kompose/vendor/github.com/gonum/matrix/mat64/triangular.go
Tomas Kral 1f8a0e06c9
Upgrade OpenShift and its dependencies.
OpenShift version 1.4.0-alpha.0
2016-10-18 12:04:00 +02:00

178 lines
4.0 KiB
Go

package mat64
import (
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
)
var (
triDense *TriDense
_ Matrix = triDense
_ Triangular = triDense
_ RawTriangular = triDense
)
// TriDense represents an upper or lower triangular matrix in dense storage
// format.
type TriDense struct {
mat blas64.Triangular
}
type Triangular interface {
Matrix
// Triangular returns the number of rows/columns in the matrix and if it is
// an upper triangular matrix.
Triangle() (n int, upper bool)
}
type RawTriangular interface {
RawTriangular() blas64.Triangular
}
// NewTriangular constructs an n x n triangular matrix. The constructed matrix
// is upper triangular if upper == true and lower triangular otherwise.
// If len(mat) == n * n, mat will be used to hold the underlying data, if
// mat == nil, new data will be allocated, and will panic if neither of these
// cases is true.
// The underlying data representation is the same as that of a Dense matrix,
// except the values of the entries in the opposite half are completely ignored.
func NewTriDense(n int, upper bool, mat []float64) *TriDense {
if n < 0 {
panic("mat64: negative dimension")
}
if mat != nil && len(mat) != n*n {
panic(ErrShape)
}
if mat == nil {
mat = make([]float64, n*n)
}
uplo := blas.Lower
if upper {
uplo = blas.Upper
}
return &TriDense{blas64.Triangular{
N: n,
Stride: n,
Data: mat,
Uplo: uplo,
Diag: blas.NonUnit,
}}
}
func (t *TriDense) Dims() (r, c int) {
return t.mat.N, t.mat.N
}
func (t *TriDense) Triangle() (n int, upper bool) {
return t.mat.N, t.mat.Uplo == blas.Upper
}
func (t *TriDense) RawTriangular() blas64.Triangular {
return t.mat
}
func (t *TriDense) isZero() bool {
// It must be the case that t.Dims() returns
// zeros in this case. See comment in Reset().
return t.mat.Stride == 0
}
// Reset zeros the dimensions of the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// See the Reseter interface for more information.
func (t *TriDense) Reset() {
// No change of Stride, N to 0 may
// be made unless both are set to 0.
t.mat.N, t.mat.Stride = 0, 0
// Defensively zero Uplo to ensure
// it is set correctly later.
t.mat.Uplo = 0
t.mat.Data = t.mat.Data[:0]
}
// getBlasTriangular transforms t into a blas64.Triangular. If t is a RawTriangular,
// the direct matrix representation is returned, otherwise t is copied into one.
func getBlasTriangular(t Triangular) blas64.Triangular {
n, upper := t.Triangle()
rt, ok := t.(RawTriangular)
if ok {
return rt.RawTriangular()
}
ta := blas64.Triangular{
N: n,
Stride: n,
Diag: blas.NonUnit,
Data: make([]float64, n*n),
}
if upper {
ta.Uplo = blas.Upper
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
ta.Data[i*n+j] = t.At(i, j)
}
}
return ta
}
ta.Uplo = blas.Lower
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
ta.Data[i*n+j] = t.At(i, j)
}
}
return ta
}
// copySymIntoTriangle copies a symmetric matrix into a TriDense
func copySymIntoTriangle(t *TriDense, s Symmetric) {
n, upper := t.Triangle()
ns := s.Symmetric()
if n != ns {
panic("mat64: triangle size mismatch")
}
ts := t.mat.Stride
if rs, ok := s.(RawSymmetricer); ok {
sd := rs.RawSymmetric()
ss := sd.Stride
if upper {
if sd.Uplo == blas.Upper {
for i := 0; i < n; i++ {
copy(t.mat.Data[i*ts+i:i*ts+n], sd.Data[i*ss+i:i*ss+n])
}
return
}
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
t.mat.Data[i*ts+j] = sd.Data[j*ss+i]
}
return
}
}
if sd.Uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
t.mat.Data[i*ts+j] = sd.Data[j*ss+i]
}
}
return
}
for i := 0; i < n; i++ {
copy(t.mat.Data[i*ts:i*ts+i+1], sd.Data[i*ss:i*ss+i+1])
}
return
}
if upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
t.mat.Data[i*ts+j] = s.At(i, j)
}
}
return
}
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
t.mat.Data[i*ts+j] = s.At(i, j)
}
}
}