kompose/vendor/github.com/gonum/matrix/mat64/lq.go
Tomas Kral 1f8a0e06c9
Upgrade OpenShift and its dependencies.
OpenShift version 1.4.0-alpha.0
2016-10-18 12:04:00 +02:00

194 lines
4.3 KiB
Go

// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat64
import (
"math"
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
)
type LQFactor struct {
LQ *Dense
lDiag []float64
}
// LQ computes an LQ Decomposition for an m-by-n matrix a with m <= n by Householder
// reflections. The LQ decomposition is an m-by-n orthogonal matrix q and an m-by-m
// lower triangular matrix l so that a = l.q. LQ will panic with ErrShape if m > n.
//
// The LQ decomposition always exists, even if the matrix does not have full rank,
// so LQ will never fail unless m > n. The primary use of the LQ decomposition is
// in the least squares solution of non-square systems of simultaneous linear equations.
// This will fail if LQIsFullRank() returns false. The matrix a is overwritten by the
// decomposition.
func LQ(a *Dense) LQFactor {
// Initialize.
m, n := a.Dims()
if m > n {
panic(ErrShape)
}
lq := *a
lDiag := make([]float64, m)
projs := NewVector(m, nil)
// Main loop.
for k := 0; k < m; k++ {
hh := lq.RawRowView(k)[k:]
norm := blas64.Nrm2(len(hh), blas64.Vector{Inc: 1, Data: hh})
lDiag[k] = norm
if norm != 0 {
hhNorm := (norm * math.Sqrt(1-hh[0]/norm))
if hhNorm == 0 {
hh[0] = 0
} else {
// Form k-th Householder vector.
s := 1 / hhNorm
hh[0] -= norm
blas64.Scal(len(hh), s, blas64.Vector{Inc: 1, Data: hh})
// Apply transformation to remaining columns.
if k < m-1 {
a = lq.View(k+1, k, m-k-1, n-k).(*Dense)
projs = projs.ViewVec(0, m-k-1)
projs.MulVec(a, false, NewVector(len(hh), hh))
for j := 0; j < m-k-1; j++ {
dst := a.RawRowView(j)
blas64.Axpy(len(dst), -projs.at(j),
blas64.Vector{Inc: 1, Data: hh},
blas64.Vector{Inc: 1, Data: dst},
)
}
}
}
}
}
*a = lq
return LQFactor{a, lDiag}
}
// IsFullRank returns whether the L matrix and hence a has full rank.
func (f LQFactor) IsFullRank() bool {
for _, v := range f.lDiag {
if v == 0 {
return false
}
}
return true
}
// L returns the lower triangular factor for the LQ decomposition.
func (f LQFactor) L() *Dense {
lq, lDiag := f.LQ, f.lDiag
m, _ := lq.Dims()
l := NewDense(m, m, nil)
for i, v := range lDiag {
for j := 0; j < m; j++ {
if i < j {
l.set(j, i, lq.at(j, i))
} else if i == j {
l.set(j, i, v)
}
}
}
return l
}
// replaces x with Q.x
func (f LQFactor) applyQTo(x *Dense, trans bool) {
nh, nc := f.LQ.Dims()
m, n := x.Dims()
if m != nc {
panic(ErrShape)
}
proj := make([]float64, n)
if trans {
for k := nh - 1; k >= 0; k-- {
hh := f.LQ.RawRowView(k)[k:]
sub := x.View(k, 0, m-k, n).(*Dense)
blas64.Gemv(blas.Trans,
1, sub.mat, blas64.Vector{Inc: 1, Data: hh},
0, blas64.Vector{Inc: 1, Data: proj},
)
for i := k; i < m; i++ {
row := x.RawRowView(i)
blas64.Axpy(n, -hh[i-k],
blas64.Vector{Inc: 1, Data: proj},
blas64.Vector{Inc: 1, Data: row},
)
}
}
} else {
for k := 0; k < nh; k++ {
hh := f.LQ.RawRowView(k)[k:]
sub := x.View(k, 0, m-k, n).(*Dense)
blas64.Gemv(blas.Trans,
1, sub.mat, blas64.Vector{Inc: 1, Data: hh},
0, blas64.Vector{Inc: 1, Data: proj},
)
for i := k; i < m; i++ {
row := x.RawRowView(i)
blas64.Axpy(n, -hh[i-k],
blas64.Vector{Inc: 1, Data: proj},
blas64.Vector{Inc: 1, Data: row},
)
}
}
}
}
// Solve computes minimum norm least squares solution of a.x = b where b has as many rows as a.
// A matrix x is returned that minimizes the two norm of Q*R*X-B. Solve will panic
// if a is not full rank.
func (f LQFactor) Solve(b *Dense) (x *Dense) {
lq := f.LQ
lDiag := f.lDiag
m, n := lq.Dims()
bm, bn := b.Dims()
if bm != m {
panic(ErrShape)
}
if !f.IsFullRank() {
panic(ErrSingular)
}
x = NewDense(n, bn, nil)
x.Copy(b)
tau := make([]float64, m)
for i := range tau {
tau[i] = lq.at(i, i)
lq.set(i, i, lDiag[i])
}
lqT := blas64.Triangular{
// N omitted since it is not used by Trsm.
Stride: lq.mat.Stride,
Data: lq.mat.Data,
Uplo: blas.Lower,
Diag: blas.NonUnit,
}
x.mat.Rows = bm
blas64.Trsm(blas.Left, blas.NoTrans, 1, lqT, x.mat)
x.mat.Rows = n
for i := range tau {
lq.set(i, i, tau[i])
}
f.applyQTo(x, true)
return x
}