||||
children[16] = n.Children[16]
|
||||
}
|
||||
return children, nil
|
||||
}
|
||||
|
||||
// store hashes the node n and if we have a storage layer specified, it writes
|
||||
// the key/value pair to it and tracks any node->child references as well as any
|
||||
// node->external trie references.
|
||||
func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren bool) node {
|
||||
func (c *committer) store(n node, db *Database) node {
|
||||
// Larger nodes are replaced by their hash and stored in the database.
|
||||
var (
|
||||
hash, _ = n.cache()
|
||||
size int
|
||||
)
|
||||
if hash == nil {
|
||||
if vn, ok := n.(valueNode); ok {
|
||||
c.tmp.Reset()
|
||||
if err := rlp.Encode(&c.tmp, vn); err != nil {
|
||||
panic("encode error: " + err.Error())
|
||||
}
|
||||
size = len(c.tmp)
|
||||
if size < 32 && !force {
|
||||
return n // Nodes smaller than 32 bytes are stored inside their parent
|
||||
}
|
||||
hash = c.makeHashNode(c.tmp)
|
||||
} else {
|
||||
// This was not generated - must be a small node stored in the parent
|
||||
// No need to do anything here
|
||||
return n
|
||||
}
|
||||
// This was not generated - must be a small node stored in the parent.
|
||||
// In theory we should apply the leafCall here if it's not nil(embedded
|
||||
// node usually contains value). But small value(less than 32bytes) is
|
||||
// not our target.
|
||||
return n
|
||||
} else {
|
||||
// We have the hash already, estimate the RLP encoding-size of the node.
|
||||
// The size is used for mem tracking, does not need to be exact
|
||||
@ -194,10 +189,9 @@ func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren boo
|
||||
// The leaf channel will be active only when there an active leaf-callback
|
||||
if c.leafCh != nil {
|
||||
c.leafCh <- &leaf{
|
||||
size: size,
|
||||
hash: common.BytesToHash(hash),
|
||||
node: n,
|
||||
vnodes: hasVnodeChildren,
|
||||
size: size,
|
||||
hash: common.BytesToHash(hash),
|
||||
node: n,
|
||||
}
|
||||
} else if db != nil {
|
||||
// No leaf-callback used, but there's still a database. Do serial
|
||||
@ -209,30 +203,30 @@ func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren boo
|
||||
return hash
|
||||
}
|
||||
|
||||
// commitLoop does the actual insert + leaf callback for nodes
|
||||
// commitLoop does the actual insert + leaf callback for nodes.
|
||||
func (c *committer) commitLoop(db *Database) {
|
||||
for item := range c.leafCh {
|
||||
var (
|
||||
hash = item.hash
|
||||
size = item.size
|
||||
n = item.node
|
||||
hasVnodes = item.vnodes
|
||||
hash = item.hash
|
||||
size = item.size
|
||||
n = item.node
|
||||
)
|
||||
// We are pooling the trie nodes into an intermediate memory cache
|
||||
db.lock.Lock()
|
||||
db.insert(hash, size, n)
|
||||
db.lock.Unlock()
|
||||
if c.onleaf != nil && hasVnodes {
|
||||
|
||||
if c.onleaf != nil {
|
||||
switch n := n.(type) {
|
||||
case *shortNode:
|
||||
if child, ok := n.Val.(valueNode); ok {
|
||||
c.onleaf(nil, child, hash)
|
||||
}
|
||||
case *fullNode:
|
||||
for i := 0; i < 16; i++ {
|
||||
if child, ok := n.Children[i].(valueNode); ok {
|
||||
c.onleaf(nil, child, hash)
|
||||
}
|
||||
// For children in range [0, 15], it's impossible
|
||||
// to contain valuenode. Only check the 17th child.
|
||||
if n.Children[16] != nil {
|
||||
c.onleaf(nil, n.Children[16].(valueNode), hash)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -66,11 +66,11 @@ func returnHasherToPool(h *hasher) {
|
||||
// hash collapses a node down into a hash node, also returning a copy of the
|
||||
// original node initialized with the computed hash to replace the original one.
|
||||
func (h *hasher) hash(n node, force bool) (hashed node, cached node) {
|
||||
// We're not storing the node, just hashing, use available cached data
|
||||
// Return the cached hash if it's available
|
||||
if hash, _ := n.cache(); hash != nil {
|
||||
return hash, n
|
||||
}
|
||||
// Trie not processed yet or needs storage, walk the children
|
||||
// Trie not processed yet, walk the children
|
||||
switch n := n.(type) {
|
||||
case *shortNode:
|
||||
collapsed, cached := h.hashShortNodeChildren(n)
|
||||
|
@ -505,13 +505,16 @@ func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) {
|
||||
if t.root == nil {
|
||||
return emptyRoot, nil
|
||||
}
|
||||
// Derive the hash for all dirty nodes first. We hold the assumption
|
||||
// in the following procedure that all nodes are hashed.
|
||||
rootHash := t.Hash()
|
||||
h := newCommitter()
|
||||
defer returnCommitterToPool(h)
|
||||
|
||||
// Do a quick check if we really need to commit, before we spin
|
||||
// up goroutines. This can happen e.g. if we load a trie for reading storage
|
||||
// values, but don't write to it.
|
||||
if !h.commitNeeded(t.root) {
|
||||
if _, dirty := t.root.cache(); !dirty {
|
||||
return rootHash, nil
|
||||
}
|
||||
var wg sync.WaitGroup
|
||||
|
@ -19,7 +19,9 @@ package trie
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"hash"
|
||||
"io/ioutil"
|
||||
"math/big"
|
||||
"math/rand"
|
||||
@ -31,9 +33,11 @@ import (
|
||||
"github.com/davecgh/go-spew/spew"
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/ethereum/go-ethereum/ethdb"
|
||||
"github.com/ethereum/go-ethereum/ethdb/leveldb"
|
||||
"github.com/ethereum/go-ethereum/ethdb/memorydb"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
"golang.org/x/crypto/sha3"
|
||||
)
|
||||
|
||||
func init() {
|
||||
@ -659,6 +663,136 @@ func makeAccounts(size int) (addresses [][20]byte, accounts [][]byte) {
|
||||
return addresses, accounts
|
||||
}
|
||||
|
||||
// spongeDb is a dummy db backend which accumulates writes in a sponge
|
||||
type spongeDb struct {
|
||||
sponge hash.Hash
|
||||
}
|
||||
|
||||
func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") }
|
||||
func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") }
|
||||
func (s *spongeDb) Delete(key []byte) error { panic("implement me") }
|
||||
func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} }
|
||||
func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") }
|
||||
func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") }
|
||||
func (s *spongeDb) Close() error { return nil }
|
||||
func (s *spongeDb) Put(key []byte, value []byte) error {
|
||||
s.sponge.Write(key)
|
||||
s.sponge.Write(value)
|
||||
return nil
|
||||
}
|
||||
func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") }
|
||||
|
||||
// spongeBatch is a dummy batch which immediately writes to the underlying spongedb
|
||||
type spongeBatch struct {
|
||||
db *spongeDb
|
||||
}
|
||||
|
||||
func (b *spongeBatch) Put(key, value []byte) error {
|
||||
b.db.Put(key, value)
|
||||
return nil
|
||||
}
|
||||
func (b *spongeBatch) Delete(key []byte) error { panic("implement me") }
|
||||
func (b *spongeBatch) ValueSize() int { return 100 }
|
||||
func (b *spongeBatch) Write() error { return nil }
|
||||
func (b *spongeBatch) Reset() {}
|
||||
func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil }
|
||||
|
||||
// TestCommitSequence tests that the trie.Commit operation writes the elements of the trie
|
||||
// in the expected order, and calls the callbacks in the expected order.
|
||||
// The test data was based on the 'master' code, and is basically random. It can be used
|
||||
// to check whether changes to the trie modifies the write order or data in any way.
|
||||
func TestCommitSequence(t *testing.T) {
|
||||
for i, tc := range []struct {
|
||||
count int
|
||||
expWriteSeqHash []byte
|
||||
expCallbackSeqHash []byte
|
||||
}{
|
||||
{20, common.FromHex("68c495e45209e243eb7e4f4e8ca8f9f7be71003bd9cafb8061b4534373740193"),
|
||||
common.FromHex("01783213033d6b7781a641ab499e680d959336d025ac16f44d02f4f0c021bbf5")},
|
||||
{200, common.FromHex("3b20d16c13c4bc3eb3b8d0ad7a169fef3b1600e056c0665895d03d3d2b2ff236"),
|
||||
common.FromHex("fb8db0ec82e8f02729f11228940885b181c3047ab0d654ed0110291ca57111a8")},
|
||||
{2000, common.FromHex("34eff3d1048bebdf77e9ae8bd939f2e7c742edc3dcd1173cff1aad9dbd20451a"),
|
||||
common.FromHex("1c981604b1a9f8ffa40e0ae66b14830a87f5a4ed8345146a3912e6b2dcb05e63")},
|
||||
} {
|
||||
addresses, accounts := makeAccounts(tc.count)
|
||||
// This spongeDb is used to check the sequence of disk-db-writes
|
||||
s := &spongeDb{sponge: sha3.NewLegacyKeccak256()}
|
||||
db := NewDatabase(s)
|
||||
trie, _ := New(common.Hash{}, db)
|
||||
// Another sponge is used to check the callback-sequence
|
||||
callbackSponge := sha3.NewLegacyKeccak256()
|
||||
// Fill the trie with elements
|
||||
for i := 0; i < tc.count; i++ {
|
||||
trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i])
|
||||
}
|
||||
// Flush trie -> database
|
||||
root, _ := trie.Commit(nil)
|
||||
// Flush memdb -> disk (sponge)
|
||||
db.Commit(root, false, func(c common.Hash) {
|
||||
// And spongify the callback-order
|
||||
callbackSponge.Write(c[:])
|
||||
})
|
||||
if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) {
|
||||
t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp)
|
||||
}
|
||||
if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) {
|
||||
t.Fatalf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestCommitSequenceRandomBlobs is identical to TestCommitSequence
|
||||
// but uses random blobs instead of 'accounts'
|
||||
func TestCommitSequenceRandomBlobs(t *testing.T) {
|
||||
for i, tc := range []struct {
|
||||
count int
|
||||
expWriteSeqHash []byte
|
||||
expCallbackSeqHash []byte
|
||||
}{
|
||||
{20, common.FromHex("8e4a01548551d139fa9e833ebc4e66fc1ba40a4b9b7259d80db32cff7b64ebbc"),
|
||||
common.FromHex("450238d73bc36dc6cc6f926987e5428535e64be403877c4560e238a52749ba24")},
|
||||
{200, common.FromHex("6869b4e7b95f3097a19ddb30ff735f922b915314047e041614df06958fc50554"),
|
||||
common.FromHex("0ace0b03d6cb8c0b82f6289ef5b1a1838306b455a62dafc63cada8e2924f2550")},
|
||||
{2000, common.FromHex("444200e6f4e2df49f77752f629a96ccf7445d4698c164f962bbd85a0526ef424"),
|
||||
common.FromHex("117d30dafaa62a1eed498c3dfd70982b377ba2b46dd3e725ed6120c80829e518")},
|
||||
} {
|
||||
prng := rand.New(rand.NewSource(int64(i)))
|
||||
// This spongeDb is used to check the sequence of disk-db-writes
|
||||
s := &spongeDb{sponge: sha3.NewLegacyKeccak256()}
|
||||
db := NewDatabase(s)
|
||||
trie, _ := New(common.Hash{}, db)
|
||||
// Another sponge is used to check the callback-sequence
|
||||
callbackSponge := sha3.NewLegacyKeccak256()
|
||||
// Fill the trie with elements
|
||||
for i := 0; i < tc.count; i++ {
|
||||
key := make([]byte, 32)
|
||||
var val []byte
|
||||
// 50% short elements, 50% large elements
|
||||
if prng.Intn(2) == 0 {
|
||||
val = make([]byte, 1+prng.Intn(32))
|
||||
} else {
|
||||
val = make([]byte, 1+prng.Intn(4096))
|
||||
}
|
||||
prng.Read(key)
|
||||
prng.Read(val)
|
||||
trie.Update(key, val)
|
||||
}
|
||||
// Flush trie -> database
|
||||
root, _ := trie.Commit(nil)
|
||||
// Flush memdb -> disk (sponge)
|
||||
db.Commit(root, false, func(c common.Hash) {
|
||||
// And spongify the callback-order
|
||||
callbackSponge.Write(c[:])
|
||||
})
|
||||
if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) {
|
||||
t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp)
|
||||
}
|
||||
if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) {
|
||||
t.Fatalf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkCommitAfterHashFixedSize benchmarks the Commit (after Hash) of a fixed number of updates to a trie.
|
||||
// This benchmark is meant to capture the difference on efficiency of small versus large changes. Typically,
|
||||
// storage tries are small (a couple of entries), whereas the full post-block account trie update is large (a couple
|
||||
|
Loading…
Reference in New Issue
Block a user