forked from cerc-io/plugeth
320 lines
8.0 KiB
Go
320 lines
8.0 KiB
Go
|
package metrics
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"runtime/metrics"
|
||
|
"sort"
|
||
|
"sync/atomic"
|
||
|
)
|
||
|
|
||
|
func getOrRegisterRuntimeHistogram(name string, scale float64, r Registry) *runtimeHistogram {
|
||
|
if r == nil {
|
||
|
r = DefaultRegistry
|
||
|
}
|
||
|
constructor := func() Histogram { return newRuntimeHistogram(scale) }
|
||
|
return r.GetOrRegister(name, constructor).(*runtimeHistogram)
|
||
|
}
|
||
|
|
||
|
// runtimeHistogram wraps a runtime/metrics histogram.
|
||
|
type runtimeHistogram struct {
|
||
|
v atomic.Value
|
||
|
scaleFactor float64
|
||
|
}
|
||
|
|
||
|
func newRuntimeHistogram(scale float64) *runtimeHistogram {
|
||
|
h := &runtimeHistogram{scaleFactor: scale}
|
||
|
h.update(&metrics.Float64Histogram{})
|
||
|
return h
|
||
|
}
|
||
|
|
||
|
func (h *runtimeHistogram) update(mh *metrics.Float64Histogram) {
|
||
|
if mh == nil {
|
||
|
// The update value can be nil if the current Go version doesn't support a
|
||
|
// requested metric. It's just easier to handle nil here than putting
|
||
|
// conditionals everywhere.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
s := runtimeHistogramSnapshot{
|
||
|
Counts: make([]uint64, len(mh.Counts)),
|
||
|
Buckets: make([]float64, len(mh.Buckets)),
|
||
|
}
|
||
|
copy(s.Counts, mh.Counts)
|
||
|
copy(s.Buckets, mh.Buckets)
|
||
|
for i, b := range s.Buckets {
|
||
|
s.Buckets[i] = b * h.scaleFactor
|
||
|
}
|
||
|
h.v.Store(&s)
|
||
|
}
|
||
|
|
||
|
func (h *runtimeHistogram) load() *runtimeHistogramSnapshot {
|
||
|
return h.v.Load().(*runtimeHistogramSnapshot)
|
||
|
}
|
||
|
|
||
|
func (h *runtimeHistogram) Clear() {
|
||
|
panic("runtimeHistogram does not support Clear")
|
||
|
}
|
||
|
func (h *runtimeHistogram) Update(int64) {
|
||
|
panic("runtimeHistogram does not support Update")
|
||
|
}
|
||
|
func (h *runtimeHistogram) Sample() Sample {
|
||
|
return NilSample{}
|
||
|
}
|
||
|
|
||
|
// Snapshot returns a non-changing cop of the histogram.
|
||
|
func (h *runtimeHistogram) Snapshot() Histogram {
|
||
|
return h.load()
|
||
|
}
|
||
|
|
||
|
// Count returns the sample count.
|
||
|
func (h *runtimeHistogram) Count() int64 {
|
||
|
return h.load().Count()
|
||
|
}
|
||
|
|
||
|
// Mean returns an approximation of the mean.
|
||
|
func (h *runtimeHistogram) Mean() float64 {
|
||
|
return h.load().Mean()
|
||
|
}
|
||
|
|
||
|
// StdDev approximates the standard deviation of the histogram.
|
||
|
func (h *runtimeHistogram) StdDev() float64 {
|
||
|
return h.load().StdDev()
|
||
|
}
|
||
|
|
||
|
// Variance approximates the variance of the histogram.
|
||
|
func (h *runtimeHistogram) Variance() float64 {
|
||
|
return h.load().Variance()
|
||
|
}
|
||
|
|
||
|
// Percentile computes the p'th percentile value.
|
||
|
func (h *runtimeHistogram) Percentile(p float64) float64 {
|
||
|
return h.load().Percentile(p)
|
||
|
}
|
||
|
|
||
|
// Percentiles computes all requested percentile values.
|
||
|
func (h *runtimeHistogram) Percentiles(ps []float64) []float64 {
|
||
|
return h.load().Percentiles(ps)
|
||
|
}
|
||
|
|
||
|
// Max returns the highest sample value.
|
||
|
func (h *runtimeHistogram) Max() int64 {
|
||
|
return h.load().Max()
|
||
|
}
|
||
|
|
||
|
// Min returns the lowest sample value.
|
||
|
func (h *runtimeHistogram) Min() int64 {
|
||
|
return h.load().Min()
|
||
|
}
|
||
|
|
||
|
// Sum returns the sum of all sample values.
|
||
|
func (h *runtimeHistogram) Sum() int64 {
|
||
|
return h.load().Sum()
|
||
|
}
|
||
|
|
||
|
type runtimeHistogramSnapshot metrics.Float64Histogram
|
||
|
|
||
|
func (h *runtimeHistogramSnapshot) Clear() {
|
||
|
panic("runtimeHistogram does not support Clear")
|
||
|
}
|
||
|
func (h *runtimeHistogramSnapshot) Update(int64) {
|
||
|
panic("runtimeHistogram does not support Update")
|
||
|
}
|
||
|
func (h *runtimeHistogramSnapshot) Sample() Sample {
|
||
|
return NilSample{}
|
||
|
}
|
||
|
|
||
|
func (h *runtimeHistogramSnapshot) Snapshot() Histogram {
|
||
|
return h
|
||
|
}
|
||
|
|
||
|
// Count returns the sample count.
|
||
|
func (h *runtimeHistogramSnapshot) Count() int64 {
|
||
|
var count int64
|
||
|
for _, c := range h.Counts {
|
||
|
count += int64(c)
|
||
|
}
|
||
|
return count
|
||
|
}
|
||
|
|
||
|
// Mean returns an approximation of the mean.
|
||
|
func (h *runtimeHistogramSnapshot) Mean() float64 {
|
||
|
if len(h.Counts) == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
mean, _ := h.mean()
|
||
|
return mean
|
||
|
}
|
||
|
|
||
|
// mean computes the mean and also the total sample count.
|
||
|
func (h *runtimeHistogramSnapshot) mean() (mean, totalCount float64) {
|
||
|
var sum float64
|
||
|
for i, c := range h.Counts {
|
||
|
midpoint := h.midpoint(i)
|
||
|
sum += midpoint * float64(c)
|
||
|
totalCount += float64(c)
|
||
|
}
|
||
|
return sum / totalCount, totalCount
|
||
|
}
|
||
|
|
||
|
func (h *runtimeHistogramSnapshot) midpoint(bucket int) float64 {
|
||
|
high := h.Buckets[bucket+1]
|
||
|
low := h.Buckets[bucket]
|
||
|
if math.IsInf(high, 1) {
|
||
|
// The edge of the highest bucket can be +Inf, and it's supposed to mean that this
|
||
|
// bucket contains all remaining samples > low. We can't get the middle of an
|
||
|
// infinite range, so just return the lower bound of this bucket instead.
|
||
|
return low
|
||
|
}
|
||
|
if math.IsInf(low, -1) {
|
||
|
// Similarly, we can get -Inf in the left edge of the lowest bucket,
|
||
|
// and it means the bucket contains all remaining values < high.
|
||
|
return high
|
||
|
}
|
||
|
return (low + high) / 2
|
||
|
}
|
||
|
|
||
|
// StdDev approximates the standard deviation of the histogram.
|
||
|
func (h *runtimeHistogramSnapshot) StdDev() float64 {
|
||
|
return math.Sqrt(h.Variance())
|
||
|
}
|
||
|
|
||
|
// Variance approximates the variance of the histogram.
|
||
|
func (h *runtimeHistogramSnapshot) Variance() float64 {
|
||
|
if len(h.Counts) == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
mean, totalCount := h.mean()
|
||
|
if totalCount <= 1 {
|
||
|
// There is no variance when there are zero or one items.
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
var sum float64
|
||
|
for i, c := range h.Counts {
|
||
|
midpoint := h.midpoint(i)
|
||
|
d := midpoint - mean
|
||
|
sum += float64(c) * (d * d)
|
||
|
}
|
||
|
return sum / (totalCount - 1)
|
||
|
}
|
||
|
|
||
|
// Percentile computes the p'th percentile value.
|
||
|
func (h *runtimeHistogramSnapshot) Percentile(p float64) float64 {
|
||
|
threshold := float64(h.Count()) * p
|
||
|
values := [1]float64{threshold}
|
||
|
h.computePercentiles(values[:])
|
||
|
return values[0]
|
||
|
}
|
||
|
|
||
|
// Percentiles computes all requested percentile values.
|
||
|
func (h *runtimeHistogramSnapshot) Percentiles(ps []float64) []float64 {
|
||
|
// Compute threshold values. We need these to be sorted
|
||
|
// for the percentile computation, but restore the original
|
||
|
// order later, so keep the indexes as well.
|
||
|
count := float64(h.Count())
|
||
|
thresholds := make([]float64, len(ps))
|
||
|
indexes := make([]int, len(ps))
|
||
|
for i, percentile := range ps {
|
||
|
thresholds[i] = count * math.Max(0, math.Min(1.0, percentile))
|
||
|
indexes[i] = i
|
||
|
}
|
||
|
sort.Sort(floatsAscendingKeepingIndex{thresholds, indexes})
|
||
|
|
||
|
// Now compute. The result is stored back into the thresholds slice.
|
||
|
h.computePercentiles(thresholds)
|
||
|
|
||
|
// Put the result back into the requested order.
|
||
|
sort.Sort(floatsByIndex{thresholds, indexes})
|
||
|
return thresholds
|
||
|
}
|
||
|
|
||
|
func (h *runtimeHistogramSnapshot) computePercentiles(thresh []float64) {
|
||
|
var totalCount float64
|
||
|
for i, count := range h.Counts {
|
||
|
totalCount += float64(count)
|
||
|
|
||
|
for len(thresh) > 0 && thresh[0] < totalCount {
|
||
|
thresh[0] = h.Buckets[i]
|
||
|
thresh = thresh[1:]
|
||
|
}
|
||
|
if len(thresh) == 0 {
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Note: runtime/metrics.Float64Histogram is a collection of float64s, but the methods
|
||
|
// below need to return int64 to satisfy the interface. The histogram provided by runtime
|
||
|
// also doesn't keep track of individual samples, so results are approximated.
|
||
|
|
||
|
// Max returns the highest sample value.
|
||
|
func (h *runtimeHistogramSnapshot) Max() int64 {
|
||
|
for i := len(h.Counts) - 1; i >= 0; i-- {
|
||
|
count := h.Counts[i]
|
||
|
if count > 0 {
|
||
|
edge := h.Buckets[i+1]
|
||
|
if math.IsInf(edge, 1) {
|
||
|
edge = h.Buckets[i]
|
||
|
}
|
||
|
return int64(math.Ceil(edge))
|
||
|
}
|
||
|
}
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
// Min returns the lowest sample value.
|
||
|
func (h *runtimeHistogramSnapshot) Min() int64 {
|
||
|
for i, count := range h.Counts {
|
||
|
if count > 0 {
|
||
|
return int64(math.Floor(h.Buckets[i]))
|
||
|
}
|
||
|
}
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
// Sum returns the sum of all sample values.
|
||
|
func (h *runtimeHistogramSnapshot) Sum() int64 {
|
||
|
var sum float64
|
||
|
for i := range h.Counts {
|
||
|
sum += h.Buckets[i] * float64(h.Counts[i])
|
||
|
}
|
||
|
return int64(math.Ceil(sum))
|
||
|
}
|
||
|
|
||
|
type floatsAscendingKeepingIndex struct {
|
||
|
values []float64
|
||
|
indexes []int
|
||
|
}
|
||
|
|
||
|
func (s floatsAscendingKeepingIndex) Len() int {
|
||
|
return len(s.values)
|
||
|
}
|
||
|
|
||
|
func (s floatsAscendingKeepingIndex) Less(i, j int) bool {
|
||
|
return s.values[i] < s.values[j]
|
||
|
}
|
||
|
|
||
|
func (s floatsAscendingKeepingIndex) Swap(i, j int) {
|
||
|
s.values[i], s.values[j] = s.values[j], s.values[i]
|
||
|
s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i]
|
||
|
}
|
||
|
|
||
|
type floatsByIndex struct {
|
||
|
values []float64
|
||
|
indexes []int
|
||
|
}
|
||
|
|
||
|
func (s floatsByIndex) Len() int {
|
||
|
return len(s.values)
|
||
|
}
|
||
|
|
||
|
func (s floatsByIndex) Less(i, j int) bool {
|
||
|
return s.indexes[i] < s.indexes[j]
|
||
|
}
|
||
|
|
||
|
func (s floatsByIndex) Swap(i, j int) {
|
||
|
s.values[i], s.values[j] = s.values[j], s.values[i]
|
||
|
s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i]
|
||
|
}
|