2015-04-07 10:13:37 +00:00
/**********************************************************************
2015-09-28 15:46:17 +00:00
* Copyright ( c ) 2013 , 2014 , 2015 Pieter Wuille , Gregory Maxwell *
2015-04-07 10:13:37 +00:00
* Distributed under the MIT software license , see the accompanying *
* file COPYING or http : //www.opensource.org/licenses/mit-license.php.*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2015-01-21 23:35:00 +00:00
2015-04-07 10:13:37 +00:00
# if defined HAVE_CONFIG_H
# include "libsecp256k1-config.h"
# endif
# include <stdio.h>
# include <stdlib.h>
# include <time.h>
2015-01-21 23:35:00 +00:00
2015-09-28 15:46:17 +00:00
# include "include/secp256k1.h"
2015-04-07 10:13:37 +00:00
# include "secp256k1.c"
# include "testrand_impl.h"
2015-01-21 23:35:00 +00:00
# ifdef ENABLE_OPENSSL_TESTS
# include "openssl/bn.h"
# include "openssl/ec.h"
# include "openssl/ecdsa.h"
# include "openssl/obj_mac.h"
# endif
2015-04-07 10:13:37 +00:00
static int count = 64 ;
2015-09-28 15:46:17 +00:00
static secp256k1_context * ctx = NULL ;
2015-01-21 23:35:00 +00:00
2015-09-28 15:46:17 +00:00
void random_field_element_test ( secp256k1_fe * fe ) {
2015-04-07 10:13:37 +00:00
do {
unsigned char b32 [ 32 ] ;
secp256k1_rand256_test ( b32 ) ;
if ( secp256k1_fe_set_b32 ( fe , b32 ) ) {
break ;
}
} while ( 1 ) ;
}
2015-01-21 23:35:00 +00:00
2015-09-28 15:46:17 +00:00
void random_field_element_magnitude ( secp256k1_fe * fe ) {
secp256k1_fe zero ;
2015-04-07 10:13:37 +00:00
int n = secp256k1_rand32 ( ) % 9 ;
secp256k1_fe_normalize ( fe ) ;
if ( n = = 0 ) {
return ;
}
secp256k1_fe_clear ( & zero ) ;
secp256k1_fe_negate ( & zero , & zero , 0 ) ;
secp256k1_fe_mul_int ( & zero , n - 1 ) ;
secp256k1_fe_add ( fe , & zero ) ;
2015-09-28 15:46:17 +00:00
VERIFY_CHECK ( fe - > magnitude = = n ) ;
2015-01-21 23:35:00 +00:00
}
2015-09-28 15:46:17 +00:00
void random_group_element_test ( secp256k1_ge * ge ) {
secp256k1_fe fe ;
2015-04-07 10:13:37 +00:00
do {
random_field_element_test ( & fe ) ;
if ( secp256k1_ge_set_xo_var ( ge , & fe , secp256k1_rand32 ( ) & 1 ) ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe_normalize ( & ge - > y ) ;
2015-04-07 10:13:37 +00:00
break ;
}
} while ( 1 ) ;
}
2015-09-28 15:46:17 +00:00
void random_group_element_jacobian_test ( secp256k1_gej * gej , const secp256k1_ge * ge ) {
secp256k1_fe z2 , z3 ;
2015-04-07 10:13:37 +00:00
do {
random_field_element_test ( & gej - > z ) ;
if ( ! secp256k1_fe_is_zero ( & gej - > z ) ) {
break ;
}
} while ( 1 ) ;
secp256k1_fe_sqr ( & z2 , & gej - > z ) ;
secp256k1_fe_mul ( & z3 , & z2 , & gej - > z ) ;
secp256k1_fe_mul ( & gej - > x , & ge - > x , & z2 ) ;
secp256k1_fe_mul ( & gej - > y , & ge - > y , & z3 ) ;
gej - > infinity = ge - > infinity ;
}
2015-09-28 15:46:17 +00:00
void random_scalar_order_test ( secp256k1_scalar * num ) {
2015-01-21 23:35:00 +00:00
do {
unsigned char b32 [ 32 ] ;
2015-04-07 10:13:37 +00:00
int overflow = 0 ;
2015-01-21 23:35:00 +00:00
secp256k1_rand256_test ( b32 ) ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_b32 ( num , b32 , & overflow ) ;
if ( overflow | | secp256k1_scalar_is_zero ( num ) ) {
2015-01-21 23:35:00 +00:00
continue ;
2015-04-07 10:13:37 +00:00
}
2015-01-21 23:35:00 +00:00
break ;
} while ( 1 ) ;
}
2015-09-28 15:46:17 +00:00
void random_scalar_order ( secp256k1_scalar * num ) {
2015-01-21 23:35:00 +00:00
do {
unsigned char b32 [ 32 ] ;
2015-04-07 10:13:37 +00:00
int overflow = 0 ;
2015-01-21 23:35:00 +00:00
secp256k1_rand256 ( b32 ) ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_b32 ( num , b32 , & overflow ) ;
if ( overflow | | secp256k1_scalar_is_zero ( num ) ) {
2015-01-21 23:35:00 +00:00
continue ;
2015-04-07 10:13:37 +00:00
}
2015-01-21 23:35:00 +00:00
break ;
} while ( 1 ) ;
}
2015-09-28 15:46:17 +00:00
void run_context_tests ( void ) {
secp256k1_context * none = secp256k1_context_create ( 0 ) ;
secp256k1_context * sign = secp256k1_context_create ( SECP256K1_CONTEXT_SIGN ) ;
secp256k1_context * vrfy = secp256k1_context_create ( SECP256K1_CONTEXT_VERIFY ) ;
secp256k1_context * both = secp256k1_context_create ( SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY ) ;
secp256k1_gej pubj ;
secp256k1_ge pub ;
secp256k1_scalar msg , key , nonce ;
secp256k1_scalar sigr , sigs ;
/*** clone and destroy all of them to make sure cloning was complete ***/
{
secp256k1_context * ctx_tmp ;
ctx_tmp = none ; none = secp256k1_context_clone ( none ) ; secp256k1_context_destroy ( ctx_tmp ) ;
ctx_tmp = sign ; sign = secp256k1_context_clone ( sign ) ; secp256k1_context_destroy ( ctx_tmp ) ;
ctx_tmp = vrfy ; vrfy = secp256k1_context_clone ( vrfy ) ; secp256k1_context_destroy ( ctx_tmp ) ;
ctx_tmp = both ; both = secp256k1_context_clone ( both ) ; secp256k1_context_destroy ( ctx_tmp ) ;
}
/*** attempt to use them ***/
random_scalar_order_test ( & msg ) ;
random_scalar_order_test ( & key ) ;
secp256k1_ecmult_gen ( & both - > ecmult_gen_ctx , & pubj , & key ) ;
secp256k1_ge_set_gej ( & pub , & pubj ) ;
/* obtain a working nonce */
do {
random_scalar_order_test ( & nonce ) ;
} while ( ! secp256k1_ecdsa_sig_sign ( & both - > ecmult_gen_ctx , & sigr , & sigs , & key , & msg , & nonce , NULL ) ) ;
/* try signing */
CHECK ( secp256k1_ecdsa_sig_sign ( & sign - > ecmult_gen_ctx , & sigr , & sigs , & key , & msg , & nonce , NULL ) ) ;
CHECK ( secp256k1_ecdsa_sig_sign ( & both - > ecmult_gen_ctx , & sigr , & sigs , & key , & msg , & nonce , NULL ) ) ;
/* try verifying */
CHECK ( secp256k1_ecdsa_sig_verify ( & vrfy - > ecmult_ctx , & sigr , & sigs , & pub , & msg ) ) ;
CHECK ( secp256k1_ecdsa_sig_verify ( & both - > ecmult_ctx , & sigr , & sigs , & pub , & msg ) ) ;
/* cleanup */
secp256k1_context_destroy ( none ) ;
secp256k1_context_destroy ( sign ) ;
secp256k1_context_destroy ( vrfy ) ;
secp256k1_context_destroy ( both ) ;
}
2015-04-07 10:13:37 +00:00
/***** HASH TESTS *****/
void run_sha256_tests ( void ) {
static const char * inputs [ 8 ] = {
" " , " abc " , " message digest " , " secure hash algorithm " , " SHA256 is considered to be safe " ,
" abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq " ,
" For this sample, this 63-byte string will be used as input data " ,
" This is exactly 64 bytes long, not counting the terminating byte "
} ;
static const unsigned char outputs [ 8 ] [ 32 ] = {
{ 0xe3 , 0xb0 , 0xc4 , 0x42 , 0x98 , 0xfc , 0x1c , 0x14 , 0x9a , 0xfb , 0xf4 , 0xc8 , 0x99 , 0x6f , 0xb9 , 0x24 , 0x27 , 0xae , 0x41 , 0xe4 , 0x64 , 0x9b , 0x93 , 0x4c , 0xa4 , 0x95 , 0x99 , 0x1b , 0x78 , 0x52 , 0xb8 , 0x55 } ,
{ 0xba , 0x78 , 0x16 , 0xbf , 0x8f , 0x01 , 0xcf , 0xea , 0x41 , 0x41 , 0x40 , 0xde , 0x5d , 0xae , 0x22 , 0x23 , 0xb0 , 0x03 , 0x61 , 0xa3 , 0x96 , 0x17 , 0x7a , 0x9c , 0xb4 , 0x10 , 0xff , 0x61 , 0xf2 , 0x00 , 0x15 , 0xad } ,
{ 0xf7 , 0x84 , 0x6f , 0x55 , 0xcf , 0x23 , 0xe1 , 0x4e , 0xeb , 0xea , 0xb5 , 0xb4 , 0xe1 , 0x55 , 0x0c , 0xad , 0x5b , 0x50 , 0x9e , 0x33 , 0x48 , 0xfb , 0xc4 , 0xef , 0xa3 , 0xa1 , 0x41 , 0x3d , 0x39 , 0x3c , 0xb6 , 0x50 } ,
{ 0xf3 , 0x0c , 0xeb , 0x2b , 0xb2 , 0x82 , 0x9e , 0x79 , 0xe4 , 0xca , 0x97 , 0x53 , 0xd3 , 0x5a , 0x8e , 0xcc , 0x00 , 0x26 , 0x2d , 0x16 , 0x4c , 0xc0 , 0x77 , 0x08 , 0x02 , 0x95 , 0x38 , 0x1c , 0xbd , 0x64 , 0x3f , 0x0d } ,
{ 0x68 , 0x19 , 0xd9 , 0x15 , 0xc7 , 0x3f , 0x4d , 0x1e , 0x77 , 0xe4 , 0xe1 , 0xb5 , 0x2d , 0x1f , 0xa0 , 0xf9 , 0xcf , 0x9b , 0xea , 0xea , 0xd3 , 0x93 , 0x9f , 0x15 , 0x87 , 0x4b , 0xd9 , 0x88 , 0xe2 , 0xa2 , 0x36 , 0x30 } ,
{ 0x24 , 0x8d , 0x6a , 0x61 , 0xd2 , 0x06 , 0x38 , 0xb8 , 0xe5 , 0xc0 , 0x26 , 0x93 , 0x0c , 0x3e , 0x60 , 0x39 , 0xa3 , 0x3c , 0xe4 , 0x59 , 0x64 , 0xff , 0x21 , 0x67 , 0xf6 , 0xec , 0xed , 0xd4 , 0x19 , 0xdb , 0x06 , 0xc1 } ,
{ 0xf0 , 0x8a , 0x78 , 0xcb , 0xba , 0xee , 0x08 , 0x2b , 0x05 , 0x2a , 0xe0 , 0x70 , 0x8f , 0x32 , 0xfa , 0x1e , 0x50 , 0xc5 , 0xc4 , 0x21 , 0xaa , 0x77 , 0x2b , 0xa5 , 0xdb , 0xb4 , 0x06 , 0xa2 , 0xea , 0x6b , 0xe3 , 0x42 } ,
{ 0xab , 0x64 , 0xef , 0xf7 , 0xe8 , 0x8e , 0x2e , 0x46 , 0x16 , 0x5e , 0x29 , 0xf2 , 0xbc , 0xe4 , 0x18 , 0x26 , 0xbd , 0x4c , 0x7b , 0x35 , 0x52 , 0xf6 , 0xb3 , 0x82 , 0xa9 , 0xe7 , 0xd3 , 0xaf , 0x47 , 0xc2 , 0x45 , 0xf8 }
} ;
int i ;
for ( i = 0 ; i < 8 ; i + + ) {
unsigned char out [ 32 ] ;
secp256k1_sha256_t hasher ;
secp256k1_sha256_initialize ( & hasher ) ;
secp256k1_sha256_write ( & hasher , ( const unsigned char * ) ( inputs [ i ] ) , strlen ( inputs [ i ] ) ) ;
secp256k1_sha256_finalize ( & hasher , out ) ;
CHECK ( memcmp ( out , outputs [ i ] , 32 ) = = 0 ) ;
if ( strlen ( inputs [ i ] ) > 0 ) {
int split = secp256k1_rand32 ( ) % strlen ( inputs [ i ] ) ;
secp256k1_sha256_initialize ( & hasher ) ;
secp256k1_sha256_write ( & hasher , ( const unsigned char * ) ( inputs [ i ] ) , split ) ;
secp256k1_sha256_write ( & hasher , ( const unsigned char * ) ( inputs [ i ] + split ) , strlen ( inputs [ i ] ) - split ) ;
secp256k1_sha256_finalize ( & hasher , out ) ;
CHECK ( memcmp ( out , outputs [ i ] , 32 ) = = 0 ) ;
}
}
}
void run_hmac_sha256_tests ( void ) {
static const char * keys [ 6 ] = {
" \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b \x0b " ,
" \x4a \x65 \x66 \x65 " ,
" \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa " ,
" \x01 \x02 \x03 \x04 \x05 \x06 \x07 \x08 \x09 \x0a \x0b \x0c \x0d \x0e \x0f \x10 \x11 \x12 \x13 \x14 \x15 \x16 \x17 \x18 \x19 " ,
" \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa " ,
" \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa \xaa "
} ;
static const char * inputs [ 6 ] = {
" \x48 \x69 \x20 \x54 \x68 \x65 \x72 \x65 " ,
" \x77 \x68 \x61 \x74 \x20 \x64 \x6f \x20 \x79 \x61 \x20 \x77 \x61 \x6e \x74 \x20 \x66 \x6f \x72 \x20 \x6e \x6f \x74 \x68 \x69 \x6e \x67 \x3f " ,
" \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd \xdd " ,
" \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd \xcd " ,
" \x54 \x65 \x73 \x74 \x20 \x55 \x73 \x69 \x6e \x67 \x20 \x4c \x61 \x72 \x67 \x65 \x72 \x20 \x54 \x68 \x61 \x6e \x20 \x42 \x6c \x6f \x63 \x6b \x2d \x53 \x69 \x7a \x65 \x20 \x4b \x65 \x79 \x20 \x2d \x20 \x48 \x61 \x73 \x68 \x20 \x4b \x65 \x79 \x20 \x46 \x69 \x72 \x73 \x74 " ,
" \x54 \x68 \x69 \x73 \x20 \x69 \x73 \x20 \x61 \x20 \x74 \x65 \x73 \x74 \x20 \x75 \x73 \x69 \x6e \x67 \x20 \x61 \x20 \x6c \x61 \x72 \x67 \x65 \x72 \x20 \x74 \x68 \x61 \x6e \x20 \x62 \x6c \x6f \x63 \x6b \x2d \x73 \x69 \x7a \x65 \x20 \x6b \x65 \x79 \x20 \x61 \x6e \x64 \x20 \x61 \x20 \x6c \x61 \x72 \x67 \x65 \x72 \x20 \x74 \x68 \x61 \x6e \x20 \x62 \x6c \x6f \x63 \x6b \x2d \x73 \x69 \x7a \x65 \x20 \x64 \x61 \x74 \x61 \x2e \x20 \x54 \x68 \x65 \x20 \x6b \x65 \x79 \x20 \x6e \x65 \x65 \x64 \x73 \x20 \x74 \x6f \x20 \x62 \x65 \x20 \x68 \x61 \x73 \x68 \x65 \x64 \x20 \x62 \x65 \x66 \x6f \x72 \x65 \x20 \x62 \x65 \x69 \x6e \x67 \x20 \x75 \x73 \x65 \x64 \x20 \x62 \x79 \x20 \x74 \x68 \x65 \x20 \x48 \x4d \x41 \x43 \x20 \x61 \x6c \x67 \x6f \x72 \x69 \x74 \x68 \x6d \x2e "
} ;
static const unsigned char outputs [ 6 ] [ 32 ] = {
{ 0xb0 , 0x34 , 0x4c , 0x61 , 0xd8 , 0xdb , 0x38 , 0x53 , 0x5c , 0xa8 , 0xaf , 0xce , 0xaf , 0x0b , 0xf1 , 0x2b , 0x88 , 0x1d , 0xc2 , 0x00 , 0xc9 , 0x83 , 0x3d , 0xa7 , 0x26 , 0xe9 , 0x37 , 0x6c , 0x2e , 0x32 , 0xcf , 0xf7 } ,
{ 0x5b , 0xdc , 0xc1 , 0x46 , 0xbf , 0x60 , 0x75 , 0x4e , 0x6a , 0x04 , 0x24 , 0x26 , 0x08 , 0x95 , 0x75 , 0xc7 , 0x5a , 0x00 , 0x3f , 0x08 , 0x9d , 0x27 , 0x39 , 0x83 , 0x9d , 0xec , 0x58 , 0xb9 , 0x64 , 0xec , 0x38 , 0x43 } ,
{ 0x77 , 0x3e , 0xa9 , 0x1e , 0x36 , 0x80 , 0x0e , 0x46 , 0x85 , 0x4d , 0xb8 , 0xeb , 0xd0 , 0x91 , 0x81 , 0xa7 , 0x29 , 0x59 , 0x09 , 0x8b , 0x3e , 0xf8 , 0xc1 , 0x22 , 0xd9 , 0x63 , 0x55 , 0x14 , 0xce , 0xd5 , 0x65 , 0xfe } ,
{ 0x82 , 0x55 , 0x8a , 0x38 , 0x9a , 0x44 , 0x3c , 0x0e , 0xa4 , 0xcc , 0x81 , 0x98 , 0x99 , 0xf2 , 0x08 , 0x3a , 0x85 , 0xf0 , 0xfa , 0xa3 , 0xe5 , 0x78 , 0xf8 , 0x07 , 0x7a , 0x2e , 0x3f , 0xf4 , 0x67 , 0x29 , 0x66 , 0x5b } ,
{ 0x60 , 0xe4 , 0x31 , 0x59 , 0x1e , 0xe0 , 0xb6 , 0x7f , 0x0d , 0x8a , 0x26 , 0xaa , 0xcb , 0xf5 , 0xb7 , 0x7f , 0x8e , 0x0b , 0xc6 , 0x21 , 0x37 , 0x28 , 0xc5 , 0x14 , 0x05 , 0x46 , 0x04 , 0x0f , 0x0e , 0xe3 , 0x7f , 0x54 } ,
{ 0x9b , 0x09 , 0xff , 0xa7 , 0x1b , 0x94 , 0x2f , 0xcb , 0x27 , 0x63 , 0x5f , 0xbc , 0xd5 , 0xb0 , 0xe9 , 0x44 , 0xbf , 0xdc , 0x63 , 0x64 , 0x4f , 0x07 , 0x13 , 0x93 , 0x8a , 0x7f , 0x51 , 0x53 , 0x5c , 0x3a , 0x35 , 0xe2 }
} ;
int i ;
for ( i = 0 ; i < 6 ; i + + ) {
secp256k1_hmac_sha256_t hasher ;
unsigned char out [ 32 ] ;
secp256k1_hmac_sha256_initialize ( & hasher , ( const unsigned char * ) ( keys [ i ] ) , strlen ( keys [ i ] ) ) ;
secp256k1_hmac_sha256_write ( & hasher , ( const unsigned char * ) ( inputs [ i ] ) , strlen ( inputs [ i ] ) ) ;
secp256k1_hmac_sha256_finalize ( & hasher , out ) ;
CHECK ( memcmp ( out , outputs [ i ] , 32 ) = = 0 ) ;
if ( strlen ( inputs [ i ] ) > 0 ) {
int split = secp256k1_rand32 ( ) % strlen ( inputs [ i ] ) ;
secp256k1_hmac_sha256_initialize ( & hasher , ( const unsigned char * ) ( keys [ i ] ) , strlen ( keys [ i ] ) ) ;
secp256k1_hmac_sha256_write ( & hasher , ( const unsigned char * ) ( inputs [ i ] ) , split ) ;
secp256k1_hmac_sha256_write ( & hasher , ( const unsigned char * ) ( inputs [ i ] + split ) , strlen ( inputs [ i ] ) - split ) ;
secp256k1_hmac_sha256_finalize ( & hasher , out ) ;
CHECK ( memcmp ( out , outputs [ i ] , 32 ) = = 0 ) ;
}
}
}
void run_rfc6979_hmac_sha256_tests ( void ) {
2015-09-28 15:46:17 +00:00
static const unsigned char key1 [ 65 ] = { 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08 , 0x09 , 0x0a , 0x0b , 0x0c , 0x0d , 0x0e , 0x0f , 0x10 , 0x11 , 0x12 , 0x13 , 0x14 , 0x15 , 0x16 , 0x17 , 0x18 , 0x19 , 0x1a , 0x1b , 0x1c , 0x1d , 0x1e , 0x1f , 0x00 , 0x4b , 0xf5 , 0x12 , 0x2f , 0x34 , 0x45 , 0x54 , 0xc5 , 0x3b , 0xde , 0x2e , 0xbb , 0x8c , 0xd2 , 0xb7 , 0xe3 , 0xd1 , 0x60 , 0x0a , 0xd6 , 0x31 , 0xc3 , 0x85 , 0xa5 , 0xd7 , 0xcc , 0xe2 , 0x3c , 0x77 , 0x85 , 0x45 , 0x9a , 0 } ;
2015-04-07 10:13:37 +00:00
static const unsigned char out1 [ 3 ] [ 32 ] = {
{ 0x4f , 0xe2 , 0x95 , 0x25 , 0xb2 , 0x08 , 0x68 , 0x09 , 0x15 , 0x9a , 0xcd , 0xf0 , 0x50 , 0x6e , 0xfb , 0x86 , 0xb0 , 0xec , 0x93 , 0x2c , 0x7b , 0xa4 , 0x42 , 0x56 , 0xab , 0x32 , 0x1e , 0x42 , 0x1e , 0x67 , 0xe9 , 0xfb } ,
{ 0x2b , 0xf0 , 0xff , 0xf1 , 0xd3 , 0xc3 , 0x78 , 0xa2 , 0x2d , 0xc5 , 0xde , 0x1d , 0x85 , 0x65 , 0x22 , 0x32 , 0x5c , 0x65 , 0xb5 , 0x04 , 0x49 , 0x1a , 0x0c , 0xbd , 0x01 , 0xcb , 0x8f , 0x3a , 0xa6 , 0x7f , 0xfd , 0x4a } ,
{ 0xf5 , 0x28 , 0xb4 , 0x10 , 0xcb , 0x54 , 0x1f , 0x77 , 0x00 , 0x0d , 0x7a , 0xfb , 0x6c , 0x5b , 0x53 , 0xc5 , 0xc4 , 0x71 , 0xea , 0xb4 , 0x3e , 0x46 , 0x6d , 0x9a , 0xc5 , 0x19 , 0x0c , 0x39 , 0xc8 , 0x2f , 0xd8 , 0x2e }
} ;
2015-09-28 15:46:17 +00:00
static const unsigned char key2 [ 64 ] = { 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xe3 , 0xb0 , 0xc4 , 0x42 , 0x98 , 0xfc , 0x1c , 0x14 , 0x9a , 0xfb , 0xf4 , 0xc8 , 0x99 , 0x6f , 0xb9 , 0x24 , 0x27 , 0xae , 0x41 , 0xe4 , 0x64 , 0x9b , 0x93 , 0x4c , 0xa4 , 0x95 , 0x99 , 0x1b , 0x78 , 0x52 , 0xb8 , 0x55 } ;
2015-04-07 10:13:37 +00:00
static const unsigned char out2 [ 3 ] [ 32 ] = {
{ 0x9c , 0x23 , 0x6c , 0x16 , 0x5b , 0x82 , 0xae , 0x0c , 0xd5 , 0x90 , 0x65 , 0x9e , 0x10 , 0x0b , 0x6b , 0xab , 0x30 , 0x36 , 0xe7 , 0xba , 0x8b , 0x06 , 0x74 , 0x9b , 0xaf , 0x69 , 0x81 , 0xe1 , 0x6f , 0x1a , 0x2b , 0x95 } ,
{ 0xdf , 0x47 , 0x10 , 0x61 , 0x62 , 0x5b , 0xc0 , 0xea , 0x14 , 0xb6 , 0x82 , 0xfe , 0xee , 0x2c , 0x9c , 0x02 , 0xf2 , 0x35 , 0xda , 0x04 , 0x20 , 0x4c , 0x1d , 0x62 , 0xa1 , 0x53 , 0x6c , 0x6e , 0x17 , 0xae , 0xd7 , 0xa9 } ,
{ 0x75 , 0x97 , 0x88 , 0x7c , 0xbd , 0x76 , 0x32 , 0x1f , 0x32 , 0xe3 , 0x04 , 0x40 , 0x67 , 0x9a , 0x22 , 0xcf , 0x7f , 0x8d , 0x9d , 0x2e , 0xac , 0x39 , 0x0e , 0x58 , 0x1f , 0xea , 0x09 , 0x1c , 0xe2 , 0x02 , 0xba , 0x94 }
} ;
secp256k1_rfc6979_hmac_sha256_t rng ;
unsigned char out [ 32 ] ;
int i ;
2015-09-28 15:46:17 +00:00
secp256k1_rfc6979_hmac_sha256_initialize ( & rng , key1 , 64 ) ;
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < 3 ; i + + ) {
secp256k1_rfc6979_hmac_sha256_generate ( & rng , out , 32 ) ;
CHECK ( memcmp ( out , out1 [ i ] , 32 ) = = 0 ) ;
}
secp256k1_rfc6979_hmac_sha256_finalize ( & rng ) ;
2015-09-28 15:46:17 +00:00
secp256k1_rfc6979_hmac_sha256_initialize ( & rng , key1 , 65 ) ;
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < 3 ; i + + ) {
secp256k1_rfc6979_hmac_sha256_generate ( & rng , out , 32 ) ;
CHECK ( memcmp ( out , out1 [ i ] , 32 ) ! = 0 ) ;
}
secp256k1_rfc6979_hmac_sha256_finalize ( & rng ) ;
2015-09-28 15:46:17 +00:00
secp256k1_rfc6979_hmac_sha256_initialize ( & rng , key2 , 64 ) ;
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < 3 ; i + + ) {
secp256k1_rfc6979_hmac_sha256_generate ( & rng , out , 32 ) ;
CHECK ( memcmp ( out , out2 [ i ] , 32 ) = = 0 ) ;
}
secp256k1_rfc6979_hmac_sha256_finalize ( & rng ) ;
}
/***** NUM TESTS *****/
# ifndef USE_NUM_NONE
2015-09-28 15:46:17 +00:00
void random_num_negate ( secp256k1_num * num ) {
2015-04-07 10:13:37 +00:00
if ( secp256k1_rand32 ( ) & 1 ) {
secp256k1_num_negate ( num ) ;
2015-01-21 23:35:00 +00:00
}
}
2015-09-28 15:46:17 +00:00
void random_num_order_test ( secp256k1_num * num ) {
secp256k1_scalar sc ;
2015-04-07 10:13:37 +00:00
random_scalar_order_test ( & sc ) ;
secp256k1_scalar_get_num ( num , & sc ) ;
}
2015-09-28 15:46:17 +00:00
void random_num_order ( secp256k1_num * num ) {
secp256k1_scalar sc ;
2015-04-07 10:13:37 +00:00
random_scalar_order ( & sc ) ;
secp256k1_scalar_get_num ( num , & sc ) ;
}
void test_num_negate ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_num n1 ;
secp256k1_num n2 ;
2015-04-07 10:13:37 +00:00
random_num_order_test ( & n1 ) ; /* n1 = R */
2015-01-21 23:35:00 +00:00
random_num_negate ( & n1 ) ;
2015-04-07 10:13:37 +00:00
secp256k1_num_copy ( & n2 , & n1 ) ; /* n2 = R */
secp256k1_num_sub ( & n1 , & n2 , & n1 ) ; /* n1 = n2-n1 = 0 */
CHECK ( secp256k1_num_is_zero ( & n1 ) ) ;
secp256k1_num_copy ( & n1 , & n2 ) ; /* n1 = R */
secp256k1_num_negate ( & n1 ) ; /* n1 = -R */
CHECK ( ! secp256k1_num_is_zero ( & n1 ) ) ;
secp256k1_num_add ( & n1 , & n2 , & n1 ) ; /* n1 = n2+n1 = 0 */
CHECK ( secp256k1_num_is_zero ( & n1 ) ) ;
secp256k1_num_copy ( & n1 , & n2 ) ; /* n1 = R */
secp256k1_num_negate ( & n1 ) ; /* n1 = -R */
CHECK ( secp256k1_num_is_neg ( & n1 ) ! = secp256k1_num_is_neg ( & n2 ) ) ;
secp256k1_num_negate ( & n1 ) ; /* n1 = R */
CHECK ( secp256k1_num_eq ( & n1 , & n2 ) ) ;
}
void test_num_add_sub ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_num n1 ;
secp256k1_num n2 ;
secp256k1_num n1p2 , n2p1 , n1m2 , n2m1 ;
2015-04-07 10:13:37 +00:00
int r = secp256k1_rand32 ( ) ;
random_num_order_test ( & n1 ) ; /* n1 = R1 */
if ( r & 1 ) {
random_num_negate ( & n1 ) ;
}
random_num_order_test ( & n2 ) ; /* n2 = R2 */
if ( r & 2 ) {
random_num_negate ( & n2 ) ;
}
secp256k1_num_add ( & n1p2 , & n1 , & n2 ) ; /* n1p2 = R1 + R2 */
secp256k1_num_add ( & n2p1 , & n2 , & n1 ) ; /* n2p1 = R2 + R1 */
secp256k1_num_sub ( & n1m2 , & n1 , & n2 ) ; /* n1m2 = R1 - R2 */
secp256k1_num_sub ( & n2m1 , & n2 , & n1 ) ; /* n2m1 = R2 - R1 */
CHECK ( secp256k1_num_eq ( & n1p2 , & n2p1 ) ) ;
CHECK ( ! secp256k1_num_eq ( & n1p2 , & n1m2 ) ) ;
secp256k1_num_negate ( & n2m1 ) ; /* n2m1 = -R2 + R1 */
CHECK ( secp256k1_num_eq ( & n2m1 , & n1m2 ) ) ;
CHECK ( ! secp256k1_num_eq ( & n2m1 , & n1 ) ) ;
secp256k1_num_add ( & n2m1 , & n2m1 , & n2 ) ; /* n2m1 = -R2 + R1 + R2 = R1 */
CHECK ( secp256k1_num_eq ( & n2m1 , & n1 ) ) ;
CHECK ( ! secp256k1_num_eq ( & n2p1 , & n1 ) ) ;
secp256k1_num_sub ( & n2p1 , & n2p1 , & n2 ) ; /* n2p1 = R2 + R1 - R2 = R1 */
CHECK ( secp256k1_num_eq ( & n2p1 , & n1 ) ) ;
}
void run_num_smalltests ( void ) {
int i ;
for ( i = 0 ; i < 100 * count ; i + + ) {
2015-01-21 23:35:00 +00:00
test_num_negate ( ) ;
test_num_add_sub ( ) ;
}
2015-04-07 10:13:37 +00:00
}
# endif
/***** SCALAR TESTS *****/
void scalar_test ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_scalar s ;
secp256k1_scalar s1 ;
secp256k1_scalar s2 ;
2015-04-07 10:13:37 +00:00
# ifndef USE_NUM_NONE
2015-09-28 15:46:17 +00:00
secp256k1_num snum , s1num , s2num ;
secp256k1_num order , half_order ;
2015-04-07 10:13:37 +00:00
# endif
unsigned char c [ 32 ] ;
/* Set 's' to a random scalar, with value 'snum'. */
random_scalar_order_test ( & s ) ;
/* Set 's1' to a random scalar, with value 's1num'. */
random_scalar_order_test ( & s1 ) ;
/* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
random_scalar_order_test ( & s2 ) ;
secp256k1_scalar_get_b32 ( c , & s2 ) ;
# ifndef USE_NUM_NONE
secp256k1_scalar_get_num ( & snum , & s ) ;
secp256k1_scalar_get_num ( & s1num , & s1 ) ;
secp256k1_scalar_get_num ( & s2num , & s2 ) ;
secp256k1_scalar_order_get_num ( & order ) ;
half_order = order ;
secp256k1_num_shift ( & half_order , 1 ) ;
# endif
{
int i ;
/* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar n ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & n , 0 ) ;
for ( i = 0 ; i < 256 ; i + = 4 ) {
2015-09-28 15:46:17 +00:00
secp256k1_scalar t ;
2015-04-07 10:13:37 +00:00
int j ;
secp256k1_scalar_set_int ( & t , secp256k1_scalar_get_bits ( & s , 256 - 4 - i , 4 ) ) ;
for ( j = 0 ; j < 4 ; j + + ) {
secp256k1_scalar_add ( & n , & n , & n ) ;
}
secp256k1_scalar_add ( & n , & n , & t ) ;
}
CHECK ( secp256k1_scalar_eq ( & n , & s ) ) ;
}
{
/* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar n ;
2015-04-07 10:13:37 +00:00
int i = 0 ;
secp256k1_scalar_set_int ( & n , 0 ) ;
while ( i < 256 ) {
2015-09-28 15:46:17 +00:00
secp256k1_scalar t ;
2015-04-07 10:13:37 +00:00
int j ;
int now = ( secp256k1_rand32 ( ) % 15 ) + 1 ;
if ( now + i > 256 ) {
now = 256 - i ;
}
secp256k1_scalar_set_int ( & t , secp256k1_scalar_get_bits_var ( & s , 256 - now - i , now ) ) ;
for ( j = 0 ; j < now ; j + + ) {
secp256k1_scalar_add ( & n , & n , & n ) ;
}
secp256k1_scalar_add ( & n , & n , & t ) ;
i + = now ;
}
CHECK ( secp256k1_scalar_eq ( & n , & s ) ) ;
}
# ifndef USE_NUM_NONE
{
/* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
2015-09-28 15:46:17 +00:00
secp256k1_num rnum ;
secp256k1_num r2num ;
secp256k1_scalar r ;
2015-04-07 10:13:37 +00:00
secp256k1_num_add ( & rnum , & snum , & s2num ) ;
secp256k1_num_mod ( & rnum , & order ) ;
secp256k1_scalar_add ( & r , & s , & s2 ) ;
secp256k1_scalar_get_num ( & r2num , & r ) ;
CHECK ( secp256k1_num_eq ( & rnum , & r2num ) ) ;
}
{
/* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r ;
secp256k1_num r2num ;
secp256k1_num rnum ;
2015-04-07 10:13:37 +00:00
secp256k1_num_mul ( & rnum , & snum , & s2num ) ;
secp256k1_num_mod ( & rnum , & order ) ;
secp256k1_scalar_mul ( & r , & s , & s2 ) ;
secp256k1_scalar_get_num ( & r2num , & r ) ;
CHECK ( secp256k1_num_eq ( & rnum , & r2num ) ) ;
/* The result can only be zero if at least one of the factors was zero. */
CHECK ( secp256k1_scalar_is_zero ( & r ) = = ( secp256k1_scalar_is_zero ( & s ) | | secp256k1_scalar_is_zero ( & s2 ) ) ) ;
/* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
CHECK ( secp256k1_num_eq ( & rnum , & snum ) = = ( secp256k1_scalar_is_zero ( & s ) | | secp256k1_scalar_is_one ( & s2 ) ) ) ;
CHECK ( secp256k1_num_eq ( & rnum , & s2num ) = = ( secp256k1_scalar_is_zero ( & s2 ) | | secp256k1_scalar_is_one ( & s ) ) ) ;
}
{
2015-09-28 15:46:17 +00:00
secp256k1_scalar neg ;
secp256k1_num negnum ;
secp256k1_num negnum2 ;
2015-04-07 10:13:37 +00:00
/* Check that comparison with zero matches comparison with zero on the number. */
CHECK ( secp256k1_num_is_zero ( & snum ) = = secp256k1_scalar_is_zero ( & s ) ) ;
/* Check that comparison with the half order is equal to testing for high scalar. */
CHECK ( secp256k1_scalar_is_high ( & s ) = = ( secp256k1_num_cmp ( & snum , & half_order ) > 0 ) ) ;
secp256k1_scalar_negate ( & neg , & s ) ;
secp256k1_num_sub ( & negnum , & order , & snum ) ;
secp256k1_num_mod ( & negnum , & order ) ;
/* Check that comparison with the half order is equal to testing for high scalar after negation. */
CHECK ( secp256k1_scalar_is_high ( & neg ) = = ( secp256k1_num_cmp ( & negnum , & half_order ) > 0 ) ) ;
/* Negating should change the high property, unless the value was already zero. */
CHECK ( ( secp256k1_scalar_is_high ( & s ) = = secp256k1_scalar_is_high ( & neg ) ) = = secp256k1_scalar_is_zero ( & s ) ) ;
secp256k1_scalar_get_num ( & negnum2 , & neg ) ;
/* Negating a scalar should be equal to (order - n) mod order on the number. */
CHECK ( secp256k1_num_eq ( & negnum , & negnum2 ) ) ;
secp256k1_scalar_add ( & neg , & neg , & s ) ;
/* Adding a number to its negation should result in zero. */
CHECK ( secp256k1_scalar_is_zero ( & neg ) ) ;
secp256k1_scalar_negate ( & neg , & neg ) ;
/* Negating zero should still result in zero. */
CHECK ( secp256k1_scalar_is_zero ( & neg ) ) ;
}
{
/* Test secp256k1_scalar_mul_shift_var. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r ;
secp256k1_num one ;
secp256k1_num rnum ;
secp256k1_num rnum2 ;
2015-04-07 10:13:37 +00:00
unsigned char cone [ 1 ] = { 0x01 } ;
unsigned int shift = 256 + ( secp256k1_rand32 ( ) % 257 ) ;
secp256k1_scalar_mul_shift_var ( & r , & s1 , & s2 , shift ) ;
secp256k1_num_mul ( & rnum , & s1num , & s2num ) ;
secp256k1_num_shift ( & rnum , shift - 1 ) ;
secp256k1_num_set_bin ( & one , cone , 1 ) ;
secp256k1_num_add ( & rnum , & rnum , & one ) ;
secp256k1_num_shift ( & rnum , 1 ) ;
secp256k1_scalar_get_num ( & rnum2 , & r ) ;
CHECK ( secp256k1_num_eq ( & rnum , & rnum2 ) ) ;
}
2015-09-28 15:46:17 +00:00
{
/* test secp256k1_scalar_shr_int */
secp256k1_scalar r ;
int i ;
random_scalar_order_test ( & r ) ;
for ( i = 0 ; i < 100 ; + + i ) {
int low ;
int shift = 1 + ( secp256k1_rand32 ( ) % 15 ) ;
int expected = r . d [ 0 ] % ( 1 < < shift ) ;
low = secp256k1_scalar_shr_int ( & r , shift ) ;
CHECK ( expected = = low ) ;
}
}
2015-04-07 10:13:37 +00:00
# endif
{
/* Test that scalar inverses are equal to the inverse of their number modulo the order. */
if ( ! secp256k1_scalar_is_zero ( & s ) ) {
2015-09-28 15:46:17 +00:00
secp256k1_scalar inv ;
2015-04-07 10:13:37 +00:00
# ifndef USE_NUM_NONE
2015-09-28 15:46:17 +00:00
secp256k1_num invnum ;
secp256k1_num invnum2 ;
2015-04-07 10:13:37 +00:00
# endif
secp256k1_scalar_inverse ( & inv , & s ) ;
# ifndef USE_NUM_NONE
secp256k1_num_mod_inverse ( & invnum , & snum , & order ) ;
secp256k1_scalar_get_num ( & invnum2 , & inv ) ;
CHECK ( secp256k1_num_eq ( & invnum , & invnum2 ) ) ;
# endif
secp256k1_scalar_mul ( & inv , & inv , & s ) ;
/* Multiplying a scalar with its inverse must result in one. */
CHECK ( secp256k1_scalar_is_one ( & inv ) ) ;
secp256k1_scalar_inverse ( & inv , & inv ) ;
/* Inverting one must result in one. */
CHECK ( secp256k1_scalar_is_one ( & inv ) ) ;
}
}
{
/* Test commutativity of add. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_add ( & r1 , & s1 , & s2 ) ;
secp256k1_scalar_add ( & r2 , & s2 , & s1 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
{
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 ;
secp256k1_scalar b ;
2015-04-07 10:13:37 +00:00
int i ;
/* Test add_bit. */
int bit = secp256k1_rand32 ( ) % 256 ;
secp256k1_scalar_set_int ( & b , 1 ) ;
CHECK ( secp256k1_scalar_is_one ( & b ) ) ;
for ( i = 0 ; i < bit ; i + + ) {
secp256k1_scalar_add ( & b , & b , & b ) ;
}
r1 = s1 ;
r2 = s1 ;
if ( ! secp256k1_scalar_add ( & r1 , & r1 , & b ) ) {
/* No overflow happened. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar_cadd_bit ( & r2 , bit , 1 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
/* cadd is a noop when flag is zero */
secp256k1_scalar_cadd_bit ( & r2 , bit , 0 ) ;
2015-04-07 10:13:37 +00:00
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
}
{
/* Test commutativity of mul. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_mul ( & r1 , & s1 , & s2 ) ;
secp256k1_scalar_mul ( & r2 , & s2 , & s1 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
{
/* Test associativity of add. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_add ( & r1 , & s1 , & s2 ) ;
secp256k1_scalar_add ( & r1 , & r1 , & s ) ;
secp256k1_scalar_add ( & r2 , & s2 , & s ) ;
secp256k1_scalar_add ( & r2 , & s1 , & r2 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
{
/* Test associativity of mul. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_mul ( & r1 , & s1 , & s2 ) ;
secp256k1_scalar_mul ( & r1 , & r1 , & s ) ;
secp256k1_scalar_mul ( & r2 , & s2 , & s ) ;
secp256k1_scalar_mul ( & r2 , & s1 , & r2 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
{
/* Test distributitivity of mul over add. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 , t ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_add ( & r1 , & s1 , & s2 ) ;
secp256k1_scalar_mul ( & r1 , & r1 , & s ) ;
secp256k1_scalar_mul ( & r2 , & s1 , & s ) ;
secp256k1_scalar_mul ( & t , & s2 , & s ) ;
secp256k1_scalar_add ( & r2 , & r2 , & t ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
{
/* Test square. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , r2 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_sqr ( & r1 , & s1 ) ;
secp256k1_scalar_mul ( & r2 , & s1 , & s1 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & r2 ) ) ;
}
{
/* Test multiplicative identity. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , v1 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & v1 , 1 ) ;
secp256k1_scalar_mul ( & r1 , & s1 , & v1 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & s1 ) ) ;
}
{
/* Test additive identity. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , v0 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & v0 , 0 ) ;
secp256k1_scalar_add ( & r1 , & s1 , & v0 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & s1 ) ) ;
}
{
/* Test zero product property. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar r1 , v0 ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & v0 , 0 ) ;
secp256k1_scalar_mul ( & r1 , & s1 , & v0 ) ;
CHECK ( secp256k1_scalar_eq ( & r1 , & v0 ) ) ;
}
}
void run_scalar_tests ( void ) {
int i ;
for ( i = 0 ; i < 128 * count ; i + + ) {
scalar_test ( ) ;
}
{
/* (-1)+1 should be zero. */
2015-09-28 15:46:17 +00:00
secp256k1_scalar s , o ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & s , 1 ) ;
CHECK ( secp256k1_scalar_is_one ( & s ) ) ;
secp256k1_scalar_negate ( & o , & s ) ;
secp256k1_scalar_add ( & o , & o , & s ) ;
CHECK ( secp256k1_scalar_is_zero ( & o ) ) ;
secp256k1_scalar_negate ( & o , & o ) ;
CHECK ( secp256k1_scalar_is_zero ( & o ) ) ;
}
# ifndef USE_NUM_NONE
{
/* A scalar with value of the curve order should be 0. */
2015-09-28 15:46:17 +00:00
secp256k1_num order ;
secp256k1_scalar zero ;
2015-04-07 10:13:37 +00:00
unsigned char bin [ 32 ] ;
int overflow = 0 ;
secp256k1_scalar_order_get_num ( & order ) ;
secp256k1_num_get_bin ( bin , 32 , & order ) ;
secp256k1_scalar_set_b32 ( & zero , bin , & overflow ) ;
CHECK ( overflow = = 1 ) ;
CHECK ( secp256k1_scalar_is_zero ( & zero ) ) ;
}
# endif
}
/***** FIELD TESTS *****/
2015-09-28 15:46:17 +00:00
void random_fe ( secp256k1_fe * x ) {
2015-04-07 10:13:37 +00:00
unsigned char bin [ 32 ] ;
do {
secp256k1_rand256 ( bin ) ;
if ( secp256k1_fe_set_b32 ( x , bin ) ) {
return ;
}
} while ( 1 ) ;
}
2015-09-28 15:46:17 +00:00
void random_fe_non_zero ( secp256k1_fe * nz ) {
2015-04-07 10:13:37 +00:00
int tries = 10 ;
while ( - - tries > = 0 ) {
random_fe ( nz ) ;
secp256k1_fe_normalize ( nz ) ;
if ( ! secp256k1_fe_is_zero ( nz ) ) {
break ;
}
}
/* Infinitesimal probability of spurious failure here */
CHECK ( tries > = 0 ) ;
}
2015-09-28 15:46:17 +00:00
void random_fe_non_square ( secp256k1_fe * ns ) {
secp256k1_fe r ;
2015-04-07 10:13:37 +00:00
random_fe_non_zero ( ns ) ;
if ( secp256k1_fe_sqrt_var ( & r , ns ) ) {
secp256k1_fe_negate ( ns , ns , 1 ) ;
}
}
2015-09-28 15:46:17 +00:00
int check_fe_equal ( const secp256k1_fe * a , const secp256k1_fe * b ) {
secp256k1_fe an = * a ;
secp256k1_fe bn = * b ;
2015-04-07 10:13:37 +00:00
secp256k1_fe_normalize_weak ( & an ) ;
secp256k1_fe_normalize_var ( & bn ) ;
return secp256k1_fe_equal_var ( & an , & bn ) ;
}
2015-09-28 15:46:17 +00:00
int check_fe_inverse ( const secp256k1_fe * a , const secp256k1_fe * ai ) {
secp256k1_fe x ;
secp256k1_fe one = SECP256K1_FE_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ;
2015-04-07 10:13:37 +00:00
secp256k1_fe_mul ( & x , a , ai ) ;
return check_fe_equal ( & x , & one ) ;
}
void run_field_convert ( void ) {
static const unsigned char b32 [ 32 ] = {
0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 ,
0x11 , 0x12 , 0x13 , 0x14 , 0x15 , 0x16 , 0x17 , 0x18 ,
0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27 , 0x28 , 0x29 ,
0x33 , 0x34 , 0x35 , 0x36 , 0x37 , 0x38 , 0x39 , 0x40
} ;
2015-09-28 15:46:17 +00:00
static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST (
2015-04-07 10:13:37 +00:00
0x00010203UL , 0x04050607UL , 0x11121314UL , 0x15161718UL ,
0x22232425UL , 0x26272829UL , 0x33343536UL , 0x37383940UL
) ;
2015-09-28 15:46:17 +00:00
static const secp256k1_fe fe = SECP256K1_FE_CONST (
2015-04-07 10:13:37 +00:00
0x00010203UL , 0x04050607UL , 0x11121314UL , 0x15161718UL ,
0x22232425UL , 0x26272829UL , 0x33343536UL , 0x37383940UL
) ;
2015-09-28 15:46:17 +00:00
secp256k1_fe fe2 ;
2015-04-07 10:13:37 +00:00
unsigned char b322 [ 32 ] ;
2015-09-28 15:46:17 +00:00
secp256k1_fe_storage fes2 ;
2015-04-07 10:13:37 +00:00
/* Check conversions to fe. */
CHECK ( secp256k1_fe_set_b32 ( & fe2 , b32 ) ) ;
CHECK ( secp256k1_fe_equal_var ( & fe , & fe2 ) ) ;
secp256k1_fe_from_storage ( & fe2 , & fes ) ;
CHECK ( secp256k1_fe_equal_var ( & fe , & fe2 ) ) ;
/* Check conversion from fe. */
secp256k1_fe_get_b32 ( b322 , & fe ) ;
CHECK ( memcmp ( b322 , b32 , 32 ) = = 0 ) ;
secp256k1_fe_to_storage ( & fes2 , & fe ) ;
CHECK ( memcmp ( & fes2 , & fes , sizeof ( fes ) ) = = 0 ) ;
}
2015-09-28 15:46:17 +00:00
int fe_memcmp ( const secp256k1_fe * a , const secp256k1_fe * b ) {
secp256k1_fe t = * b ;
# ifdef VERIFY
t . magnitude = a - > magnitude ;
t . normalized = a - > normalized ;
# endif
return memcmp ( a , & t , sizeof ( secp256k1_fe ) ) ;
}
2015-04-07 10:13:37 +00:00
void run_field_misc ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe x ;
secp256k1_fe y ;
secp256k1_fe z ;
secp256k1_fe q ;
secp256k1_fe fe5 = SECP256K1_FE_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 ) ;
int i , j ;
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < 5 * count ; i + + ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe_storage xs , ys , zs ;
2015-04-07 10:13:37 +00:00
random_fe ( & x ) ;
random_fe_non_zero ( & y ) ;
/* Test the fe equality and comparison operations. */
CHECK ( secp256k1_fe_cmp_var ( & x , & x ) = = 0 ) ;
CHECK ( secp256k1_fe_equal_var ( & x , & x ) ) ;
z = x ;
secp256k1_fe_add ( & z , & y ) ;
2015-09-28 15:46:17 +00:00
/* Test fe conditional move; z is not normalized here. */
q = x ;
secp256k1_fe_cmov ( & x , & z , 0 ) ;
VERIFY_CHECK ( ! x . normalized & & x . magnitude = = z . magnitude ) ;
secp256k1_fe_cmov ( & x , & x , 1 ) ;
CHECK ( fe_memcmp ( & x , & z ) ! = 0 ) ;
CHECK ( fe_memcmp ( & x , & q ) = = 0 ) ;
secp256k1_fe_cmov ( & q , & z , 1 ) ;
VERIFY_CHECK ( ! q . normalized & & q . magnitude = = z . magnitude ) ;
CHECK ( fe_memcmp ( & q , & z ) = = 0 ) ;
secp256k1_fe_normalize_var ( & x ) ;
secp256k1_fe_normalize_var ( & z ) ;
CHECK ( ! secp256k1_fe_equal_var ( & x , & z ) ) ;
secp256k1_fe_normalize_var ( & q ) ;
secp256k1_fe_cmov ( & q , & z , ( i & 1 ) ) ;
VERIFY_CHECK ( q . normalized & & q . magnitude = = 1 ) ;
for ( j = 0 ; j < 6 ; j + + ) {
secp256k1_fe_negate ( & z , & z , j + 1 ) ;
secp256k1_fe_normalize_var ( & q ) ;
secp256k1_fe_cmov ( & q , & z , ( j & 1 ) ) ;
VERIFY_CHECK ( ! q . normalized & & q . magnitude = = ( j + 2 ) ) ;
}
secp256k1_fe_normalize_var ( & z ) ;
2015-04-07 10:13:37 +00:00
/* Test storage conversion and conditional moves. */
secp256k1_fe_to_storage ( & xs , & x ) ;
secp256k1_fe_to_storage ( & ys , & y ) ;
secp256k1_fe_to_storage ( & zs , & z ) ;
secp256k1_fe_storage_cmov ( & zs , & xs , 0 ) ;
2015-09-28 15:46:17 +00:00
secp256k1_fe_storage_cmov ( & zs , & zs , 1 ) ;
2015-04-07 10:13:37 +00:00
CHECK ( memcmp ( & xs , & zs , sizeof ( xs ) ) ! = 0 ) ;
secp256k1_fe_storage_cmov ( & ys , & xs , 1 ) ;
CHECK ( memcmp ( & xs , & ys , sizeof ( xs ) ) = = 0 ) ;
secp256k1_fe_from_storage ( & x , & xs ) ;
secp256k1_fe_from_storage ( & y , & ys ) ;
secp256k1_fe_from_storage ( & z , & zs ) ;
/* Test that mul_int, mul, and add agree. */
secp256k1_fe_add ( & y , & x ) ;
secp256k1_fe_add ( & y , & x ) ;
z = x ;
secp256k1_fe_mul_int ( & z , 3 ) ;
CHECK ( check_fe_equal ( & y , & z ) ) ;
secp256k1_fe_add ( & y , & x ) ;
secp256k1_fe_add ( & z , & x ) ;
CHECK ( check_fe_equal ( & z , & y ) ) ;
z = x ;
secp256k1_fe_mul_int ( & z , 5 ) ;
secp256k1_fe_mul ( & q , & x , & fe5 ) ;
CHECK ( check_fe_equal ( & z , & q ) ) ;
secp256k1_fe_negate ( & x , & x , 1 ) ;
secp256k1_fe_add ( & z , & x ) ;
secp256k1_fe_add ( & q , & x ) ;
CHECK ( check_fe_equal ( & y , & z ) ) ;
CHECK ( check_fe_equal ( & q , & y ) ) ;
}
}
void run_field_inv ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe x , xi , xii ;
2015-04-07 10:13:37 +00:00
int i ;
for ( i = 0 ; i < 10 * count ; i + + ) {
random_fe_non_zero ( & x ) ;
secp256k1_fe_inv ( & xi , & x ) ;
CHECK ( check_fe_inverse ( & x , & xi ) ) ;
secp256k1_fe_inv ( & xii , & xi ) ;
CHECK ( check_fe_equal ( & x , & xii ) ) ;
}
}
void run_field_inv_var ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe x , xi , xii ;
2015-04-07 10:13:37 +00:00
int i ;
for ( i = 0 ; i < 10 * count ; i + + ) {
random_fe_non_zero ( & x ) ;
secp256k1_fe_inv_var ( & xi , & x ) ;
CHECK ( check_fe_inverse ( & x , & xi ) ) ;
secp256k1_fe_inv_var ( & xii , & xi ) ;
CHECK ( check_fe_equal ( & x , & xii ) ) ;
}
}
void run_field_inv_all_var ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe x [ 16 ] , xi [ 16 ] , xii [ 16 ] ;
2015-04-07 10:13:37 +00:00
int i ;
/* Check it's safe to call for 0 elements */
secp256k1_fe_inv_all_var ( 0 , xi , x ) ;
for ( i = 0 ; i < count ; i + + ) {
size_t j ;
size_t len = ( secp256k1_rand32 ( ) & 15 ) + 1 ;
for ( j = 0 ; j < len ; j + + ) {
random_fe_non_zero ( & x [ j ] ) ;
}
secp256k1_fe_inv_all_var ( len , xi , x ) ;
for ( j = 0 ; j < len ; j + + ) {
CHECK ( check_fe_inverse ( & x [ j ] , & xi [ j ] ) ) ;
}
secp256k1_fe_inv_all_var ( len , xii , xi ) ;
for ( j = 0 ; j < len ; j + + ) {
CHECK ( check_fe_equal ( & x [ j ] , & xii [ j ] ) ) ;
}
}
}
void run_sqr ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe x , s ;
2015-04-07 10:13:37 +00:00
{
int i ;
secp256k1_fe_set_int ( & x , 1 ) ;
secp256k1_fe_negate ( & x , & x , 1 ) ;
for ( i = 1 ; i < = 512 ; + + i ) {
secp256k1_fe_mul_int ( & x , 2 ) ;
secp256k1_fe_normalize ( & x ) ;
secp256k1_fe_sqr ( & s , & x ) ;
}
}
}
2015-09-28 15:46:17 +00:00
void test_sqrt ( const secp256k1_fe * a , const secp256k1_fe * k ) {
secp256k1_fe r1 , r2 ;
2015-04-07 10:13:37 +00:00
int v = secp256k1_fe_sqrt_var ( & r1 , a ) ;
CHECK ( ( v = = 0 ) = = ( k = = NULL ) ) ;
if ( k ! = NULL ) {
/* Check that the returned root is +/- the given known answer */
secp256k1_fe_negate ( & r2 , & r1 , 1 ) ;
secp256k1_fe_add ( & r1 , k ) ; secp256k1_fe_add ( & r2 , k ) ;
secp256k1_fe_normalize ( & r1 ) ; secp256k1_fe_normalize ( & r2 ) ;
CHECK ( secp256k1_fe_is_zero ( & r1 ) | | secp256k1_fe_is_zero ( & r2 ) ) ;
}
}
void run_sqrt ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe ns , x , s , t ;
2015-04-07 10:13:37 +00:00
int i ;
/* Check sqrt(0) is 0 */
secp256k1_fe_set_int ( & x , 0 ) ;
secp256k1_fe_sqr ( & s , & x ) ;
test_sqrt ( & s , & x ) ;
/* Check sqrt of small squares (and their negatives) */
for ( i = 1 ; i < = 100 ; i + + ) {
secp256k1_fe_set_int ( & x , i ) ;
secp256k1_fe_sqr ( & s , & x ) ;
test_sqrt ( & s , & x ) ;
secp256k1_fe_negate ( & t , & s , 1 ) ;
test_sqrt ( & t , NULL ) ;
}
/* Consistency checks for large random values */
for ( i = 0 ; i < 10 ; i + + ) {
int j ;
random_fe_non_square ( & ns ) ;
for ( j = 0 ; j < count ; j + + ) {
random_fe ( & x ) ;
secp256k1_fe_sqr ( & s , & x ) ;
test_sqrt ( & s , & x ) ;
secp256k1_fe_negate ( & t , & s , 1 ) ;
test_sqrt ( & t , NULL ) ;
secp256k1_fe_mul ( & t , & s , & ns ) ;
test_sqrt ( & t , NULL ) ;
}
}
}
/***** GROUP TESTS *****/
2015-09-28 15:46:17 +00:00
void ge_equals_ge ( const secp256k1_ge * a , const secp256k1_ge * b ) {
2015-04-07 10:13:37 +00:00
CHECK ( a - > infinity = = b - > infinity ) ;
if ( a - > infinity ) {
return ;
}
CHECK ( secp256k1_fe_equal_var ( & a - > x , & b - > x ) ) ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_fe_equal_var ( & a - > y , & b - > y ) ) ;
2015-04-07 10:13:37 +00:00
}
2015-09-28 15:46:17 +00:00
/* This compares jacobian points including their Z, not just their geometric meaning. */
int gej_xyz_equals_gej ( const secp256k1_gej * a , const secp256k1_gej * b ) {
secp256k1_gej a2 ;
secp256k1_gej b2 ;
int ret = 1 ;
ret & = a - > infinity = = b - > infinity ;
if ( ret & & ! a - > infinity ) {
a2 = * a ;
b2 = * b ;
secp256k1_fe_normalize ( & a2 . x ) ;
secp256k1_fe_normalize ( & a2 . y ) ;
secp256k1_fe_normalize ( & a2 . z ) ;
secp256k1_fe_normalize ( & b2 . x ) ;
secp256k1_fe_normalize ( & b2 . y ) ;
secp256k1_fe_normalize ( & b2 . z ) ;
ret & = secp256k1_fe_cmp_var ( & a2 . x , & b2 . x ) = = 0 ;
ret & = secp256k1_fe_cmp_var ( & a2 . y , & b2 . y ) = = 0 ;
ret & = secp256k1_fe_cmp_var ( & a2 . z , & b2 . z ) = = 0 ;
}
return ret ;
}
void ge_equals_gej ( const secp256k1_ge * a , const secp256k1_gej * b ) {
secp256k1_fe z2s ;
secp256k1_fe u1 , u2 , s1 , s2 ;
2015-04-07 10:13:37 +00:00
CHECK ( a - > infinity = = b - > infinity ) ;
if ( a - > infinity ) {
return ;
}
/* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
secp256k1_fe_sqr ( & z2s , & b - > z ) ;
secp256k1_fe_mul ( & u1 , & a - > x , & z2s ) ;
u2 = b - > x ; secp256k1_fe_normalize_weak ( & u2 ) ;
secp256k1_fe_mul ( & s1 , & a - > y , & z2s ) ; secp256k1_fe_mul ( & s1 , & s1 , & b - > z ) ;
s2 = b - > y ; secp256k1_fe_normalize_weak ( & s2 ) ;
CHECK ( secp256k1_fe_equal_var ( & u1 , & u2 ) ) ;
CHECK ( secp256k1_fe_equal_var ( & s1 , & s2 ) ) ;
}
void test_ge ( void ) {
int i , i1 ;
2015-09-28 15:46:17 +00:00
# ifdef USE_ENDOMORPHISM
int runs = 6 ;
# else
2015-04-07 10:13:37 +00:00
int runs = 4 ;
2015-09-28 15:46:17 +00:00
# endif
2015-04-07 10:13:37 +00:00
/* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
* The second in each pair of identical points uses a random Z coordinate in the Jacobian form .
* All magnitudes are randomized .
* All 17 * 17 combinations of points are added to eachother , using all applicable methods .
2015-09-28 15:46:17 +00:00
*
* When the endomorphism code is compiled in , p5 = lambda * p1 and p6 = lambda ^ 2 * p1 are added as well .
2015-04-07 10:13:37 +00:00
*/
2015-09-28 15:46:17 +00:00
secp256k1_ge * ge = ( secp256k1_ge * ) malloc ( sizeof ( secp256k1_ge ) * ( 1 + 4 * runs ) ) ;
secp256k1_gej * gej = ( secp256k1_gej * ) malloc ( sizeof ( secp256k1_gej ) * ( 1 + 4 * runs ) ) ;
secp256k1_fe * zinv = ( secp256k1_fe * ) malloc ( sizeof ( secp256k1_fe ) * ( 1 + 4 * runs ) ) ;
secp256k1_fe zf ;
secp256k1_fe zfi2 , zfi3 ;
2015-04-07 10:13:37 +00:00
secp256k1_gej_set_infinity ( & gej [ 0 ] ) ;
secp256k1_ge_clear ( & ge [ 0 ] ) ;
secp256k1_ge_set_gej_var ( & ge [ 0 ] , & gej [ 0 ] ) ;
for ( i = 0 ; i < runs ; i + + ) {
int j ;
2015-09-28 15:46:17 +00:00
secp256k1_ge g ;
2015-04-07 10:13:37 +00:00
random_group_element_test ( & g ) ;
2015-09-28 15:46:17 +00:00
# ifdef USE_ENDOMORPHISM
if ( i > = runs - 2 ) {
secp256k1_ge_mul_lambda ( & g , & ge [ 1 ] ) ;
}
if ( i > = runs - 1 ) {
secp256k1_ge_mul_lambda ( & g , & g ) ;
}
# endif
2015-04-07 10:13:37 +00:00
ge [ 1 + 4 * i ] = g ;
ge [ 2 + 4 * i ] = g ;
secp256k1_ge_neg ( & ge [ 3 + 4 * i ] , & g ) ;
secp256k1_ge_neg ( & ge [ 4 + 4 * i ] , & g ) ;
secp256k1_gej_set_ge ( & gej [ 1 + 4 * i ] , & ge [ 1 + 4 * i ] ) ;
random_group_element_jacobian_test ( & gej [ 2 + 4 * i ] , & ge [ 2 + 4 * i ] ) ;
secp256k1_gej_set_ge ( & gej [ 3 + 4 * i ] , & ge [ 3 + 4 * i ] ) ;
random_group_element_jacobian_test ( & gej [ 4 + 4 * i ] , & ge [ 4 + 4 * i ] ) ;
for ( j = 0 ; j < 4 ; j + + ) {
random_field_element_magnitude ( & ge [ 1 + j + 4 * i ] . x ) ;
random_field_element_magnitude ( & ge [ 1 + j + 4 * i ] . y ) ;
random_field_element_magnitude ( & gej [ 1 + j + 4 * i ] . x ) ;
random_field_element_magnitude ( & gej [ 1 + j + 4 * i ] . y ) ;
random_field_element_magnitude ( & gej [ 1 + j + 4 * i ] . z ) ;
}
}
2015-09-28 15:46:17 +00:00
/* Compute z inverses. */
{
secp256k1_fe * zs = malloc ( sizeof ( secp256k1_fe ) * ( 1 + 4 * runs ) ) ;
for ( i = 0 ; i < 4 * runs + 1 ; i + + ) {
if ( i = = 0 ) {
/* The point at infinity does not have a meaningful z inverse. Any should do. */
do {
random_field_element_test ( & zs [ i ] ) ;
} while ( secp256k1_fe_is_zero ( & zs [ i ] ) ) ;
} else {
zs [ i ] = gej [ i ] . z ;
}
}
secp256k1_fe_inv_all_var ( 4 * runs + 1 , zinv , zs ) ;
free ( zs ) ;
}
/* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */
do {
random_field_element_test ( & zf ) ;
} while ( secp256k1_fe_is_zero ( & zf ) ) ;
random_field_element_magnitude ( & zf ) ;
secp256k1_fe_inv_var ( & zfi3 , & zf ) ;
secp256k1_fe_sqr ( & zfi2 , & zfi3 ) ;
secp256k1_fe_mul ( & zfi3 , & zfi3 , & zfi2 ) ;
2015-04-07 10:13:37 +00:00
for ( i1 = 0 ; i1 < 1 + 4 * runs ; i1 + + ) {
int i2 ;
for ( i2 = 0 ; i2 < 1 + 4 * runs ; i2 + + ) {
/* Compute reference result using gej + gej (var). */
2015-09-28 15:46:17 +00:00
secp256k1_gej refj , resj ;
secp256k1_ge ref ;
secp256k1_fe zr ;
secp256k1_gej_add_var ( & refj , & gej [ i1 ] , & gej [ i2 ] , secp256k1_gej_is_infinity ( & gej [ i1 ] ) ? NULL : & zr ) ;
/* Check Z ratio. */
if ( ! secp256k1_gej_is_infinity ( & gej [ i1 ] ) & & ! secp256k1_gej_is_infinity ( & refj ) ) {
secp256k1_fe zrz ; secp256k1_fe_mul ( & zrz , & zr , & gej [ i1 ] . z ) ;
CHECK ( secp256k1_fe_equal_var ( & zrz , & refj . z ) ) ;
}
2015-04-07 10:13:37 +00:00
secp256k1_ge_set_gej_var ( & ref , & refj ) ;
2015-09-28 15:46:17 +00:00
/* Test gej + ge with Z ratio result (var). */
secp256k1_gej_add_ge_var ( & resj , & gej [ i1 ] , & ge [ i2 ] , secp256k1_gej_is_infinity ( & gej [ i1 ] ) ? NULL : & zr ) ;
2015-04-07 10:13:37 +00:00
ge_equals_gej ( & ref , & resj ) ;
2015-09-28 15:46:17 +00:00
if ( ! secp256k1_gej_is_infinity ( & gej [ i1 ] ) & & ! secp256k1_gej_is_infinity ( & resj ) ) {
secp256k1_fe zrz ; secp256k1_fe_mul ( & zrz , & zr , & gej [ i1 ] . z ) ;
CHECK ( secp256k1_fe_equal_var ( & zrz , & resj . z ) ) ;
}
/* Test gej + ge (var, with additional Z factor). */
{
secp256k1_ge ge2_zfi = ge [ i2 ] ; /* the second term with x and y rescaled for z = 1/zf */
secp256k1_fe_mul ( & ge2_zfi . x , & ge2_zfi . x , & zfi2 ) ;
secp256k1_fe_mul ( & ge2_zfi . y , & ge2_zfi . y , & zfi3 ) ;
random_field_element_magnitude ( & ge2_zfi . x ) ;
random_field_element_magnitude ( & ge2_zfi . y ) ;
secp256k1_gej_add_zinv_var ( & resj , & gej [ i1 ] , & ge2_zfi , & zf ) ;
ge_equals_gej ( & ref , & resj ) ;
}
2015-04-07 10:13:37 +00:00
/* Test gej + ge (const). */
if ( i2 ! = 0 ) {
/* secp256k1_gej_add_ge does not support its second argument being infinity. */
secp256k1_gej_add_ge ( & resj , & gej [ i1 ] , & ge [ i2 ] ) ;
ge_equals_gej ( & ref , & resj ) ;
}
/* Test doubling (var). */
if ( ( i1 = = 0 & & i2 = = 0 ) | | ( ( i1 + 3 ) / 4 = = ( i2 + 3 ) / 4 & & ( ( i1 + 3 ) % 4 ) / 2 = = ( ( i2 + 3 ) % 4 ) / 2 ) ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe zr2 ;
/* Normal doubling with Z ratio result. */
secp256k1_gej_double_var ( & resj , & gej [ i1 ] , & zr2 ) ;
2015-04-07 10:13:37 +00:00
ge_equals_gej ( & ref , & resj ) ;
2015-09-28 15:46:17 +00:00
/* Check Z ratio. */
secp256k1_fe_mul ( & zr2 , & zr2 , & gej [ i1 ] . z ) ;
CHECK ( secp256k1_fe_equal_var ( & zr2 , & resj . z ) ) ;
/* Normal doubling. */
secp256k1_gej_double_var ( & resj , & gej [ i2 ] , NULL ) ;
2015-04-07 10:13:37 +00:00
ge_equals_gej ( & ref , & resj ) ;
}
/* Test adding opposites. */
if ( ( i1 = = 0 & & i2 = = 0 ) | | ( ( i1 + 3 ) / 4 = = ( i2 + 3 ) / 4 & & ( ( i1 + 3 ) % 4 ) / 2 ! = ( ( i2 + 3 ) % 4 ) / 2 ) ) {
CHECK ( secp256k1_ge_is_infinity ( & ref ) ) ;
}
/* Test adding infinity. */
if ( i1 = = 0 ) {
CHECK ( secp256k1_ge_is_infinity ( & ge [ i1 ] ) ) ;
CHECK ( secp256k1_gej_is_infinity ( & gej [ i1 ] ) ) ;
ge_equals_gej ( & ref , & gej [ i2 ] ) ;
}
if ( i2 = = 0 ) {
CHECK ( secp256k1_ge_is_infinity ( & ge [ i2 ] ) ) ;
CHECK ( secp256k1_gej_is_infinity ( & gej [ i2 ] ) ) ;
ge_equals_gej ( & ref , & gej [ i1 ] ) ;
}
}
}
/* Test adding all points together in random order equals infinity. */
{
2015-09-28 15:46:17 +00:00
secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY ;
secp256k1_gej * gej_shuffled = ( secp256k1_gej * ) malloc ( ( 4 * runs + 1 ) * sizeof ( secp256k1_gej ) ) ;
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < 4 * runs + 1 ; i + + ) {
gej_shuffled [ i ] = gej [ i ] ;
}
for ( i = 0 ; i < 4 * runs + 1 ; i + + ) {
int swap = i + secp256k1_rand32 ( ) % ( 4 * runs + 1 - i ) ;
if ( swap ! = i ) {
2015-09-28 15:46:17 +00:00
secp256k1_gej t = gej_shuffled [ i ] ;
2015-04-07 10:13:37 +00:00
gej_shuffled [ i ] = gej_shuffled [ swap ] ;
gej_shuffled [ swap ] = t ;
}
}
for ( i = 0 ; i < 4 * runs + 1 ; i + + ) {
2015-09-28 15:46:17 +00:00
secp256k1_gej_add_var ( & sum , & sum , & gej_shuffled [ i ] , NULL ) ;
2015-04-07 10:13:37 +00:00
}
CHECK ( secp256k1_gej_is_infinity ( & sum ) ) ;
free ( gej_shuffled ) ;
}
2015-09-28 15:46:17 +00:00
/* Test batch gej -> ge conversion with and without known z ratios. */
2015-04-07 10:13:37 +00:00
{
2015-09-28 15:46:17 +00:00
secp256k1_fe * zr = ( secp256k1_fe * ) malloc ( ( 4 * runs + 1 ) * sizeof ( secp256k1_fe ) ) ;
secp256k1_ge * ge_set_table = ( secp256k1_ge * ) malloc ( ( 4 * runs + 1 ) * sizeof ( secp256k1_ge ) ) ;
secp256k1_ge * ge_set_all = ( secp256k1_ge * ) malloc ( ( 4 * runs + 1 ) * sizeof ( secp256k1_ge ) ) ;
for ( i = 0 ; i < 4 * runs + 1 ; i + + ) {
/* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
if ( i < 4 * runs ) {
secp256k1_fe_mul ( & zr [ i + 1 ] , & zinv [ i ] , & gej [ i + 1 ] . z ) ;
}
}
secp256k1_ge_set_table_gej_var ( 4 * runs + 1 , ge_set_table , gej , zr ) ;
secp256k1_ge_set_all_gej_var ( 4 * runs + 1 , ge_set_all , gej , & ctx - > error_callback ) ;
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < 4 * runs + 1 ; i + + ) {
2015-09-28 15:46:17 +00:00
secp256k1_fe s ;
random_fe_non_zero ( & s ) ;
secp256k1_gej_rescale ( & gej [ i ] , & s ) ;
ge_equals_gej ( & ge_set_table [ i ] , & gej [ i ] ) ;
2015-04-07 10:13:37 +00:00
ge_equals_gej ( & ge_set_all [ i ] , & gej [ i ] ) ;
}
2015-09-28 15:46:17 +00:00
free ( ge_set_table ) ;
2015-04-07 10:13:37 +00:00
free ( ge_set_all ) ;
2015-09-28 15:46:17 +00:00
free ( zr ) ;
2015-04-07 10:13:37 +00:00
}
free ( ge ) ;
free ( gej ) ;
2015-09-28 15:46:17 +00:00
free ( zinv ) ;
}
void test_add_neg_y_diff_x ( void ) {
/* The point of this test is to check that we can add two points
* whose y - coordinates are negatives of each other but whose x
* coordinates differ . If the x - coordinates were the same , these
* points would be negatives of each other and their sum is
* infinity . This is cool because it " covers up " any degeneracy
* in the addition algorithm that would cause the xy coordinates
* of the sum to be wrong ( since infinity has no xy coordinates ) .
* HOWEVER , if the x - coordinates are different , infinity is the
* wrong answer , and such degeneracies are exposed . This is the
* root of https : //github.com/bitcoin/secp256k1/issues/257 which
* this test is a regression test for .
*
* These points were generated in sage as
* # secp256k1 params
* F = FiniteField ( 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F )
* C = EllipticCurve ( [ F ( 0 ) , F ( 7 ) ] )
* G = C . lift_x ( 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 )
* N = FiniteField ( G . order ( ) )
*
* # endomorphism values ( lambda is 1 ^ { 1 / 3 } in N , beta is 1 ^ { 1 / 3 } in F )
* x = polygen ( N )
* lam = ( 1 - x ^ 3 ) . roots ( ) [ 1 ] [ 0 ]
*
* # random " bad pair "
* P = C . random_element ( )
* Q = - int ( lam ) * P
* print " P: %x %x " % P . xy ( )
* print " Q: %x %x " % Q . xy ( )
* print " P + Q: %x %x " % ( P + Q ) . xy ( )
*/
secp256k1_gej aj = SECP256K1_GEJ_CONST (
0x8d24cd95 , 0x0a355af1 , 0x3c543505 , 0x44238d30 ,
0x0643d79f , 0x05a59614 , 0x2f8ec030 , 0xd58977cb ,
0x001e337a , 0x38093dcd , 0x6c0f386d , 0x0b1293a8 ,
0x4d72c879 , 0xd7681924 , 0x44e6d2f3 , 0x9190117d
) ;
secp256k1_gej bj = SECP256K1_GEJ_CONST (
0xc7b74206 , 0x1f788cd9 , 0xabd0937d , 0x164a0d86 ,
0x95f6ff75 , 0xf19a4ce9 , 0xd013bd7b , 0xbf92d2a7 ,
0xffe1cc85 , 0xc7f6c232 , 0x93f0c792 , 0xf4ed6c57 ,
0xb28d3786 , 0x2897e6db , 0xbb192d0b , 0x6e6feab2
) ;
secp256k1_gej sumj = SECP256K1_GEJ_CONST (
0x671a63c0 , 0x3efdad4c , 0x389a7798 , 0x24356027 ,
0xb3d69010 , 0x278625c3 , 0x5c86d390 , 0x184a8f7a ,
0x5f6409c2 , 0x2ce01f2b , 0x511fd375 , 0x25071d08 ,
0xda651801 , 0x70e95caf , 0x8f0d893c , 0xbed8fbbe
) ;
secp256k1_ge b ;
secp256k1_gej resj ;
secp256k1_ge res ;
secp256k1_ge_set_gej ( & b , & bj ) ;
secp256k1_gej_add_var ( & resj , & aj , & bj , NULL ) ;
secp256k1_ge_set_gej ( & res , & resj ) ;
ge_equals_gej ( & res , & sumj ) ;
secp256k1_gej_add_ge ( & resj , & aj , & b ) ;
secp256k1_ge_set_gej ( & res , & resj ) ;
ge_equals_gej ( & res , & sumj ) ;
secp256k1_gej_add_ge_var ( & resj , & aj , & b , NULL ) ;
secp256k1_ge_set_gej ( & res , & resj ) ;
ge_equals_gej ( & res , & sumj ) ;
2015-04-07 10:13:37 +00:00
}
void run_ge ( void ) {
int i ;
for ( i = 0 ; i < count * 32 ; i + + ) {
test_ge ( ) ;
}
2015-09-28 15:46:17 +00:00
test_add_neg_y_diff_x ( ) ;
}
void test_ec_combine ( void ) {
secp256k1_scalar sum = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
secp256k1_pubkey data [ 6 ] ;
const secp256k1_pubkey * d [ 6 ] ;
secp256k1_pubkey sd ;
secp256k1_pubkey sd2 ;
secp256k1_gej Qj ;
secp256k1_ge Q ;
int i ;
for ( i = 1 ; i < = 6 ; i + + ) {
secp256k1_scalar s ;
random_scalar_order_test ( & s ) ;
secp256k1_scalar_add ( & sum , & sum , & s ) ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & Qj , & s ) ;
secp256k1_ge_set_gej ( & Q , & Qj ) ;
secp256k1_pubkey_save ( & data [ i - 1 ] , & Q ) ;
d [ i - 1 ] = & data [ i - 1 ] ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & Qj , & sum ) ;
secp256k1_ge_set_gej ( & Q , & Qj ) ;
secp256k1_pubkey_save ( & sd , & Q ) ;
CHECK ( secp256k1_ec_pubkey_combine ( ctx , & sd2 , d , i ) = = 1 ) ;
CHECK ( memcmp ( & sd , & sd2 , sizeof ( sd ) ) = = 0 ) ;
}
}
void run_ec_combine ( void ) {
int i ;
for ( i = 0 ; i < count * 8 ; i + + ) {
test_ec_combine ( ) ;
}
2015-04-07 10:13:37 +00:00
}
/***** ECMULT TESTS *****/
void run_ecmult_chain ( void ) {
/* random starting point A (on the curve) */
2015-09-28 15:46:17 +00:00
secp256k1_gej a = SECP256K1_GEJ_CONST (
2015-04-07 10:13:37 +00:00
0x8b30bbe9 , 0xae2a9906 , 0x96b22f67 , 0x0709dff3 ,
0x727fd8bc , 0x04d3362c , 0x6c7bf458 , 0xe2846004 ,
0xa357ae91 , 0x5c4a6528 , 0x1309edf2 , 0x0504740f ,
0x0eb33439 , 0x90216b4f , 0x81063cb6 , 0x5f2f7e0f
) ;
/* two random initial factors xn and gn */
2015-09-28 15:46:17 +00:00
secp256k1_scalar xn = SECP256K1_SCALAR_CONST (
2015-04-07 10:13:37 +00:00
0x84cc5452 , 0xf7fde1ed , 0xb4d38a8c , 0xe9b1b84c ,
0xcef31f14 , 0x6e569be9 , 0x705d357a , 0x42985407
) ;
2015-09-28 15:46:17 +00:00
secp256k1_scalar gn = SECP256K1_SCALAR_CONST (
2015-04-07 10:13:37 +00:00
0xa1e58d22 , 0x553dcd42 , 0xb2398062 , 0x5d4c57a9 ,
0x6e9323d4 , 0x2b3152e5 , 0xca2c3990 , 0xedc7c9de
) ;
/* two small multipliers to be applied to xn and gn in every iteration: */
2015-09-28 15:46:17 +00:00
static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0x1337 ) ;
static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0x7113 ) ;
2015-04-07 10:13:37 +00:00
/* accumulators with the resulting coefficients to A and G */
2015-09-28 15:46:17 +00:00
secp256k1_scalar ae = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ;
secp256k1_scalar ge = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
2015-04-07 10:13:37 +00:00
/* actual points */
2015-09-28 15:46:17 +00:00
secp256k1_gej x ;
secp256k1_gej x2 ;
2015-04-07 10:13:37 +00:00
int i ;
/* the point being computed */
x = a ;
for ( i = 0 ; i < 200 * count ; i + + ) {
/* in each iteration, compute X = xn*X + gn*G; */
2015-09-28 15:46:17 +00:00
secp256k1_ecmult ( & ctx - > ecmult_ctx , & x , & x , & xn , & gn ) ;
2015-04-07 10:13:37 +00:00
/* also compute ae and ge: the actual accumulated factors for A and G */
/* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
secp256k1_scalar_mul ( & ae , & ae , & xn ) ;
secp256k1_scalar_mul ( & ge , & ge , & xn ) ;
secp256k1_scalar_add ( & ge , & ge , & gn ) ;
/* modify xn and gn */
secp256k1_scalar_mul ( & xn , & xn , & xf ) ;
secp256k1_scalar_mul ( & gn , & gn , & gf ) ;
/* verify */
2015-01-21 23:35:00 +00:00
if ( i = = 19999 ) {
2015-04-07 10:13:37 +00:00
/* expected result after 19999 iterations */
2015-09-28 15:46:17 +00:00
secp256k1_gej rp = SECP256K1_GEJ_CONST (
2015-04-07 10:13:37 +00:00
0xD6E96687 , 0xF9B10D09 , 0x2A6F3543 , 0x9D86CEBE ,
0xA4535D0D , 0x409F5358 , 0x6440BD74 , 0xB933E830 ,
0xB95CBCA2 , 0xC77DA786 , 0x539BE8FD , 0x53354D2D ,
0x3B4F566A , 0xE6580454 , 0x07ED6015 , 0xEE1B2A88
) ;
secp256k1_gej_neg ( & rp , & rp ) ;
2015-09-28 15:46:17 +00:00
secp256k1_gej_add_var ( & rp , & rp , & x , NULL ) ;
2015-04-07 10:13:37 +00:00
CHECK ( secp256k1_gej_is_infinity ( & rp ) ) ;
}
}
/* redo the computation, but directly with the resulting ae and ge coefficients: */
2015-09-28 15:46:17 +00:00
secp256k1_ecmult ( & ctx - > ecmult_ctx , & x2 , & a , & ae , & ge ) ;
2015-04-07 10:13:37 +00:00
secp256k1_gej_neg ( & x2 , & x2 ) ;
2015-09-28 15:46:17 +00:00
secp256k1_gej_add_var ( & x2 , & x2 , & x , NULL ) ;
2015-04-07 10:13:37 +00:00
CHECK ( secp256k1_gej_is_infinity ( & x2 ) ) ;
2015-01-21 23:35:00 +00:00
}
2015-09-28 15:46:17 +00:00
void test_point_times_order ( const secp256k1_gej * point ) {
2015-04-07 10:13:37 +00:00
/* X * (point + G) + (order-X) * (pointer + G) = 0 */
2015-09-28 15:46:17 +00:00
secp256k1_scalar x ;
secp256k1_scalar nx ;
secp256k1_scalar zero = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
secp256k1_scalar one = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ;
secp256k1_gej res1 , res2 ;
secp256k1_ge res3 ;
2015-04-07 10:13:37 +00:00
unsigned char pub [ 65 ] ;
2015-09-28 15:46:17 +00:00
size_t psize = 65 ;
2015-04-07 10:13:37 +00:00
random_scalar_order_test ( & x ) ;
secp256k1_scalar_negate ( & nx , & x ) ;
2015-09-28 15:46:17 +00:00
secp256k1_ecmult ( & ctx - > ecmult_ctx , & res1 , point , & x , & x ) ; /* calc res1 = x * point + x * G; */
secp256k1_ecmult ( & ctx - > ecmult_ctx , & res2 , point , & nx , & nx ) ; /* calc res2 = (order - x) * point + (order - x) * G; */
secp256k1_gej_add_var ( & res1 , & res1 , & res2 , NULL ) ;
2015-04-07 10:13:37 +00:00
CHECK ( secp256k1_gej_is_infinity ( & res1 ) ) ;
CHECK ( secp256k1_gej_is_valid_var ( & res1 ) = = 0 ) ;
secp256k1_ge_set_gej ( & res3 , & res1 ) ;
CHECK ( secp256k1_ge_is_infinity ( & res3 ) ) ;
CHECK ( secp256k1_ge_is_valid_var ( & res3 ) = = 0 ) ;
CHECK ( secp256k1_eckey_pubkey_serialize ( & res3 , pub , & psize , 0 ) = = 0 ) ;
psize = 65 ;
CHECK ( secp256k1_eckey_pubkey_serialize ( & res3 , pub , & psize , 1 ) = = 0 ) ;
2015-09-28 15:46:17 +00:00
/* check zero/one edge cases */
secp256k1_ecmult ( & ctx - > ecmult_ctx , & res1 , point , & zero , & zero ) ;
secp256k1_ge_set_gej ( & res3 , & res1 ) ;
CHECK ( secp256k1_ge_is_infinity ( & res3 ) ) ;
secp256k1_ecmult ( & ctx - > ecmult_ctx , & res1 , point , & one , & zero ) ;
secp256k1_ge_set_gej ( & res3 , & res1 ) ;
ge_equals_gej ( & res3 , point ) ;
secp256k1_ecmult ( & ctx - > ecmult_ctx , & res1 , point , & zero , & one ) ;
secp256k1_ge_set_gej ( & res3 , & res1 ) ;
ge_equals_ge ( & res3 , & secp256k1_ge_const_g ) ;
2015-04-07 10:13:37 +00:00
}
2015-01-21 23:35:00 +00:00
2015-04-07 10:13:37 +00:00
void run_point_times_order ( void ) {
int i ;
2015-09-28 15:46:17 +00:00
secp256k1_fe x = SECP256K1_FE_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 ) ;
static const secp256k1_fe xr = SECP256K1_FE_CONST (
2015-04-07 10:13:37 +00:00
0x7603CB59 , 0xB0EF6C63 , 0xFE608479 , 0x2A0C378C ,
0xDB3233A8 , 0x0F8A9A09 , 0xA877DEAD , 0x31B38C45
) ;
for ( i = 0 ; i < 500 ; i + + ) {
2015-09-28 15:46:17 +00:00
secp256k1_ge p ;
2015-04-07 10:13:37 +00:00
if ( secp256k1_ge_set_xo_var ( & p , & x , 1 ) ) {
2015-09-28 15:46:17 +00:00
secp256k1_gej j ;
2015-04-07 10:13:37 +00:00
CHECK ( secp256k1_ge_is_valid_var ( & p ) ) ;
secp256k1_gej_set_ge ( & j , & p ) ;
CHECK ( secp256k1_gej_is_valid_var ( & j ) ) ;
test_point_times_order ( & j ) ;
}
2015-01-21 23:35:00 +00:00
secp256k1_fe_sqr ( & x , & x ) ;
}
2015-04-07 10:13:37 +00:00
secp256k1_fe_normalize_var ( & x ) ;
CHECK ( secp256k1_fe_equal_var ( & x , & xr ) ) ;
2015-01-21 23:35:00 +00:00
}
2015-09-28 15:46:17 +00:00
void ecmult_const_random_mult ( void ) {
/* random starting point A (on the curve) */
secp256k1_ge a = SECP256K1_GE_CONST (
0x6d986544 , 0x57ff52b8 , 0xcf1b8126 , 0x5b802a5b ,
0xa97f9263 , 0xb1e88044 , 0x93351325 , 0x91bc450a ,
0x535c59f7 , 0x325e5d2b , 0xc391fbe8 , 0x3c12787c ,
0x337e4a98 , 0xe82a9011 , 0x0123ba37 , 0xdd769c7d
) ;
/* random initial factor xn */
secp256k1_scalar xn = SECP256K1_SCALAR_CONST (
0x649d4f77 , 0xc4242df7 , 0x7f2079c9 , 0x14530327 ,
0xa31b876a , 0xd2d8ce2a , 0x2236d5c6 , 0xd7b2029b
) ;
/* expected xn * A (from sage) */
secp256k1_ge expected_b = SECP256K1_GE_CONST (
0x23773684 , 0x4d209dc7 , 0x098a786f , 0x20d06fcd ,
0x070a38bf , 0xc11ac651 , 0x03004319 , 0x1e2a8786 ,
0xed8c3b8e , 0xc06dd57b , 0xd06ea66e , 0x45492b0f ,
0xb84e4e1b , 0xfb77e21f , 0x96baae2a , 0x63dec956
) ;
secp256k1_gej b ;
secp256k1_ecmult_const ( & b , & a , & xn ) ;
CHECK ( secp256k1_ge_is_valid_var ( & a ) ) ;
ge_equals_gej ( & expected_b , & b ) ;
}
void ecmult_const_commutativity ( void ) {
secp256k1_scalar a ;
secp256k1_scalar b ;
secp256k1_gej res1 ;
secp256k1_gej res2 ;
secp256k1_ge mid1 ;
secp256k1_ge mid2 ;
random_scalar_order_test ( & a ) ;
random_scalar_order_test ( & b ) ;
secp256k1_ecmult_const ( & res1 , & secp256k1_ge_const_g , & a ) ;
secp256k1_ecmult_const ( & res2 , & secp256k1_ge_const_g , & b ) ;
secp256k1_ge_set_gej ( & mid1 , & res1 ) ;
secp256k1_ge_set_gej ( & mid2 , & res2 ) ;
secp256k1_ecmult_const ( & res1 , & mid1 , & b ) ;
secp256k1_ecmult_const ( & res2 , & mid2 , & a ) ;
secp256k1_ge_set_gej ( & mid1 , & res1 ) ;
secp256k1_ge_set_gej ( & mid2 , & res2 ) ;
ge_equals_ge ( & mid1 , & mid2 ) ;
}
void ecmult_const_mult_zero_one ( void ) {
secp256k1_scalar zero = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
secp256k1_scalar one = SECP256K1_SCALAR_CONST ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ;
secp256k1_scalar negone ;
secp256k1_gej res1 ;
secp256k1_ge res2 ;
secp256k1_ge point ;
secp256k1_scalar_negate ( & negone , & one ) ;
random_group_element_test ( & point ) ;
secp256k1_ecmult_const ( & res1 , & point , & zero ) ;
secp256k1_ge_set_gej ( & res2 , & res1 ) ;
CHECK ( secp256k1_ge_is_infinity ( & res2 ) ) ;
secp256k1_ecmult_const ( & res1 , & point , & one ) ;
secp256k1_ge_set_gej ( & res2 , & res1 ) ;
ge_equals_ge ( & res2 , & point ) ;
secp256k1_ecmult_const ( & res1 , & point , & negone ) ;
secp256k1_gej_neg ( & res1 , & res1 ) ;
secp256k1_ge_set_gej ( & res2 , & res1 ) ;
ge_equals_ge ( & res2 , & point ) ;
}
void ecmult_const_chain_multiply ( void ) {
/* Check known result (randomly generated test problem from sage) */
const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST (
0x4968d524 , 0x2abf9b7a , 0x466abbcf , 0x34b11b6d ,
0xcd83d307 , 0x827bed62 , 0x05fad0ce , 0x18fae63b
) ;
const secp256k1_gej expected_point = SECP256K1_GEJ_CONST (
0x5494c15d , 0x32099706 , 0xc2395f94 , 0x348745fd ,
0x757ce30e , 0x4e8c90fb , 0xa2bad184 , 0xf883c69f ,
0x5d195d20 , 0xe191bf7f , 0x1be3e55f , 0x56a80196 ,
0x6071ad01 , 0xf1462f66 , 0xc997fa94 , 0xdb858435
) ;
secp256k1_gej point ;
secp256k1_ge res ;
int i ;
secp256k1_gej_set_ge ( & point , & secp256k1_ge_const_g ) ;
for ( i = 0 ; i < 100 ; + + i ) {
secp256k1_ge tmp ;
secp256k1_ge_set_gej ( & tmp , & point ) ;
secp256k1_ecmult_const ( & point , & tmp , & scalar ) ;
}
secp256k1_ge_set_gej ( & res , & point ) ;
ge_equals_gej ( & res , & expected_point ) ;
}
void run_ecmult_const_tests ( void ) {
ecmult_const_mult_zero_one ( ) ;
ecmult_const_random_mult ( ) ;
ecmult_const_commutativity ( ) ;
ecmult_const_chain_multiply ( ) ;
}
void test_wnaf ( const secp256k1_scalar * number , int w ) {
secp256k1_scalar x , two , t ;
2015-04-07 10:13:37 +00:00
int wnaf [ 256 ] ;
2015-01-21 23:35:00 +00:00
int zeroes = - 1 ;
2015-04-07 10:13:37 +00:00
int i ;
int bits ;
secp256k1_scalar_set_int ( & x , 0 ) ;
secp256k1_scalar_set_int ( & two , 2 ) ;
2015-09-28 15:46:17 +00:00
bits = secp256k1_ecmult_wnaf ( wnaf , 256 , number , w ) ;
2015-04-07 10:13:37 +00:00
CHECK ( bits < = 256 ) ;
for ( i = bits - 1 ; i > = 0 ; i - - ) {
2015-01-21 23:35:00 +00:00
int v = wnaf [ i ] ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_mul ( & x , & x , & two ) ;
2015-01-21 23:35:00 +00:00
if ( v ) {
2015-04-07 10:13:37 +00:00
CHECK ( zeroes = = - 1 | | zeroes > = w - 1 ) ; /* check that distance between non-zero elements is at least w-1 */
2015-01-21 23:35:00 +00:00
zeroes = 0 ;
2015-04-07 10:13:37 +00:00
CHECK ( ( v & 1 ) = = 1 ) ; /* check non-zero elements are odd */
CHECK ( v < = ( 1 < < ( w - 1 ) ) - 1 ) ; /* check range below */
CHECK ( v > = - ( 1 < < ( w - 1 ) ) - 1 ) ; /* check range above */
2015-01-21 23:35:00 +00:00
} else {
2015-04-07 10:13:37 +00:00
CHECK ( zeroes ! = - 1 ) ; /* check that no unnecessary zero padding exists */
2015-01-21 23:35:00 +00:00
zeroes + + ;
}
2015-04-07 10:13:37 +00:00
if ( v > = 0 ) {
secp256k1_scalar_set_int ( & t , v ) ;
} else {
secp256k1_scalar_set_int ( & t , - v ) ;
secp256k1_scalar_negate ( & t , & t ) ;
}
secp256k1_scalar_add ( & x , & x , & t ) ;
2015-01-21 23:35:00 +00:00
}
2015-04-07 10:13:37 +00:00
CHECK ( secp256k1_scalar_eq ( & x , number ) ) ; /* check that wnaf represents number */
2015-01-21 23:35:00 +00:00
}
2015-09-28 15:46:17 +00:00
void test_constant_wnaf_negate ( const secp256k1_scalar * number ) {
secp256k1_scalar neg1 = * number ;
secp256k1_scalar neg2 = * number ;
int sign1 = 1 ;
int sign2 = 1 ;
if ( ! secp256k1_scalar_get_bits ( & neg1 , 0 , 1 ) ) {
secp256k1_scalar_negate ( & neg1 , & neg1 ) ;
sign1 = - 1 ;
}
sign2 = secp256k1_scalar_cond_negate ( & neg2 , secp256k1_scalar_is_even ( & neg2 ) ) ;
CHECK ( sign1 = = sign2 ) ;
CHECK ( secp256k1_scalar_eq ( & neg1 , & neg2 ) ) ;
}
void test_constant_wnaf ( const secp256k1_scalar * number , int w ) {
secp256k1_scalar x , shift ;
int wnaf [ 256 ] = { 0 } ;
int i ;
# ifdef USE_ENDOMORPHISM
int skew ;
# endif
secp256k1_scalar num = * number ;
secp256k1_scalar_set_int ( & x , 0 ) ;
secp256k1_scalar_set_int ( & shift , 1 < < w ) ;
/* With USE_ENDOMORPHISM on we only consider 128-bit numbers */
# ifdef USE_ENDOMORPHISM
for ( i = 0 ; i < 16 ; + + i ) {
secp256k1_scalar_shr_int ( & num , 8 ) ;
}
skew = secp256k1_wnaf_const ( wnaf , num , w ) ;
# else
secp256k1_wnaf_const ( wnaf , num , w ) ;
# endif
for ( i = WNAF_SIZE ( w ) ; i > = 0 ; - - i ) {
secp256k1_scalar t ;
int v = wnaf [ i ] ;
CHECK ( v ! = 0 ) ; /* check nonzero */
CHECK ( v & 1 ) ; /* check parity */
CHECK ( v > - ( 1 < < w ) ) ; /* check range above */
CHECK ( v < ( 1 < < w ) ) ; /* check range below */
secp256k1_scalar_mul ( & x , & x , & shift ) ;
if ( v > = 0 ) {
secp256k1_scalar_set_int ( & t , v ) ;
} else {
secp256k1_scalar_set_int ( & t , - v ) ;
secp256k1_scalar_negate ( & t , & t ) ;
}
secp256k1_scalar_add ( & x , & x , & t ) ;
}
# ifdef USE_ENDOMORPHISM
/* Skew num because when encoding 128-bit numbers as odd we use an offset */
secp256k1_scalar_cadd_bit ( & num , skew = = 2 , 1 ) ;
# endif
CHECK ( secp256k1_scalar_eq ( & x , & num ) ) ;
}
2015-04-07 10:13:37 +00:00
void run_wnaf ( void ) {
int i ;
2015-09-28 15:46:17 +00:00
secp256k1_scalar n = { { 0 } } ;
/* Sanity check: 1 and 2 are the smallest odd and even numbers and should
* have easier - to - diagnose failure modes */
n . d [ 0 ] = 1 ;
test_constant_wnaf ( & n , 4 ) ;
n . d [ 0 ] = 2 ;
test_constant_wnaf ( & n , 4 ) ;
/* Random tests */
2015-04-07 10:13:37 +00:00
for ( i = 0 ; i < count ; i + + ) {
random_scalar_order ( & n ) ;
2015-01-21 23:35:00 +00:00
test_wnaf ( & n , 4 + ( i % 10 ) ) ;
2015-09-28 15:46:17 +00:00
test_constant_wnaf_negate ( & n ) ;
test_constant_wnaf ( & n , 4 + ( i % 10 ) ) ;
}
}
void test_ecmult_constants ( void ) {
/* Test ecmult_gen() for [0..36) and [order-36..0). */
secp256k1_scalar x ;
secp256k1_gej r ;
secp256k1_ge ng ;
int i ;
int j ;
secp256k1_ge_neg ( & ng , & secp256k1_ge_const_g ) ;
for ( i = 0 ; i < 36 ; i + + ) {
secp256k1_scalar_set_int ( & x , i ) ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & r , & x ) ;
for ( j = 0 ; j < i ; j + + ) {
if ( j = = i - 1 ) {
ge_equals_gej ( & secp256k1_ge_const_g , & r ) ;
}
secp256k1_gej_add_ge ( & r , & r , & ng ) ;
}
CHECK ( secp256k1_gej_is_infinity ( & r ) ) ;
}
for ( i = 1 ; i < = 36 ; i + + ) {
secp256k1_scalar_set_int ( & x , i ) ;
secp256k1_scalar_negate ( & x , & x ) ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & r , & x ) ;
for ( j = 0 ; j < i ; j + + ) {
if ( j = = i - 1 ) {
ge_equals_gej ( & ng , & r ) ;
}
secp256k1_gej_add_ge ( & r , & r , & secp256k1_ge_const_g ) ;
}
CHECK ( secp256k1_gej_is_infinity ( & r ) ) ;
}
}
void run_ecmult_constants ( void ) {
test_ecmult_constants ( ) ;
}
void test_ecmult_gen_blind ( void ) {
/* Test ecmult_gen() blinding and confirm that the blinding changes, the affline points match, and the z's don't match. */
secp256k1_scalar key ;
secp256k1_scalar b ;
unsigned char seed32 [ 32 ] ;
secp256k1_gej pgej ;
secp256k1_gej pgej2 ;
secp256k1_gej i ;
secp256k1_ge pge ;
random_scalar_order_test ( & key ) ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & pgej , & key ) ;
secp256k1_rand256 ( seed32 ) ;
b = ctx - > ecmult_gen_ctx . blind ;
i = ctx - > ecmult_gen_ctx . initial ;
secp256k1_ecmult_gen_blind ( & ctx - > ecmult_gen_ctx , seed32 ) ;
CHECK ( ! secp256k1_scalar_eq ( & b , & ctx - > ecmult_gen_ctx . blind ) ) ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & pgej2 , & key ) ;
CHECK ( ! gej_xyz_equals_gej ( & pgej , & pgej2 ) ) ;
CHECK ( ! gej_xyz_equals_gej ( & i , & ctx - > ecmult_gen_ctx . initial ) ) ;
secp256k1_ge_set_gej ( & pge , & pgej ) ;
ge_equals_gej ( & pge , & pgej2 ) ;
}
void test_ecmult_gen_blind_reset ( void ) {
/* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */
secp256k1_scalar b ;
secp256k1_gej initial ;
secp256k1_ecmult_gen_blind ( & ctx - > ecmult_gen_ctx , 0 ) ;
b = ctx - > ecmult_gen_ctx . blind ;
initial = ctx - > ecmult_gen_ctx . initial ;
secp256k1_ecmult_gen_blind ( & ctx - > ecmult_gen_ctx , 0 ) ;
CHECK ( secp256k1_scalar_eq ( & b , & ctx - > ecmult_gen_ctx . blind ) ) ;
CHECK ( gej_xyz_equals_gej ( & initial , & ctx - > ecmult_gen_ctx . initial ) ) ;
}
void run_ecmult_gen_blind ( void ) {
int i ;
test_ecmult_gen_blind_reset ( ) ;
for ( i = 0 ; i < 10 ; i + + ) {
test_ecmult_gen_blind ( ) ;
}
}
# ifdef USE_ENDOMORPHISM
/***** ENDOMORPHISH TESTS *****/
void test_scalar_split ( void ) {
secp256k1_scalar full ;
secp256k1_scalar s1 , slam ;
const unsigned char zero [ 32 ] = { 0 } ;
unsigned char tmp [ 32 ] ;
random_scalar_order_test ( & full ) ;
secp256k1_scalar_split_lambda ( & s1 , & slam , & full ) ;
/* check that both are <= 128 bits in size */
if ( secp256k1_scalar_is_high ( & s1 ) ) {
secp256k1_scalar_negate ( & s1 , & s1 ) ;
}
if ( secp256k1_scalar_is_high ( & slam ) ) {
secp256k1_scalar_negate ( & slam , & slam ) ;
2015-01-21 23:35:00 +00:00
}
2015-09-28 15:46:17 +00:00
secp256k1_scalar_get_b32 ( tmp , & s1 ) ;
CHECK ( memcmp ( zero , tmp , 16 ) = = 0 ) ;
secp256k1_scalar_get_b32 ( tmp , & slam ) ;
CHECK ( memcmp ( zero , tmp , 16 ) = = 0 ) ;
}
void run_endomorphism_tests ( void ) {
test_scalar_split ( ) ;
2015-01-21 23:35:00 +00:00
}
2015-09-28 15:46:17 +00:00
# endif
2015-01-21 23:35:00 +00:00
2015-09-28 15:46:17 +00:00
void random_sign ( secp256k1_scalar * sigr , secp256k1_scalar * sigs , const secp256k1_scalar * key , const secp256k1_scalar * msg , int * recid ) {
secp256k1_scalar nonce ;
2015-01-21 23:35:00 +00:00
do {
2015-04-07 10:13:37 +00:00
random_scalar_order_test ( & nonce ) ;
2015-09-28 15:46:17 +00:00
} while ( ! secp256k1_ecdsa_sig_sign ( & ctx - > ecmult_gen_ctx , sigr , sigs , key , msg , & nonce , recid ) ) ;
2015-04-07 10:13:37 +00:00
}
void test_ecdsa_sign_verify ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_gej pubj ;
secp256k1_ge pub ;
secp256k1_scalar one ;
secp256k1_scalar msg , key ;
secp256k1_scalar sigr , sigs ;
2015-04-07 10:13:37 +00:00
int recid ;
int getrec ;
random_scalar_order_test ( & msg ) ;
random_scalar_order_test ( & key ) ;
2015-09-28 15:46:17 +00:00
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & pubj , & key ) ;
2015-04-07 10:13:37 +00:00
secp256k1_ge_set_gej ( & pub , & pubj ) ;
getrec = secp256k1_rand32 ( ) & 1 ;
2015-09-28 15:46:17 +00:00
random_sign ( & sigr , & sigs , & key , & msg , getrec ? & recid : NULL ) ;
2015-04-07 10:13:37 +00:00
if ( getrec ) {
CHECK ( recid > = 0 & & recid < 4 ) ;
}
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sig_verify ( & ctx - > ecmult_ctx , & sigr , & sigs , & pub , & msg ) ) ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & one , 1 ) ;
secp256k1_scalar_add ( & msg , & msg , & one ) ;
2015-09-28 15:46:17 +00:00
CHECK ( ! secp256k1_ecdsa_sig_verify ( & ctx - > ecmult_ctx , & sigr , & sigs , & pub , & msg ) ) ;
2015-01-21 23:35:00 +00:00
}
2015-04-07 10:13:37 +00:00
void run_ecdsa_sign_verify ( void ) {
int i ;
for ( i = 0 ; i < 10 * count ; i + + ) {
2015-01-21 23:35:00 +00:00
test_ecdsa_sign_verify ( ) ;
}
}
2015-04-07 10:13:37 +00:00
/** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */
2015-09-28 15:46:17 +00:00
static int precomputed_nonce_function ( unsigned char * nonce32 , const unsigned char * msg32 , const unsigned char * key32 , const unsigned char * algo16 , void * data , unsigned int counter ) {
2015-04-07 10:13:37 +00:00
( void ) msg32 ;
( void ) key32 ;
2015-09-28 15:46:17 +00:00
( void ) algo16 ;
2015-04-07 10:13:37 +00:00
memcpy ( nonce32 , data , 32 ) ;
return ( counter = = 0 ) ;
}
2015-09-28 15:46:17 +00:00
static int nonce_function_test_fail ( unsigned char * nonce32 , const unsigned char * msg32 , const unsigned char * key32 , const unsigned char * algo16 , void * data , unsigned int counter ) {
2015-04-07 10:13:37 +00:00
/* Dummy nonce generator that has a fatal error on the first counter value. */
if ( counter = = 0 ) {
return 0 ;
}
2015-09-28 15:46:17 +00:00
return nonce_function_rfc6979 ( nonce32 , msg32 , key32 , algo16 , data , counter - 1 ) ;
2015-04-07 10:13:37 +00:00
}
2015-09-28 15:46:17 +00:00
static int nonce_function_test_retry ( unsigned char * nonce32 , const unsigned char * msg32 , const unsigned char * key32 , const unsigned char * algo16 , void * data , unsigned int counter ) {
2015-04-07 10:13:37 +00:00
/* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */
if ( counter < 3 ) {
memset ( nonce32 , counter = = 0 ? 0 : 255 , 32 ) ;
if ( counter = = 2 ) {
nonce32 [ 31 ] - - ;
}
return 1 ;
}
if ( counter < 5 ) {
static const unsigned char order [ ] = {
0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFE ,
0xBA , 0xAE , 0xDC , 0xE6 , 0xAF , 0x48 , 0xA0 , 0x3B ,
0xBF , 0xD2 , 0x5E , 0x8C , 0xD0 , 0x36 , 0x41 , 0x41
} ;
memcpy ( nonce32 , order , 32 ) ;
if ( counter = = 4 ) {
nonce32 [ 31 ] + + ;
}
return 1 ;
}
/* Retry rate of 6979 is negligible esp. as we only call this in determinstic tests. */
/* If someone does fine a case where it retries for secp256k1, we'd like to know. */
if ( counter > 5 ) {
return 0 ;
}
2015-09-28 15:46:17 +00:00
return nonce_function_rfc6979 ( nonce32 , msg32 , key32 , algo16 , data , counter - 5 ) ;
2015-04-07 10:13:37 +00:00
}
2015-09-28 15:46:17 +00:00
int is_empty_signature ( const secp256k1_ecdsa_signature * sig ) {
static const unsigned char res [ sizeof ( secp256k1_ecdsa_signature ) ] = { 0 } ;
return memcmp ( sig , res , sizeof ( secp256k1_ecdsa_signature ) ) = = 0 ;
2015-04-07 10:13:37 +00:00
}
void test_ecdsa_end_to_end ( void ) {
unsigned char extra [ 32 ] = { 0x00 } ;
unsigned char privkey [ 32 ] ;
unsigned char message [ 32 ] ;
unsigned char privkey2 [ 32 ] ;
2015-09-28 15:46:17 +00:00
secp256k1_ecdsa_signature signature [ 5 ] ;
unsigned char sig [ 74 ] ;
size_t siglen = 74 ;
unsigned char pubkeyc [ 65 ] ;
size_t pubkeyclen = 65 ;
secp256k1_pubkey pubkey ;
2015-04-07 10:13:37 +00:00
unsigned char seckey [ 300 ] ;
2015-09-28 15:46:17 +00:00
size_t seckeylen = 300 ;
2015-04-07 10:13:37 +00:00
/* Generate a random key and message. */
{
2015-09-28 15:46:17 +00:00
secp256k1_scalar msg , key ;
2015-04-07 10:13:37 +00:00
random_scalar_order_test ( & msg ) ;
random_scalar_order_test ( & key ) ;
secp256k1_scalar_get_b32 ( privkey , & key ) ;
secp256k1_scalar_get_b32 ( message , & msg ) ;
}
/* Construct and verify corresponding public key. */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ec_seckey_verify ( ctx , privkey ) = = 1 ) ;
CHECK ( secp256k1_ec_pubkey_create ( ctx , & pubkey , privkey ) = = 1 ) ;
/* Verify exporting and importing public key. */
CHECK ( secp256k1_ec_pubkey_serialize ( ctx , pubkeyc , & pubkeyclen , & pubkey , secp256k1_rand32 ( ) % 2 ) = = 1 ) ;
memset ( & pubkey , 0 , sizeof ( pubkey ) ) ;
CHECK ( secp256k1_ec_pubkey_parse ( ctx , & pubkey , pubkeyc , pubkeyclen ) = = 1 ) ;
2015-04-07 10:13:37 +00:00
/* Verify private key import and export. */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ec_privkey_export ( ctx , seckey , & seckeylen , privkey , ( secp256k1_rand32 ( ) % 2 ) = = 1 ) ? SECP256K1_EC_COMPRESSED : 0 ) ;
CHECK ( secp256k1_ec_privkey_import ( ctx , privkey2 , seckey , seckeylen ) = = 1 ) ;
2015-04-07 10:13:37 +00:00
CHECK ( memcmp ( privkey , privkey2 , 32 ) = = 0 ) ;
/* Optionally tweak the keys using addition. */
if ( secp256k1_rand32 ( ) % 3 = = 0 ) {
int ret1 ;
int ret2 ;
unsigned char rnd [ 32 ] ;
2015-09-28 15:46:17 +00:00
secp256k1_pubkey pubkey2 ;
2015-04-07 10:13:37 +00:00
secp256k1_rand256_test ( rnd ) ;
2015-09-28 15:46:17 +00:00
ret1 = secp256k1_ec_privkey_tweak_add ( ctx , privkey , rnd ) ;
ret2 = secp256k1_ec_pubkey_tweak_add ( ctx , & pubkey , rnd ) ;
2015-04-07 10:13:37 +00:00
CHECK ( ret1 = = ret2 ) ;
if ( ret1 = = 0 ) {
return ;
}
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ec_pubkey_create ( ctx , & pubkey2 , privkey ) = = 1 ) ;
CHECK ( memcmp ( & pubkey , & pubkey2 , sizeof ( pubkey ) ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
}
/* Optionally tweak the keys using multiplication. */
if ( secp256k1_rand32 ( ) % 3 = = 0 ) {
int ret1 ;
int ret2 ;
unsigned char rnd [ 32 ] ;
2015-09-28 15:46:17 +00:00
secp256k1_pubkey pubkey2 ;
2015-04-07 10:13:37 +00:00
secp256k1_rand256_test ( rnd ) ;
2015-09-28 15:46:17 +00:00
ret1 = secp256k1_ec_privkey_tweak_mul ( ctx , privkey , rnd ) ;
ret2 = secp256k1_ec_pubkey_tweak_mul ( ctx , & pubkey , rnd ) ;
2015-04-07 10:13:37 +00:00
CHECK ( ret1 = = ret2 ) ;
if ( ret1 = = 0 ) {
return ;
}
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ec_pubkey_create ( ctx , & pubkey2 , privkey ) = = 1 ) ;
CHECK ( memcmp ( & pubkey , & pubkey2 , sizeof ( pubkey ) ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
}
/* Sign. */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & signature [ 0 ] , message , privkey , NULL , NULL ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_sign ( ctx , & signature [ 4 ] , message , privkey , NULL , NULL ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_sign ( ctx , & signature [ 1 ] , message , privkey , NULL , extra ) = = 1 ) ;
2015-04-07 10:13:37 +00:00
extra [ 31 ] = 1 ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & signature [ 2 ] , message , privkey , NULL , extra ) = = 1 ) ;
2015-04-07 10:13:37 +00:00
extra [ 31 ] = 0 ;
extra [ 0 ] = 1 ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & signature [ 3 ] , message , privkey , NULL , extra ) = = 1 ) ;
CHECK ( memcmp ( & signature [ 0 ] , & signature [ 4 ] , sizeof ( signature [ 0 ] ) ) = = 0 ) ;
CHECK ( memcmp ( & signature [ 0 ] , & signature [ 1 ] , sizeof ( signature [ 0 ] ) ) ! = 0 ) ;
CHECK ( memcmp ( & signature [ 0 ] , & signature [ 2 ] , sizeof ( signature [ 0 ] ) ) ! = 0 ) ;
CHECK ( memcmp ( & signature [ 0 ] , & signature [ 3 ] , sizeof ( signature [ 0 ] ) ) ! = 0 ) ;
CHECK ( memcmp ( & signature [ 1 ] , & signature [ 2 ] , sizeof ( signature [ 0 ] ) ) ! = 0 ) ;
CHECK ( memcmp ( & signature [ 1 ] , & signature [ 3 ] , sizeof ( signature [ 0 ] ) ) ! = 0 ) ;
CHECK ( memcmp ( & signature [ 2 ] , & signature [ 3 ] , sizeof ( signature [ 0 ] ) ) ! = 0 ) ;
2015-04-07 10:13:37 +00:00
/* Verify. */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_verify ( ctx , & signature [ 0 ] , message , & pubkey ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_verify ( ctx , & signature [ 1 ] , message , & pubkey ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_verify ( ctx , & signature [ 2 ] , message , & pubkey ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_verify ( ctx , & signature [ 3 ] , message , & pubkey ) = = 1 ) ;
/* Serialize/parse DER and verify again */
CHECK ( secp256k1_ecdsa_signature_serialize_der ( ctx , sig , & siglen , & signature [ 0 ] ) = = 1 ) ;
memset ( & signature [ 0 ] , 0 , sizeof ( signature [ 0 ] ) ) ;
CHECK ( secp256k1_ecdsa_signature_parse_der ( ctx , & signature [ 0 ] , sig , siglen ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_verify ( ctx , & signature [ 0 ] , message , & pubkey ) = = 1 ) ;
/* Serialize/destroy/parse DER and verify again. */
siglen = 74 ;
CHECK ( secp256k1_ecdsa_signature_serialize_der ( ctx , sig , & siglen , & signature [ 0 ] ) = = 1 ) ;
sig [ secp256k1_rand32 ( ) % siglen ] + = 1 + ( secp256k1_rand32 ( ) % 255 ) ;
CHECK ( secp256k1_ecdsa_signature_parse_der ( ctx , & signature [ 0 ] , sig , siglen ) = = 0 | |
secp256k1_ecdsa_verify ( ctx , & signature [ 0 ] , message , & pubkey ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
}
void test_random_pubkeys ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_ge elem ;
secp256k1_ge elem2 ;
2015-04-07 10:13:37 +00:00
unsigned char in [ 65 ] ;
/* Generate some randomly sized pubkeys. */
uint32_t r = secp256k1_rand32 ( ) ;
2015-09-28 15:46:17 +00:00
size_t len = ( r & 3 ) = = 0 ? 65 : 33 ;
2015-04-07 10:13:37 +00:00
r > > = 2 ;
if ( ( r & 3 ) = = 0 ) {
len = ( r & 252 ) > > 3 ;
}
r > > = 8 ;
if ( len = = 65 ) {
2015-09-28 15:46:17 +00:00
in [ 0 ] = ( r & 2 ) ? 4 : ( ( r & 1 ) ? 6 : 7 ) ;
2015-04-07 10:13:37 +00:00
} else {
in [ 0 ] = ( r & 1 ) ? 2 : 3 ;
}
r > > = 2 ;
if ( ( r & 7 ) = = 0 ) {
in [ 0 ] = ( r & 2040 ) > > 3 ;
}
r > > = 11 ;
if ( len > 1 ) {
secp256k1_rand256 ( & in [ 1 ] ) ;
}
if ( len > 33 ) {
secp256k1_rand256 ( & in [ 33 ] ) ;
}
if ( secp256k1_eckey_pubkey_parse ( & elem , in , len ) ) {
unsigned char out [ 65 ] ;
unsigned char firstb ;
int res ;
2015-09-28 15:46:17 +00:00
size_t size = len ;
2015-04-07 10:13:37 +00:00
firstb = in [ 0 ] ;
/* If the pubkey can be parsed, it should round-trip... */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_eckey_pubkey_serialize ( & elem , out , & size , ( len = = 33 ) ? SECP256K1_EC_COMPRESSED : 0 ) ) ;
2015-04-07 10:13:37 +00:00
CHECK ( size = = len ) ;
CHECK ( memcmp ( & in [ 1 ] , & out [ 1 ] , len - 1 ) = = 0 ) ;
/* ... except for the type of hybrid inputs. */
if ( ( in [ 0 ] ! = 6 ) & & ( in [ 0 ] ! = 7 ) ) {
CHECK ( in [ 0 ] = = out [ 0 ] ) ;
}
size = 65 ;
CHECK ( secp256k1_eckey_pubkey_serialize ( & elem , in , & size , 0 ) ) ;
CHECK ( size = = 65 ) ;
CHECK ( secp256k1_eckey_pubkey_parse ( & elem2 , in , size ) ) ;
ge_equals_ge ( & elem , & elem2 ) ;
/* Check that the X9.62 hybrid type is checked. */
in [ 0 ] = ( r & 1 ) ? 6 : 7 ;
res = secp256k1_eckey_pubkey_parse ( & elem2 , in , size ) ;
if ( firstb = = 2 | | firstb = = 3 ) {
if ( in [ 0 ] = = firstb + 4 ) {
CHECK ( res ) ;
} else {
CHECK ( ! res ) ;
}
}
if ( res ) {
ge_equals_ge ( & elem , & elem2 ) ;
CHECK ( secp256k1_eckey_pubkey_serialize ( & elem , out , & size , 0 ) ) ;
CHECK ( memcmp ( & in [ 1 ] , & out [ 1 ] , 64 ) = = 0 ) ;
}
}
}
void run_random_pubkeys ( void ) {
int i ;
for ( i = 0 ; i < 10 * count ; i + + ) {
test_random_pubkeys ( ) ;
}
}
void run_ecdsa_end_to_end ( void ) {
int i ;
for ( i = 0 ; i < 64 * count ; i + + ) {
test_ecdsa_end_to_end ( ) ;
}
}
/* Tests several edge cases. */
void test_ecdsa_edge_cases ( void ) {
int t ;
2015-09-28 15:46:17 +00:00
secp256k1_ecdsa_signature sig ;
2015-04-07 10:13:37 +00:00
/* Test the case where ECDSA recomputes a point that is infinity. */
{
2015-09-28 15:46:17 +00:00
secp256k1_gej keyj ;
secp256k1_ge key ;
secp256k1_scalar msg ;
secp256k1_scalar sr , ss ;
secp256k1_scalar_set_int ( & ss , 1 ) ;
secp256k1_scalar_negate ( & ss , & ss ) ;
secp256k1_scalar_inverse ( & ss , & ss ) ;
secp256k1_scalar_set_int ( & sr , 1 ) ;
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & keyj , & sr ) ;
2015-04-07 10:13:37 +00:00
secp256k1_ge_set_gej ( & key , & keyj ) ;
2015-09-28 15:46:17 +00:00
msg = ss ;
CHECK ( secp256k1_ecdsa_sig_verify ( & ctx - > ecmult_ctx , & sr , & ss , & key , & msg ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
}
/*Signature where s would be zero.*/
{
2015-09-28 15:46:17 +00:00
unsigned char signature [ 72 ] ;
size_t siglen ;
2015-04-07 10:13:37 +00:00
const unsigned char nonce [ 32 ] = {
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 ,
} ;
static const unsigned char nonce2 [ 32 ] = {
0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFE ,
0xBA , 0xAE , 0xDC , 0xE6 , 0xAF , 0x48 , 0xA0 , 0x3B ,
0xBF , 0xD2 , 0x5E , 0x8C , 0xD0 , 0x36 , 0x41 , 0x40
} ;
const unsigned char key [ 32 ] = {
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 ,
} ;
unsigned char msg [ 32 ] = {
0x86 , 0x41 , 0x99 , 0x81 , 0x06 , 0x23 , 0x44 , 0x53 ,
0xaa , 0x5f , 0x9d , 0x6a , 0x31 , 0x78 , 0xf4 , 0xf7 ,
0xb8 , 0x12 , 0xe0 , 0x0b , 0x81 , 0x7a , 0x77 , 0x62 ,
0x65 , 0xdf , 0xdd , 0x31 , 0xb9 , 0x3e , 0x29 , 0xa9 ,
} ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , precomputed_nonce_function , nonce ) = = 0 ) ;
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , precomputed_nonce_function , nonce2 ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
msg [ 31 ] = 0xaa ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , precomputed_nonce_function , nonce ) = = 1 ) ;
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , precomputed_nonce_function , nonce2 ) = = 1 ) ;
2015-04-07 10:13:37 +00:00
siglen = 72 ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_signature_serialize_der ( ctx , signature , & siglen , & sig ) = = 1 ) ;
2015-04-07 10:13:37 +00:00
siglen = 10 ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_signature_serialize_der ( ctx , signature , & siglen , & sig ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
}
/* Nonce function corner cases. */
for ( t = 0 ; t < 2 ; t + + ) {
static const unsigned char zero [ 32 ] = { 0x00 } ;
int i ;
unsigned char key [ 32 ] ;
unsigned char msg [ 32 ] ;
2015-09-28 15:46:17 +00:00
secp256k1_ecdsa_signature sig2 ;
secp256k1_scalar sr [ 512 ] , ss ;
2015-04-07 10:13:37 +00:00
const unsigned char * extra ;
extra = t = = 0 ? NULL : zero ;
memset ( msg , 0 , 32 ) ;
msg [ 31 ] = 1 ;
/* High key results in signature failure. */
memset ( key , 0xFF , 32 ) ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , NULL , extra ) = = 0 ) ;
CHECK ( is_empty_signature ( & sig ) ) ;
2015-04-07 10:13:37 +00:00
/* Zero key results in signature failure. */
memset ( key , 0 , 32 ) ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , NULL , extra ) = = 0 ) ;
CHECK ( is_empty_signature ( & sig ) ) ;
2015-04-07 10:13:37 +00:00
/* Nonce function failure results in signature failure. */
key [ 31 ] = 1 ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , nonce_function_test_fail , extra ) = = 0 ) ;
CHECK ( is_empty_signature ( & sig ) ) ;
2015-04-07 10:13:37 +00:00
/* The retry loop successfully makes its way to the first good value. */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig , msg , key , nonce_function_test_retry , extra ) = = 1 ) ;
CHECK ( ! is_empty_signature ( & sig ) ) ;
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig2 , msg , key , nonce_function_rfc6979 , extra ) = = 1 ) ;
CHECK ( ! is_empty_signature ( & sig2 ) ) ;
CHECK ( memcmp ( & sig , & sig2 , sizeof ( sig ) ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
/* The default nonce function is determinstic. */
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig2 , msg , key , NULL , extra ) = = 1 ) ;
CHECK ( ! is_empty_signature ( & sig2 ) ) ;
CHECK ( memcmp ( & sig , & sig2 , sizeof ( sig ) ) = = 0 ) ;
2015-04-07 10:13:37 +00:00
/* The default nonce function changes output with different messages. */
for ( i = 0 ; i < 256 ; i + + ) {
int j ;
msg [ 0 ] = i ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig2 , msg , key , NULL , extra ) = = 1 ) ;
CHECK ( ! is_empty_signature ( & sig2 ) ) ;
secp256k1_ecdsa_signature_load ( ctx , & sr [ i ] , & ss , & sig2 ) ;
2015-04-07 10:13:37 +00:00
for ( j = 0 ; j < i ; j + + ) {
2015-09-28 15:46:17 +00:00
CHECK ( ! secp256k1_scalar_eq ( & sr [ i ] , & sr [ j ] ) ) ;
2015-04-07 10:13:37 +00:00
}
}
msg [ 0 ] = 0 ;
msg [ 31 ] = 2 ;
/* The default nonce function changes output with different keys. */
for ( i = 256 ; i < 512 ; i + + ) {
int j ;
key [ 0 ] = i - 256 ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sign ( ctx , & sig2 , msg , key , NULL , extra ) = = 1 ) ;
CHECK ( ! is_empty_signature ( & sig2 ) ) ;
secp256k1_ecdsa_signature_load ( ctx , & sr [ i ] , & ss , & sig2 ) ;
2015-04-07 10:13:37 +00:00
for ( j = 0 ; j < i ; j + + ) {
2015-09-28 15:46:17 +00:00
CHECK ( ! secp256k1_scalar_eq ( & sr [ i ] , & sr [ j ] ) ) ;
2015-04-07 10:13:37 +00:00
}
}
key [ 0 ] = 0 ;
}
/* Privkey export where pubkey is the point at infinity. */
{
unsigned char privkey [ 300 ] ;
unsigned char seckey [ 32 ] = {
0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff ,
0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xff , 0xfe ,
0xba , 0xae , 0xdc , 0xe6 , 0xaf , 0x48 , 0xa0 , 0x3b ,
0xbf , 0xd2 , 0x5e , 0x8c , 0xd0 , 0x36 , 0x41 , 0x41 ,
} ;
2015-09-28 15:46:17 +00:00
size_t outlen = 300 ;
CHECK ( ! secp256k1_ec_privkey_export ( ctx , privkey , & outlen , seckey , 0 ) ) ;
outlen = 300 ;
CHECK ( ! secp256k1_ec_privkey_export ( ctx , privkey , & outlen , seckey , SECP256K1_EC_COMPRESSED ) ) ;
2015-04-07 10:13:37 +00:00
}
}
void run_ecdsa_edge_cases ( void ) {
test_ecdsa_edge_cases ( ) ;
}
2015-01-21 23:35:00 +00:00
# ifdef ENABLE_OPENSSL_TESTS
2015-09-28 15:46:17 +00:00
EC_KEY * get_openssl_key ( const secp256k1_scalar * key ) {
2015-01-21 23:35:00 +00:00
unsigned char privkey [ 300 ] ;
2015-09-28 15:46:17 +00:00
size_t privkeylen ;
2015-01-21 23:35:00 +00:00
const unsigned char * pbegin = privkey ;
2015-04-07 10:13:37 +00:00
int compr = secp256k1_rand32 ( ) & 1 ;
2015-01-21 23:35:00 +00:00
EC_KEY * ec_key = EC_KEY_new_by_curve_name ( NID_secp256k1 ) ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_eckey_privkey_serialize ( & ctx - > ecmult_gen_ctx , privkey , & privkeylen , key , compr ? SECP256K1_EC_COMPRESSED : 0 ) ) ;
2015-04-07 10:13:37 +00:00
CHECK ( d2i_ECPrivateKey ( & ec_key , & pbegin , privkeylen ) ) ;
CHECK ( EC_KEY_check_key ( ec_key ) ) ;
2015-01-21 23:35:00 +00:00
return ec_key ;
}
2015-04-07 10:13:37 +00:00
void test_ecdsa_openssl ( void ) {
2015-09-28 15:46:17 +00:00
secp256k1_gej qj ;
secp256k1_ge q ;
secp256k1_scalar sigr , sigs ;
secp256k1_scalar one ;
secp256k1_scalar msg2 ;
secp256k1_scalar key , msg ;
2015-04-07 10:13:37 +00:00
EC_KEY * ec_key ;
unsigned int sigsize = 80 ;
2015-09-28 15:46:17 +00:00
size_t secp_sigsize = 80 ;
2015-01-21 23:35:00 +00:00
unsigned char message [ 32 ] ;
2015-04-07 10:13:37 +00:00
unsigned char signature [ 80 ] ;
2015-01-21 23:35:00 +00:00
secp256k1_rand256_test ( message ) ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_b32 ( & msg , message , NULL ) ;
random_scalar_order_test ( & key ) ;
2015-09-28 15:46:17 +00:00
secp256k1_ecmult_gen ( & ctx - > ecmult_gen_ctx , & qj , & key ) ;
2015-01-21 23:35:00 +00:00
secp256k1_ge_set_gej ( & q , & qj ) ;
2015-04-07 10:13:37 +00:00
ec_key = get_openssl_key ( & key ) ;
2015-09-28 15:46:17 +00:00
CHECK ( ec_key ! = NULL ) ;
2015-04-07 10:13:37 +00:00
CHECK ( ECDSA_sign ( 0 , message , sizeof ( message ) , signature , & sigsize , ec_key ) ) ;
2015-09-28 15:46:17 +00:00
CHECK ( secp256k1_ecdsa_sig_parse ( & sigr , & sigs , signature , sigsize ) ) ;
CHECK ( secp256k1_ecdsa_sig_verify ( & ctx - > ecmult_ctx , & sigr , & sigs , & q , & msg ) ) ;
2015-04-07 10:13:37 +00:00
secp256k1_scalar_set_int ( & one , 1 ) ;
secp256k1_scalar_add ( & msg2 , & msg , & one ) ;
2015-09-28 15:46:17 +00:00
CHECK ( ! secp256k1_ecdsa_sig_verify ( & ctx - > ecmult_ctx , & sigr , & sigs , & q , & msg2 ) ) ;
2015-01-21 23:35:00 +00:00
2015-09-28 15:46:17 +00:00
random_sign ( & sigr , & sigs , & key , & msg , NULL ) ;
CHECK ( secp256k1_ecdsa_sig_serialize ( signature , & secp_sigsize , & sigr , & sigs ) ) ;
2015-04-07 10:13:37 +00:00
CHECK ( ECDSA_verify ( 0 , message , sizeof ( message ) , signature , secp_sigsize , ec_key ) = = 1 ) ;
2015-01-21 23:35:00 +00:00
EC_KEY_free ( ec_key ) ;
}
2015-04-07 10:13:37 +00:00
void run_ecdsa_openssl ( void ) {
int i ;
for ( i = 0 ; i < 10 * count ; i + + ) {
2015-01-21 23:35:00 +00:00
test_ecdsa_openssl ( ) ;
}
}
# endif
2015-09-28 15:46:17 +00:00
# ifdef ENABLE_MODULE_ECDH
# include "modules / ecdh / tests_impl.h"
# endif
# ifdef ENABLE_MODULE_SCHNORR
# include "modules / schnorr / tests_impl.h"
# endif
# ifdef ENABLE_MODULE_RECOVERY
# include "modules / recovery / tests_impl.h"
# endif
2015-01-21 23:35:00 +00:00
int main ( int argc , char * * argv ) {
2015-04-07 10:13:37 +00:00
unsigned char seed16 [ 16 ] = { 0 } ;
unsigned char run32 [ 32 ] = { 0 } ;
/* find iteration count */
if ( argc > 1 ) {
count = strtol ( argv [ 1 ] , NULL , 0 ) ;
}
/* find random seed */
if ( argc > 2 ) {
int pos = 0 ;
const char * ch = argv [ 2 ] ;
while ( pos < 16 & & ch [ 0 ] ! = 0 & & ch [ 1 ] ! = 0 ) {
unsigned short sh ;
if ( sscanf ( ch , " %2hx " , & sh ) ) {
seed16 [ pos ] = sh ;
} else {
break ;
}
ch + = 2 ;
pos + + ;
}
} else {
FILE * frand = fopen ( " /dev/urandom " , " r " ) ;
2015-09-28 15:46:17 +00:00
if ( ( frand = = NULL ) | | ! fread ( & seed16 , sizeof ( seed16 ) , 1 , frand ) ) {
2015-04-07 10:13:37 +00:00
uint64_t t = time ( NULL ) * ( uint64_t ) 1337 ;
seed16 [ 0 ] ^ = t ;
seed16 [ 1 ] ^ = t > > 8 ;
seed16 [ 2 ] ^ = t > > 16 ;
seed16 [ 3 ] ^ = t > > 24 ;
seed16 [ 4 ] ^ = t > > 32 ;
seed16 [ 5 ] ^ = t > > 40 ;
seed16 [ 6 ] ^ = t > > 48 ;
seed16 [ 7 ] ^ = t > > 56 ;
}
fclose ( frand ) ;
}
secp256k1_rand_seed ( seed16 ) ;
2015-01-21 23:35:00 +00:00
printf ( " test count = %i \n " , count ) ;
2015-04-07 10:13:37 +00:00
printf ( " random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x \n " , seed16 [ 0 ] , seed16 [ 1 ] , seed16 [ 2 ] , seed16 [ 3 ] , seed16 [ 4 ] , seed16 [ 5 ] , seed16 [ 6 ] , seed16 [ 7 ] , seed16 [ 8 ] , seed16 [ 9 ] , seed16 [ 10 ] , seed16 [ 11 ] , seed16 [ 12 ] , seed16 [ 13 ] , seed16 [ 14 ] , seed16 [ 15 ] ) ;
/* initialize */
2015-09-28 15:46:17 +00:00
run_context_tests ( ) ;
ctx = secp256k1_context_create ( SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY ) ;
2015-01-21 23:35:00 +00:00
2015-09-28 15:46:17 +00:00
if ( secp256k1_rand32 ( ) & 1 ) {
secp256k1_rand256 ( run32 ) ;
CHECK ( secp256k1_context_randomize ( ctx , ( secp256k1_rand32 ( ) & 1 ) ? run32 : NULL ) ) ;
}
2015-01-21 23:35:00 +00:00
2015-04-07 10:13:37 +00:00
run_sha256_tests ( ) ;
run_hmac_sha256_tests ( ) ;
run_rfc6979_hmac_sha256_tests ( ) ;
# ifndef USE_NUM_NONE
/* num tests */
2015-01-21 23:35:00 +00:00
run_num_smalltests ( ) ;
2015-04-07 10:13:37 +00:00
# endif
2015-01-21 23:35:00 +00:00
2015-04-07 10:13:37 +00:00
/* scalar tests */
run_scalar_tests ( ) ;
/* field tests */
run_field_inv ( ) ;
run_field_inv_var ( ) ;
run_field_inv_all_var ( ) ;
run_field_misc ( ) ;
run_field_convert ( ) ;
run_sqr ( ) ;
run_sqrt ( ) ;
/* group tests */
run_ge ( ) ;
/* ecmult tests */
2015-01-21 23:35:00 +00:00
run_wnaf ( ) ;
run_point_times_order ( ) ;
run_ecmult_chain ( ) ;
2015-09-28 15:46:17 +00:00
run_ecmult_constants ( ) ;
run_ecmult_gen_blind ( ) ;
run_ecmult_const_tests ( ) ;
run_ec_combine ( ) ;
/* endomorphism tests */
# ifdef USE_ENDOMORPHISM
run_endomorphism_tests ( ) ;
# endif
# ifdef ENABLE_MODULE_ECDH
/* ecdh tests */
run_ecdh_tests ( ) ;
# endif
2015-01-21 23:35:00 +00:00
2015-04-07 10:13:37 +00:00
/* ecdsa tests */
run_random_pubkeys ( ) ;
2015-01-21 23:35:00 +00:00
run_ecdsa_sign_verify ( ) ;
2015-04-07 10:13:37 +00:00
run_ecdsa_end_to_end ( ) ;
run_ecdsa_edge_cases ( ) ;
2015-01-21 23:35:00 +00:00
# ifdef ENABLE_OPENSSL_TESTS
run_ecdsa_openssl ( ) ;
# endif
2015-09-28 15:46:17 +00:00
# ifdef ENABLE_MODULE_SCHNORR
/* Schnorr tests */
run_schnorr_tests ( ) ;
# endif
# ifdef ENABLE_MODULE_RECOVERY
/* ECDSA pubkey recovery tests */
run_recovery_tests ( ) ;
# endif
2015-04-07 10:13:37 +00:00
secp256k1_rand256 ( run32 ) ;
printf ( " random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x \n " , run32 [ 0 ] , run32 [ 1 ] , run32 [ 2 ] , run32 [ 3 ] , run32 [ 4 ] , run32 [ 5 ] , run32 [ 6 ] , run32 [ 7 ] , run32 [ 8 ] , run32 [ 9 ] , run32 [ 10 ] , run32 [ 11 ] , run32 [ 12 ] , run32 [ 13 ] , run32 [ 14 ] , run32 [ 15 ] ) ;
/* shutdown */
2015-09-28 15:46:17 +00:00
secp256k1_context_destroy ( ctx ) ;
2015-04-07 10:13:37 +00:00
2015-09-28 15:46:17 +00:00
printf ( " no problems found \n " ) ;
2015-01-21 23:35:00 +00:00
return 0 ;
}