kompose/vendor/github.com/gonum/lapack/lapack64/lapack64.go
Tomas Kral 1f8a0e06c9
Upgrade OpenShift and its dependencies.
OpenShift version 1.4.0-alpha.0
2016-10-18 12:04:00 +02:00

50 lines
1.8 KiB
Go

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lapack64 provides a set of convenient wrapper functions for LAPACK
// calls, as specified in the netlib standard (www.netlib.org).
//
// The native Go routines are used by default, and the Use function can be used
// to set an alternate implementation.
//
// If the type of matrix (General, Symmetric, etc.) is known and fixed, it is
// used in the wrapper signature. In many cases, however, the type of the matrix
// changes during the call to the routine, for example the matrix is symmetric on
// entry and is triangular on exit. In these cases the correct types should be checked
// in the documentation.
//
// The full set of Lapack functions is very large, and it is not clear that a
// full implementation is desirable, let alone feasible. Please open up an issue
// if there is a specific function you need and/or are willing to implement.
package lapack64
import (
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
"github.com/gonum/lapack"
"github.com/gonum/lapack/native"
)
var lapack64 lapack.Float64 = native.Implementation{}
// Use sets the LAPACK float64 implementation to be used by subsequent BLAS calls.
// The default implementation is native.Implementation.
func Use(l lapack.Float64) {
lapack64 = l
}
// Potrf computes the cholesky factorization of a.
// A = U^T * U if ul == blas.Upper
// A = L * L^T if ul == blas.Lower
// The underlying data between the input matrix and output matrix is shared.
func Potrf(a blas64.Symmetric) (t blas64.Triangular, ok bool) {
ok = lapack64.Dpotrf(a.Uplo, a.N, a.Data, a.Stride)
t.Uplo = a.Uplo
t.N = a.N
t.Data = a.Data
t.Stride = a.Stride
t.Diag = blas.NonUnit
return
}