forked from LaconicNetwork/kompose
286 lines
6.6 KiB
Go
286 lines
6.6 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package topo
|
|
|
|
import (
|
|
"sort"
|
|
|
|
"github.com/gonum/graph"
|
|
"github.com/gonum/graph/internal"
|
|
)
|
|
|
|
// johnson implements Johnson's "Finding all the elementary
|
|
// circuits of a directed graph" algorithm. SIAM J. Comput. 4(1):1975.
|
|
//
|
|
// Comments in the johnson methods are kept in sync with the comments
|
|
// and labels from the paper.
|
|
type johnson struct {
|
|
adjacent johnsonGraph // SCC adjacency list.
|
|
b []internal.IntSet // Johnson's "B-list".
|
|
blocked []bool
|
|
s int
|
|
|
|
stack []graph.Node
|
|
|
|
result [][]graph.Node
|
|
}
|
|
|
|
// CyclesIn returns the set of elementary cycles in the graph g.
|
|
func CyclesIn(g graph.Directed) [][]graph.Node {
|
|
jg := johnsonGraphFrom(g)
|
|
j := johnson{
|
|
adjacent: jg,
|
|
b: make([]internal.IntSet, len(jg.orig)),
|
|
blocked: make([]bool, len(jg.orig)),
|
|
}
|
|
|
|
// len(j.nodes) is the order of g.
|
|
for j.s < len(j.adjacent.orig)-1 {
|
|
// We use the previous SCC adjacency to reduce the work needed.
|
|
sccs := TarjanSCC(j.adjacent.subgraph(j.s))
|
|
// A_k = adjacency structure of strong component K with least
|
|
// vertex in subgraph of G induced by {s, s+1, ... ,n}.
|
|
j.adjacent = j.adjacent.sccSubGraph(sccs, 2) // Only allow SCCs with >= 2 vertices.
|
|
if j.adjacent.order() == 0 {
|
|
break
|
|
}
|
|
|
|
// s = least vertex in V_k
|
|
if s := j.adjacent.leastVertexIndex(); s < j.s {
|
|
j.s = s
|
|
}
|
|
for i, v := range j.adjacent.orig {
|
|
if !j.adjacent.nodes.Has(v.ID()) {
|
|
continue
|
|
}
|
|
if len(j.adjacent.succ[v.ID()]) > 0 {
|
|
j.blocked[i] = false
|
|
j.b[i] = make(internal.IntSet)
|
|
}
|
|
}
|
|
//L3:
|
|
_ = j.circuit(j.s)
|
|
j.s++
|
|
}
|
|
|
|
return j.result
|
|
}
|
|
|
|
// circuit is the CIRCUIT sub-procedure in the paper.
|
|
func (j *johnson) circuit(v int) bool {
|
|
f := false
|
|
n := j.adjacent.orig[v]
|
|
j.stack = append(j.stack, n)
|
|
j.blocked[v] = true
|
|
|
|
//L1:
|
|
for w := range j.adjacent.succ[n.ID()] {
|
|
w = j.adjacent.indexOf(w)
|
|
if w == j.s {
|
|
// Output circuit composed of stack followed by s.
|
|
r := make([]graph.Node, len(j.stack)+1)
|
|
copy(r, j.stack)
|
|
r[len(r)-1] = j.adjacent.orig[j.s]
|
|
j.result = append(j.result, r)
|
|
f = true
|
|
} else if !j.blocked[w] {
|
|
if j.circuit(w) {
|
|
f = true
|
|
}
|
|
}
|
|
}
|
|
|
|
//L2:
|
|
if f {
|
|
j.unblock(v)
|
|
} else {
|
|
for w := range j.adjacent.succ[n.ID()] {
|
|
j.b[j.adjacent.indexOf(w)].Add(v)
|
|
}
|
|
}
|
|
j.stack = j.stack[:len(j.stack)-1]
|
|
|
|
return f
|
|
}
|
|
|
|
// unblock is the UNBLOCK sub-procedure in the paper.
|
|
func (j *johnson) unblock(u int) {
|
|
j.blocked[u] = false
|
|
for w := range j.b[u] {
|
|
j.b[u].Remove(w)
|
|
if j.blocked[w] {
|
|
j.unblock(w)
|
|
}
|
|
}
|
|
}
|
|
|
|
// johnsonGraph is an edge list representation of a graph with helpers
|
|
// necessary for Johnson's algorithm
|
|
type johnsonGraph struct {
|
|
// Keep the original graph nodes and a
|
|
// look-up to into the non-sparse
|
|
// collection of potentially sparse IDs.
|
|
orig []graph.Node
|
|
index map[int]int
|
|
|
|
nodes internal.IntSet
|
|
succ map[int]internal.IntSet
|
|
}
|
|
|
|
// johnsonGraphFrom returns a deep copy of the graph g.
|
|
func johnsonGraphFrom(g graph.Directed) johnsonGraph {
|
|
nodes := g.Nodes()
|
|
sort.Sort(byID(nodes))
|
|
c := johnsonGraph{
|
|
orig: nodes,
|
|
index: make(map[int]int, len(nodes)),
|
|
|
|
nodes: make(internal.IntSet, len(nodes)),
|
|
succ: make(map[int]internal.IntSet),
|
|
}
|
|
for i, u := range nodes {
|
|
c.index[u.ID()] = i
|
|
for _, v := range g.From(u) {
|
|
if c.succ[u.ID()] == nil {
|
|
c.succ[u.ID()] = make(internal.IntSet)
|
|
c.nodes.Add(u.ID())
|
|
}
|
|
c.nodes.Add(v.ID())
|
|
c.succ[u.ID()].Add(v.ID())
|
|
}
|
|
}
|
|
return c
|
|
}
|
|
|
|
type byID []graph.Node
|
|
|
|
func (n byID) Len() int { return len(n) }
|
|
func (n byID) Less(i, j int) bool { return n[i].ID() < n[j].ID() }
|
|
func (n byID) Swap(i, j int) { n[i], n[j] = n[j], n[i] }
|
|
|
|
// order returns the order of the graph.
|
|
func (g johnsonGraph) order() int { return g.nodes.Count() }
|
|
|
|
// indexOf returns the index of the retained node for the given node ID.
|
|
func (g johnsonGraph) indexOf(id int) int {
|
|
return g.index[id]
|
|
}
|
|
|
|
// leastVertexIndex returns the index into orig of the least vertex.
|
|
func (g johnsonGraph) leastVertexIndex() int {
|
|
for _, v := range g.orig {
|
|
if g.nodes.Has(v.ID()) {
|
|
return g.indexOf(v.ID())
|
|
}
|
|
}
|
|
panic("johnsonCycles: empty set")
|
|
}
|
|
|
|
// subgraph returns a subgraph of g induced by {s, s+1, ... , n}. The
|
|
// subgraph is destructively generated in g.
|
|
func (g johnsonGraph) subgraph(s int) johnsonGraph {
|
|
sn := g.orig[s].ID()
|
|
for u, e := range g.succ {
|
|
if u < sn {
|
|
g.nodes.Remove(u)
|
|
delete(g.succ, u)
|
|
continue
|
|
}
|
|
for v := range e {
|
|
if v < sn {
|
|
g.succ[u].Remove(v)
|
|
}
|
|
}
|
|
}
|
|
return g
|
|
}
|
|
|
|
// sccSubGraph returns the graph of the tarjan's strongly connected
|
|
// components with each SCC containing at least min vertices.
|
|
// sccSubGraph returns nil if there is no SCC with at least min
|
|
// members.
|
|
func (g johnsonGraph) sccSubGraph(sccs [][]graph.Node, min int) johnsonGraph {
|
|
if len(g.nodes) == 0 {
|
|
g.nodes = nil
|
|
g.succ = nil
|
|
return g
|
|
}
|
|
sub := johnsonGraph{
|
|
orig: g.orig,
|
|
index: g.index,
|
|
nodes: make(internal.IntSet),
|
|
succ: make(map[int]internal.IntSet),
|
|
}
|
|
|
|
var n int
|
|
for _, scc := range sccs {
|
|
if len(scc) < min {
|
|
continue
|
|
}
|
|
n++
|
|
for _, u := range scc {
|
|
for _, v := range scc {
|
|
if _, ok := g.succ[u.ID()][v.ID()]; ok {
|
|
if sub.succ[u.ID()] == nil {
|
|
sub.succ[u.ID()] = make(internal.IntSet)
|
|
sub.nodes.Add(u.ID())
|
|
}
|
|
sub.nodes.Add(v.ID())
|
|
sub.succ[u.ID()].Add(v.ID())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if n == 0 {
|
|
g.nodes = nil
|
|
g.succ = nil
|
|
return g
|
|
}
|
|
|
|
return sub
|
|
}
|
|
|
|
// Nodes is required to satisfy Tarjan.
|
|
func (g johnsonGraph) Nodes() []graph.Node {
|
|
n := make([]graph.Node, 0, len(g.nodes))
|
|
for id := range g.nodes {
|
|
n = append(n, johnsonGraphNode(id))
|
|
}
|
|
return n
|
|
}
|
|
|
|
// Successors is required to satisfy Tarjan.
|
|
func (g johnsonGraph) From(n graph.Node) []graph.Node {
|
|
adj := g.succ[n.ID()]
|
|
if len(adj) == 0 {
|
|
return nil
|
|
}
|
|
succ := make([]graph.Node, 0, len(adj))
|
|
for n := range adj {
|
|
succ = append(succ, johnsonGraphNode(n))
|
|
}
|
|
return succ
|
|
}
|
|
|
|
func (johnsonGraph) Has(graph.Node) bool {
|
|
panic("search: unintended use of johnsonGraph")
|
|
}
|
|
func (johnsonGraph) HasEdge(_, _ graph.Node) bool {
|
|
panic("search: unintended use of johnsonGraph")
|
|
}
|
|
func (johnsonGraph) Edge(_, _ graph.Node) graph.Edge {
|
|
panic("search: unintended use of johnsonGraph")
|
|
}
|
|
func (johnsonGraph) HasEdgeFromTo(_, _ graph.Node) bool {
|
|
panic("search: unintended use of johnsonGraph")
|
|
}
|
|
func (johnsonGraph) To(graph.Node) []graph.Node {
|
|
panic("search: unintended use of johnsonGraph")
|
|
}
|
|
|
|
type johnsonGraphNode int
|
|
|
|
func (n johnsonGraphNode) ID() int { return int(n) }
|