1
0
forked from cerc-io/plugeth
plugeth/trie/trie.go

653 lines
20 KiB
Go
Raw Normal View History

2015-07-07 00:54:22 +00:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 00:54:22 +00:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 00:54:22 +00:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 00:54:22 +00:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 00:54:22 +00:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 00:54:22 +00:00
2015-07-07 03:08:16 +00:00
// Package trie implements Merkle Patricia Tries.
2014-10-31 13:45:03 +00:00
package trie
2014-02-14 22:56:09 +00:00
import (
2014-07-02 15:47:18 +00:00
"bytes"
"errors"
2014-02-14 22:56:09 +00:00
"fmt"
"sync"
2014-08-04 08:38:18 +00:00
2015-03-16 10:27:38 +00:00
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
2014-02-14 22:56:09 +00:00
)
2015-07-05 23:19:48 +00:00
var (
// emptyRoot is the known root hash of an empty trie.
2015-07-05 23:19:48 +00:00
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyState is the known hash of an empty state trie entry.
emptyState = crypto.Keccak256Hash(nil)
2015-07-05 23:19:48 +00:00
)
2014-02-14 22:56:09 +00:00
// LeafCallback is a callback type invoked when a trie operation reaches a leaf
core, eth: faster snapshot generation (#22504) * eth/protocols: persist received state segments * core: initial implementation * core/state/snapshot: add tests * core, eth: updates * eth/protocols/snapshot: count flat state size * core/state: add metrics * core/state/snapshot: skip unnecessary deletion * core/state/snapshot: rename * core/state/snapshot: use the global batch * core/state/snapshot: add logs and fix wiping * core/state/snapshot: fix * core/state/snapshot: save generation progress even if the batch is empty * core/state/snapshot: fixes * core/state/snapshot: fix initial account range length * core/state/snapshot: fix initial account range * eth/protocols/snap: store flat states during the healing * eth/protocols/snap: print logs * core/state/snapshot: refactor (#4) * core/state/snapshot: refactor * core/state/snapshot: tiny fix and polish Co-authored-by: rjl493456442 <garyrong0905@gmail.com> * core, eth: fixes * core, eth: fix healing writer * core, trie, eth: fix paths * eth/protocols/snap: fix encoding * eth, core: add debug log * core/state/generate: release iterator asap (#5) core/state/snapshot: less copy core/state/snapshot: revert split loop core/state/snapshot: handle storage becoming empty, improve test robustness core/state: test modified codehash core/state/snapshot: polish * core/state/snapshot: optimize stats counter * core, eth: add metric * core/state/snapshot: update comments * core/state/snapshot: improve tests * core/state/snapshot: replace secure trie with standard trie * core/state/snapshot: wrap return as the struct * core/state/snapshot: skip wiping correct states * core/state/snapshot: updates * core/state/snapshot: fixes * core/state/snapshot: fix panic due to reference flaw in closure * core/state/snapshot: fix errors in state generation logic + fix log output * core/state/snapshot: remove an error case * core/state/snapshot: fix condition-check for exhausted snap state * core/state/snapshot: use stackTrie for small tries * core/state/snapshot: don't resolve small storage tries in vain * core/state/snapshot: properly clean up storage of deleted accounts * core/state/snapshot: avoid RLP-encoding in some cases + minor nitpicks * core/state/snapshot: fix error (+testcase) * core/state/snapshot: clean up tests a bit * core/state/snapshot: work in progress on better tests * core/state/snapshot: polish code * core/state/snapshot: fix trie iteration abortion trigger * core/state/snapshot: fixes flaws * core/state/snapshot: remove panic * core/state/snapshot: fix abort * core/state/snapshot: more tests (plus failing testcase) * core/state/snapshot: more testcases + fix for failing test * core/state/snapshot: testcase for malformed data * core/state/snapshot: some test nitpicks * core/state/snapshot: improvements to logging * core/state/snapshot: testcase to demo error in abortion * core/state/snapshot: fix abortion * cmd/geth: make verify-state report the root * trie: fix failing test * core/state/snapshot: add timer metrics * core/state/snapshot: fix metrics * core/state/snapshot: udpate tests * eth/protocols/snap: write snapshot account even if code or state is needed * core/state/snapshot: fix diskmore check * core/state/snapshot: review fixes * core/state/snapshot: improve error message * cmd/geth: rename 'error' to 'err' in logs * core/state/snapshot: fix some review concerns * core/state/snapshot, eth/protocols/snap: clear snapshot marker when starting/resuming snap sync * core: add error log * core/state/snapshot: use proper timers for metrics collection * core/state/snapshot: address some review concerns * eth/protocols/snap: improved log message * eth/protocols/snap: fix heal logs to condense infos * core/state/snapshot: wait for generator termination before restarting * core/state/snapshot: revert timers to counters to track total time Co-authored-by: Martin Holst Swende <martin@swende.se> Co-authored-by: Péter Szilágyi <peterke@gmail.com>
2021-04-14 20:23:11 +00:00
// node.
//
// The paths is a path tuple identifying a particular trie node either in a single
// trie (account) or a layered trie (account -> storage). Each path in the tuple
// is in the raw format(32 bytes).
//
// The hexpath is a composite hexary path identifying the trie node. All the key
// bytes are converted to the hexary nibbles and composited with the parent path
// if the trie node is in a layered trie.
//
// It's used by state sync and commit to allow handling external references
// between account and storage tries. And also it's used in the state healing
// for extracting the raw states(leaf nodes) with corresponding paths.
type LeafCallback func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error
2014-02-14 22:56:09 +00:00
2015-07-05 23:19:48 +00:00
// Trie is a Merkle Patricia Trie.
// The zero value is an empty trie with no database.
// Use New to create a trie that sits on top of a database.
//
// Trie is not safe for concurrent use.
type Trie struct {
db *Database
root node
// Keep track of the number leaves which have been inserted since the last
// hashing operation. This number will not directly map to the number of
// actually unhashed nodes
unhashed int
// tracer is the state diff tracer can be used to track newly added/deleted
// trie node. It will be reset after each commit operation.
tracer *tracer
}
// newFlag returns the cache flag value for a newly created node.
func (t *Trie) newFlag() nodeFlag {
return nodeFlag{dirty: true}
2014-02-24 11:11:00 +00:00
}
// Copy returns a copy of Trie.
func (t *Trie) Copy() *Trie {
return &Trie{
db: t.db,
root: t.root,
unhashed: t.unhashed,
tracer: t.tracer.copy(),
}
}
2015-07-05 23:19:48 +00:00
// New creates a trie with an existing root node from db.
//
// If root is the zero hash or the sha3 hash of an empty string, the
// trie is initially empty and does not require a database. Otherwise,
// New will panic if db is nil and returns a MissingNodeError if root does
// not exist in the database. Accessing the trie loads nodes from db on demand.
func New(root common.Hash, db *Database) (*Trie, error) {
if db == nil {
panic("trie.New called without a database")
}
trie := &Trie{
db: db,
//tracer: newTracer(),
}
if root != (common.Hash{}) && root != emptyRoot {
rootnode, err := trie.resolveHash(root[:], nil)
if err != nil {
return nil, err
2015-07-05 23:19:48 +00:00
}
trie.root = rootnode
2014-02-14 22:56:09 +00:00
}
2015-07-05 23:19:48 +00:00
return trie, nil
2014-02-14 22:56:09 +00:00
}
// newWithRootNode initializes the trie with the given root node.
// It's only used by range prover.
func newWithRootNode(root node) *Trie {
return &Trie{
root: root,
//tracer: newTracer(),
db: NewDatabase(rawdb.NewMemoryDatabase()),
}
}
// NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
// the key after the given start key.
func (t *Trie) NodeIterator(start []byte) NodeIterator {
return newNodeIterator(t, start)
2014-04-29 10:36:27 +00:00
}
2015-07-05 23:19:48 +00:00
// Get returns the value for key stored in the trie.
// The value bytes must not be modified by the caller.
func (t *Trie) Get(key []byte) []byte {
res, err := t.TryGet(key)
if err != nil {
log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
}
return res
}
// TryGet returns the value for key stored in the trie.
// The value bytes must not be modified by the caller.
// If a node was not found in the database, a MissingNodeError is returned.
func (t *Trie) TryGet(key []byte) ([]byte, error) {
value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
if err == nil && didResolve {
t.root = newroot
}
return value, err
}
func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
switch n := (origNode).(type) {
case nil:
return nil, nil, false, nil
case valueNode:
return n, n, false, nil
case *shortNode:
if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
// key not found in trie
return nil, n, false, nil
}
value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
if err == nil && didResolve {
n = n.copy()
n.Val = newnode
}
return value, n, didResolve, err
case *fullNode:
value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
if err == nil && didResolve {
n = n.copy()
n.Children[key[pos]] = newnode
}
return value, n, didResolve, err
case hashNode:
child, err := t.resolveHash(n, key[:pos])
if err != nil {
return nil, n, true, err
2015-07-05 23:19:48 +00:00
}
value, newnode, _, err := t.tryGet(child, key, pos)
return value, newnode, true, err
default:
panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
2014-10-29 13:20:42 +00:00
}
2014-02-14 22:56:09 +00:00
}
// TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
// possible to use keybyte-encoding as the path might contain odd nibbles.
func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
if err != nil {
return nil, resolved, err
}
if resolved > 0 {
t.root = newroot
}
if item == nil {
return nil, resolved, nil
}
return item, resolved, err
}
func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
// If non-existent path requested, abort
if origNode == nil {
return nil, nil, 0, nil
}
// If we reached the requested path, return the current node
if pos >= len(path) {
// Although we most probably have the original node expanded, encoding
// that into consensus form can be nasty (needs to cascade down) and
// time consuming. Instead, just pull the hash up from disk directly.
var hash hashNode
if node, ok := origNode.(hashNode); ok {
hash = node
} else {
hash, _ = origNode.cache()
}
if hash == nil {
return nil, origNode, 0, errors.New("non-consensus node")
}
blob, err := t.db.Node(common.BytesToHash(hash))
return blob, origNode, 1, err
}
// Path still needs to be traversed, descend into children
switch n := (origNode).(type) {
case valueNode:
// Path prematurely ended, abort
return nil, nil, 0, nil
case *shortNode:
if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
// Path branches off from short node
return nil, n, 0, nil
}
item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
if err == nil && resolved > 0 {
n = n.copy()
n.Val = newnode
}
return item, n, resolved, err
case *fullNode:
item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
if err == nil && resolved > 0 {
n = n.copy()
n.Children[path[pos]] = newnode
}
return item, n, resolved, err
case hashNode:
child, err := t.resolveHash(n, path[:pos])
if err != nil {
return nil, n, 1, err
}
item, newnode, resolved, err := t.tryGetNode(child, path, pos)
return item, newnode, resolved + 1, err
default:
panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
}
}
2015-07-05 23:19:48 +00:00
// Update associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
func (t *Trie) Update(key, value []byte) {
if err := t.TryUpdate(key, value); err != nil {
log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
}
}
func (t *Trie) TryUpdateAccount(key []byte, acc *types.StateAccount) error {
data, err := rlp.EncodeToBytes(acc)
if err != nil {
return fmt.Errorf("can't encode object at %x: %w", key[:], err)
}
return t.TryUpdate(key, data)
}
// TryUpdate associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
//
// If a node was not found in the database, a MissingNodeError is returned.
func (t *Trie) TryUpdate(key, value []byte) error {
t.unhashed++
k := keybytesToHex(key)
2015-01-08 10:47:04 +00:00
if len(value) != 0 {
_, n, err := t.insert(t.root, nil, k, valueNode(value))
if err != nil {
return err
}
t.root = n
} else {
_, n, err := t.delete(t.root, nil, k)
if err != nil {
return err
}
t.root = n
}
return nil
2014-07-02 11:40:02 +00:00
}
func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
2015-01-08 10:47:04 +00:00
if len(key) == 0 {
if v, ok := n.(valueNode); ok {
return !bytes.Equal(v, value.(valueNode)), value, nil
}
return true, value, nil
2014-02-14 22:56:09 +00:00
}
2015-07-05 23:19:48 +00:00
switch n := n.(type) {
case *shortNode:
2015-07-05 23:19:48 +00:00
matchlen := prefixLen(key, n.Key)
// If the whole key matches, keep this short node as is
// and only update the value.
if matchlen == len(n.Key) {
dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
if !dirty || err != nil {
return false, n, err
}
return true, &shortNode{n.Key, nn, t.newFlag()}, nil
2015-01-08 10:47:04 +00:00
}
2015-07-05 23:19:48 +00:00
// Otherwise branch out at the index where they differ.
branch := &fullNode{flags: t.newFlag()}
var err error
_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
if err != nil {
return false, nil, err
}
_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
if err != nil {
return false, nil, err
}
2015-07-05 23:19:48 +00:00
// Replace this shortNode with the branch if it occurs at index 0.
if matchlen == 0 {
return true, branch, nil
2014-02-14 22:56:09 +00:00
}
// New branch node is created as a child of the original short node.
// Track the newly inserted node in the tracer. The node identifier
// passed is the path from the root node.
t.tracer.onInsert(append(prefix, key[:matchlen]...))
// Replace it with a short node leading up to the branch.
return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
2014-02-14 22:56:09 +00:00
case *fullNode:
dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
if !dirty || err != nil {
return false, n, err
}
n = n.copy()
n.flags = t.newFlag()
n.Children[key[0]] = nn
return true, n, nil
2014-02-14 22:56:09 +00:00
2015-07-05 23:19:48 +00:00
case nil:
// New short node is created and track it in the tracer. The node identifier
// passed is the path from the root node. Note the valueNode won't be tracked
// since it's always embedded in its parent.
t.tracer.onInsert(prefix)
return true, &shortNode{key, value, t.newFlag()}, nil
2014-02-14 22:56:09 +00:00
2015-07-05 23:19:48 +00:00
case hashNode:
// We've hit a part of the trie that isn't loaded yet. Load
// the node and insert into it. This leaves all child nodes on
// the path to the value in the trie.
rn, err := t.resolveHash(n, prefix)
if err != nil {
return false, nil, err
}
dirty, nn, err := t.insert(rn, prefix, key, value)
if !dirty || err != nil {
return false, rn, err
}
return true, nn, nil
2014-02-14 22:56:09 +00:00
2015-01-08 10:47:04 +00:00
default:
2015-07-05 23:19:48 +00:00
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
2014-02-14 22:56:09 +00:00
}
}
2015-07-05 23:19:48 +00:00
// Delete removes any existing value for key from the trie.
func (t *Trie) Delete(key []byte) {
if err := t.TryDelete(key); err != nil {
log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
}
}
// TryDelete removes any existing value for key from the trie.
// If a node was not found in the database, a MissingNodeError is returned.
func (t *Trie) TryDelete(key []byte) error {
t.unhashed++
k := keybytesToHex(key)
_, n, err := t.delete(t.root, nil, k)
if err != nil {
return err
}
t.root = n
return nil
2014-02-14 22:56:09 +00:00
}
2015-07-05 23:19:48 +00:00
// delete returns the new root of the trie with key deleted.
// It reduces the trie to minimal form by simplifying
// nodes on the way up after deleting recursively.
func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
2015-07-05 23:19:48 +00:00
switch n := n.(type) {
case *shortNode:
2015-07-05 23:19:48 +00:00
matchlen := prefixLen(key, n.Key)
if matchlen < len(n.Key) {
return false, n, nil // don't replace n on mismatch
2015-07-05 23:19:48 +00:00
}
if matchlen == len(key) {
// The matched short node is deleted entirely and track
// it in the deletion set. The same the valueNode doesn't
// need to be tracked at all since it's always embedded.
t.tracer.onDelete(prefix)
return true, nil, nil // remove n entirely for whole matches
2015-07-05 23:19:48 +00:00
}
// The key is longer than n.Key. Remove the remaining suffix
// from the subtrie. Child can never be nil here since the
// subtrie must contain at least two other values with keys
// longer than n.Key.
dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
if !dirty || err != nil {
return false, n, err
}
2015-07-05 23:19:48 +00:00
switch child := child.(type) {
case *shortNode:
// The child shortNode is merged into its parent, track
// is deleted as well.
t.tracer.onDelete(append(prefix, n.Key...))
2015-07-05 23:19:48 +00:00
// Deleting from the subtrie reduced it to another
// short node. Merge the nodes to avoid creating a
// shortNode{..., shortNode{...}}. Use concat (which
// always creates a new slice) instead of append to
// avoid modifying n.Key since it might be shared with
// other nodes.
return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
2015-07-05 23:19:48 +00:00
default:
return true, &shortNode{n.Key, child, t.newFlag()}, nil
2014-02-20 13:40:00 +00:00
}
case *fullNode:
dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
if !dirty || err != nil {
return false, n, err
}
n = n.copy()
n.flags = t.newFlag()
n.Children[key[0]] = nn
// Because n is a full node, it must've contained at least two children
// before the delete operation. If the new child value is non-nil, n still
// has at least two children after the deletion, and cannot be reduced to
// a short node.
if nn != nil {
return true, n, nil
}
// Reduction:
2015-07-05 23:19:48 +00:00
// Check how many non-nil entries are left after deleting and
// reduce the full node to a short node if only one entry is
// left. Since n must've contained at least two children
// before deletion (otherwise it would not be a full node) n
// can never be reduced to nil.
//
// When the loop is done, pos contains the index of the single
// value that is left in n or -2 if n contains at least two
// values.
2015-01-08 10:47:04 +00:00
pos := -1
for i, cld := range &n.Children {
2015-07-05 23:19:48 +00:00
if cld != nil {
2015-01-08 10:47:04 +00:00
if pos == -1 {
pos = i
2014-02-20 13:40:00 +00:00
} else {
2015-01-08 10:47:04 +00:00
pos = -2
2015-07-05 23:19:48 +00:00
break
2014-02-20 13:40:00 +00:00
}
}
}
2015-07-05 23:19:48 +00:00
if pos >= 0 {
if pos != 16 {
// If the remaining entry is a short node, it replaces
// n and its key gets the missing nibble tacked to the
// front. This avoids creating an invalid
// shortNode{..., shortNode{...}}. Since the entry
// might not be loaded yet, resolve it just for this
// check.
cnode, err := t.resolve(n.Children[pos], prefix)
if err != nil {
return false, nil, err
}
if cnode, ok := cnode.(*shortNode); ok {
// Replace the entire full node with the short node.
// Mark the original short node as deleted since the
// value is embedded into the parent now.
t.tracer.onDelete(append(prefix, byte(pos)))
2015-07-05 23:19:48 +00:00
k := append([]byte{byte(pos)}, cnode.Key...)
return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
2015-07-05 23:19:48 +00:00
}
2015-01-08 10:47:04 +00:00
}
2015-07-05 23:19:48 +00:00
// Otherwise, n is replaced by a one-nibble short node
// containing the child.
return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
2014-02-20 13:40:00 +00:00
}
2015-07-05 23:19:48 +00:00
// n still contains at least two values and cannot be reduced.
return true, n, nil
2014-02-20 13:40:00 +00:00
case valueNode:
return true, nil, nil
2015-01-08 10:47:04 +00:00
case nil:
return false, nil, nil
2015-07-05 23:19:48 +00:00
case hashNode:
// We've hit a part of the trie that isn't loaded yet. Load
// the node and delete from it. This leaves all child nodes on
// the path to the value in the trie.
rn, err := t.resolveHash(n, prefix)
if err != nil {
return false, nil, err
}
dirty, nn, err := t.delete(rn, prefix, key)
if !dirty || err != nil {
return false, rn, err
}
return true, nn, nil
2015-07-05 23:19:48 +00:00
2015-01-08 10:47:04 +00:00
default:
2015-07-05 23:19:48 +00:00
panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
2014-02-20 13:40:00 +00:00
}
2014-02-24 11:11:00 +00:00
}
2015-07-05 23:19:48 +00:00
func concat(s1 []byte, s2 ...byte) []byte {
r := make([]byte, len(s1)+len(s2))
copy(r, s1)
copy(r[len(s1):], s2)
return r
}
func (t *Trie) resolve(n node, prefix []byte) (node, error) {
2015-07-05 23:19:48 +00:00
if n, ok := n.(hashNode); ok {
return t.resolveHash(n, prefix)
2015-07-05 23:19:48 +00:00
}
return n, nil
2015-07-05 23:19:48 +00:00
}
func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
hash := common.BytesToHash(n)
if node := t.db.node(hash); node != nil {
return node, nil
2015-07-05 23:19:48 +00:00
}
return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
2015-07-05 23:19:48 +00:00
}
func (t *Trie) resolveBlob(n hashNode, prefix []byte) ([]byte, error) {
hash := common.BytesToHash(n)
blob, _ := t.db.Node(hash)
if len(blob) != 0 {
return blob, nil
}
return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
}
2015-07-05 23:19:48 +00:00
// Hash returns the root hash of the trie. It does not write to the
// database and can be used even if the trie doesn't have one.
func (t *Trie) Hash() common.Hash {
hash, cached, _ := t.hashRoot()
t.root = cached
return common.BytesToHash(hash.(hashNode))
2014-02-24 11:11:00 +00:00
}
// Commit writes all nodes to the trie's memory database, tracking the internal
// and external (for account tries) references.
func (t *Trie) Commit(onleaf LeafCallback) (common.Hash, int, error) {
2015-07-05 23:19:48 +00:00
if t.db == nil {
panic("commit called on trie with nil database")
2014-02-24 11:11:00 +00:00
}
defer t.tracer.reset()
if t.root == nil {
return emptyRoot, 0, nil
}
// Derive the hash for all dirty nodes first. We hold the assumption
// in the following procedure that all nodes are hashed.
rootHash := t.Hash()
h := newCommitter()
defer returnCommitterToPool(h)
// Do a quick check if we really need to commit, before we spin
// up goroutines. This can happen e.g. if we load a trie for reading storage
// values, but don't write to it.
if _, dirty := t.root.cache(); !dirty {
return rootHash, 0, nil
}
var wg sync.WaitGroup
if onleaf != nil {
h.onleaf = onleaf
h.leafCh = make(chan *leaf, leafChanSize)
wg.Add(1)
go func() {
defer wg.Done()
h.commitLoop(t.db)
}()
}
newRoot, committed, err := h.Commit(t.root, t.db)
if onleaf != nil {
// The leafch is created in newCommitter if there was an onleaf callback
// provided. The commitLoop only _reads_ from it, and the commit
// operation was the sole writer. Therefore, it's safe to close this
// channel here.
close(h.leafCh)
wg.Wait()
}
2015-07-05 23:19:48 +00:00
if err != nil {
return common.Hash{}, 0, err
2015-07-05 23:19:48 +00:00
}
t.root = newRoot
return rootHash, committed, nil
2015-07-05 23:19:48 +00:00
}
2014-05-26 23:08:51 +00:00
// hashRoot calculates the root hash of the given trie
func (t *Trie) hashRoot() (node, node, error) {
2015-07-05 23:19:48 +00:00
if t.root == nil {
return hashNode(emptyRoot.Bytes()), nil, nil
2015-07-05 23:19:48 +00:00
}
// If the number of changes is below 100, we let one thread handle it
h := newHasher(t.unhashed >= 100)
defer returnHasherToPool(h)
hashed, cached := h.hash(t.root, true)
t.unhashed = 0
return hashed, cached, nil
2014-05-26 23:08:51 +00:00
}
// Reset drops the referenced root node and cleans all internal state.
func (t *Trie) Reset() {
t.root = nil
t.unhashed = 0
t.tracer.reset()
}