forked from cerc-io/ipld-eth-server
379 lines
10 KiB
Go
379 lines
10 KiB
Go
// Copyright 2018 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package les
|
|
|
|
import (
|
|
"sort"
|
|
"sync"
|
|
"sync/atomic"
|
|
|
|
"github.com/ethereum/go-ethereum/common/mclock"
|
|
"github.com/ethereum/go-ethereum/common/prque"
|
|
)
|
|
|
|
// servingQueue allows running tasks in a limited number of threads and puts the
|
|
// waiting tasks in a priority queue
|
|
type servingQueue struct {
|
|
recentTime, queuedTime, servingTimeDiff uint64
|
|
burstLimit, burstDropLimit uint64
|
|
burstDecRate float64
|
|
lastUpdate mclock.AbsTime
|
|
|
|
queueAddCh, queueBestCh chan *servingTask
|
|
stopThreadCh, quit chan struct{}
|
|
setThreadsCh chan int
|
|
|
|
wg sync.WaitGroup
|
|
threadCount int // number of currently running threads
|
|
queue *prque.Prque // priority queue for waiting or suspended tasks
|
|
best *servingTask // the highest priority task (not included in the queue)
|
|
suspendBias int64 // priority bias against suspending an already running task
|
|
}
|
|
|
|
// servingTask represents a request serving task. Tasks can be implemented to
|
|
// run in multiple steps, allowing the serving queue to suspend execution between
|
|
// steps if higher priority tasks are entered. The creator of the task should
|
|
// set the following fields:
|
|
//
|
|
// - priority: greater value means higher priority; values can wrap around the int64 range
|
|
// - run: execute a single step; return true if finished
|
|
// - after: executed after run finishes or returns an error, receives the total serving time
|
|
type servingTask struct {
|
|
sq *servingQueue
|
|
servingTime, timeAdded, maxTime, expTime uint64
|
|
peer *peer
|
|
priority int64
|
|
biasAdded bool
|
|
token runToken
|
|
tokenCh chan runToken
|
|
}
|
|
|
|
// runToken received by servingTask.start allows the task to run. Closing the
|
|
// channel by servingTask.stop signals the thread controller to allow a new task
|
|
// to start running.
|
|
type runToken chan struct{}
|
|
|
|
// start blocks until the task can start and returns true if it is allowed to run.
|
|
// Returning false means that the task should be cancelled.
|
|
func (t *servingTask) start() bool {
|
|
if t.peer.isFrozen() {
|
|
return false
|
|
}
|
|
t.tokenCh = make(chan runToken, 1)
|
|
select {
|
|
case t.sq.queueAddCh <- t:
|
|
case <-t.sq.quit:
|
|
return false
|
|
}
|
|
select {
|
|
case t.token = <-t.tokenCh:
|
|
case <-t.sq.quit:
|
|
return false
|
|
}
|
|
if t.token == nil {
|
|
return false
|
|
}
|
|
t.servingTime -= uint64(mclock.Now())
|
|
return true
|
|
}
|
|
|
|
// done signals the thread controller about the task being finished and returns
|
|
// the total serving time of the task in nanoseconds.
|
|
func (t *servingTask) done() uint64 {
|
|
t.servingTime += uint64(mclock.Now())
|
|
close(t.token)
|
|
diff := t.servingTime - t.timeAdded
|
|
t.timeAdded = t.servingTime
|
|
if t.expTime > diff {
|
|
t.expTime -= diff
|
|
atomic.AddUint64(&t.sq.servingTimeDiff, t.expTime)
|
|
} else {
|
|
t.expTime = 0
|
|
}
|
|
return t.servingTime
|
|
}
|
|
|
|
// waitOrStop can be called during the execution of the task. It blocks if there
|
|
// is a higher priority task waiting (a bias is applied in favor of the currently
|
|
// running task). Returning true means that the execution can be resumed. False
|
|
// means the task should be cancelled.
|
|
func (t *servingTask) waitOrStop() bool {
|
|
t.done()
|
|
if !t.biasAdded {
|
|
t.priority += t.sq.suspendBias
|
|
t.biasAdded = true
|
|
}
|
|
return t.start()
|
|
}
|
|
|
|
// newServingQueue returns a new servingQueue
|
|
func newServingQueue(suspendBias int64, utilTarget float64) *servingQueue {
|
|
sq := &servingQueue{
|
|
queue: prque.New(nil),
|
|
suspendBias: suspendBias,
|
|
queueAddCh: make(chan *servingTask, 100),
|
|
queueBestCh: make(chan *servingTask),
|
|
stopThreadCh: make(chan struct{}),
|
|
quit: make(chan struct{}),
|
|
setThreadsCh: make(chan int, 10),
|
|
burstLimit: uint64(utilTarget * bufLimitRatio * 1200000),
|
|
burstDropLimit: uint64(utilTarget * bufLimitRatio * 1000000),
|
|
burstDecRate: utilTarget,
|
|
lastUpdate: mclock.Now(),
|
|
}
|
|
sq.wg.Add(2)
|
|
go sq.queueLoop()
|
|
go sq.threadCountLoop()
|
|
return sq
|
|
}
|
|
|
|
// newTask creates a new task with the given priority
|
|
func (sq *servingQueue) newTask(peer *peer, maxTime uint64, priority int64) *servingTask {
|
|
return &servingTask{
|
|
sq: sq,
|
|
peer: peer,
|
|
maxTime: maxTime,
|
|
expTime: maxTime,
|
|
priority: priority,
|
|
}
|
|
}
|
|
|
|
// threadController is started in multiple goroutines and controls the execution
|
|
// of tasks. The number of active thread controllers equals the allowed number of
|
|
// concurrently running threads. It tries to fetch the highest priority queued
|
|
// task first. If there are no queued tasks waiting then it can directly catch
|
|
// run tokens from the token channel and allow the corresponding tasks to run
|
|
// without entering the priority queue.
|
|
func (sq *servingQueue) threadController() {
|
|
for {
|
|
token := make(runToken)
|
|
select {
|
|
case best := <-sq.queueBestCh:
|
|
best.tokenCh <- token
|
|
case <-sq.stopThreadCh:
|
|
sq.wg.Done()
|
|
return
|
|
case <-sq.quit:
|
|
sq.wg.Done()
|
|
return
|
|
}
|
|
<-token
|
|
select {
|
|
case <-sq.stopThreadCh:
|
|
sq.wg.Done()
|
|
return
|
|
case <-sq.quit:
|
|
sq.wg.Done()
|
|
return
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
|
|
type (
|
|
// peerTasks lists the tasks received from a given peer when selecting peers to freeze
|
|
peerTasks struct {
|
|
peer *peer
|
|
list []*servingTask
|
|
sumTime uint64
|
|
priority float64
|
|
}
|
|
// peerList is a sortable list of peerTasks
|
|
peerList []*peerTasks
|
|
)
|
|
|
|
func (l peerList) Len() int {
|
|
return len(l)
|
|
}
|
|
|
|
func (l peerList) Less(i, j int) bool {
|
|
return l[i].priority < l[j].priority
|
|
}
|
|
|
|
func (l peerList) Swap(i, j int) {
|
|
l[i], l[j] = l[j], l[i]
|
|
}
|
|
|
|
// freezePeers selects the peers with the worst priority queued tasks and freezes
|
|
// them until burstTime goes under burstDropLimit or all peers are frozen
|
|
func (sq *servingQueue) freezePeers() {
|
|
peerMap := make(map[*peer]*peerTasks)
|
|
var peerList peerList
|
|
if sq.best != nil {
|
|
sq.queue.Push(sq.best, sq.best.priority)
|
|
}
|
|
sq.best = nil
|
|
for sq.queue.Size() > 0 {
|
|
task := sq.queue.PopItem().(*servingTask)
|
|
tasks := peerMap[task.peer]
|
|
if tasks == nil {
|
|
bufValue, bufLimit := task.peer.fcClient.BufferStatus()
|
|
if bufLimit < 1 {
|
|
bufLimit = 1
|
|
}
|
|
tasks = &peerTasks{
|
|
peer: task.peer,
|
|
priority: float64(bufValue) / float64(bufLimit), // lower value comes first
|
|
}
|
|
peerMap[task.peer] = tasks
|
|
peerList = append(peerList, tasks)
|
|
}
|
|
tasks.list = append(tasks.list, task)
|
|
tasks.sumTime += task.expTime
|
|
}
|
|
sort.Sort(peerList)
|
|
drop := true
|
|
for _, tasks := range peerList {
|
|
if drop {
|
|
tasks.peer.freezeClient()
|
|
tasks.peer.fcClient.Freeze()
|
|
sq.queuedTime -= tasks.sumTime
|
|
sqQueuedGauge.Update(int64(sq.queuedTime))
|
|
clientFreezeMeter.Mark(1)
|
|
drop = sq.recentTime+sq.queuedTime > sq.burstDropLimit
|
|
for _, task := range tasks.list {
|
|
task.tokenCh <- nil
|
|
}
|
|
} else {
|
|
for _, task := range tasks.list {
|
|
sq.queue.Push(task, task.priority)
|
|
}
|
|
}
|
|
}
|
|
if sq.queue.Size() > 0 {
|
|
sq.best = sq.queue.PopItem().(*servingTask)
|
|
}
|
|
}
|
|
|
|
// updateRecentTime recalculates the recent serving time value
|
|
func (sq *servingQueue) updateRecentTime() {
|
|
subTime := atomic.SwapUint64(&sq.servingTimeDiff, 0)
|
|
now := mclock.Now()
|
|
dt := now - sq.lastUpdate
|
|
sq.lastUpdate = now
|
|
if dt > 0 {
|
|
subTime += uint64(float64(dt) * sq.burstDecRate)
|
|
}
|
|
if sq.recentTime > subTime {
|
|
sq.recentTime -= subTime
|
|
} else {
|
|
sq.recentTime = 0
|
|
}
|
|
}
|
|
|
|
// addTask inserts a task into the priority queue
|
|
func (sq *servingQueue) addTask(task *servingTask) {
|
|
if sq.best == nil {
|
|
sq.best = task
|
|
} else if task.priority > sq.best.priority {
|
|
sq.queue.Push(sq.best, sq.best.priority)
|
|
sq.best = task
|
|
} else {
|
|
sq.queue.Push(task, task.priority)
|
|
}
|
|
sq.updateRecentTime()
|
|
sq.queuedTime += task.expTime
|
|
sqServedGauge.Update(int64(sq.recentTime))
|
|
sqQueuedGauge.Update(int64(sq.queuedTime))
|
|
if sq.recentTime+sq.queuedTime > sq.burstLimit {
|
|
sq.freezePeers()
|
|
}
|
|
}
|
|
|
|
// queueLoop is an event loop running in a goroutine. It receives tasks from queueAddCh
|
|
// and always tries to send the highest priority task to queueBestCh. Successfully sent
|
|
// tasks are removed from the queue.
|
|
func (sq *servingQueue) queueLoop() {
|
|
for {
|
|
if sq.best != nil {
|
|
expTime := sq.best.expTime
|
|
select {
|
|
case task := <-sq.queueAddCh:
|
|
sq.addTask(task)
|
|
case sq.queueBestCh <- sq.best:
|
|
sq.updateRecentTime()
|
|
sq.queuedTime -= expTime
|
|
sq.recentTime += expTime
|
|
sqServedGauge.Update(int64(sq.recentTime))
|
|
sqQueuedGauge.Update(int64(sq.queuedTime))
|
|
if sq.queue.Size() == 0 {
|
|
sq.best = nil
|
|
} else {
|
|
sq.best, _ = sq.queue.PopItem().(*servingTask)
|
|
}
|
|
case <-sq.quit:
|
|
sq.wg.Done()
|
|
return
|
|
}
|
|
} else {
|
|
select {
|
|
case task := <-sq.queueAddCh:
|
|
sq.addTask(task)
|
|
case <-sq.quit:
|
|
sq.wg.Done()
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// threadCountLoop is an event loop running in a goroutine. It adjusts the number
|
|
// of active thread controller goroutines.
|
|
func (sq *servingQueue) threadCountLoop() {
|
|
var threadCountTarget int
|
|
for {
|
|
for threadCountTarget > sq.threadCount {
|
|
sq.wg.Add(1)
|
|
go sq.threadController()
|
|
sq.threadCount++
|
|
}
|
|
if threadCountTarget < sq.threadCount {
|
|
select {
|
|
case threadCountTarget = <-sq.setThreadsCh:
|
|
case sq.stopThreadCh <- struct{}{}:
|
|
sq.threadCount--
|
|
case <-sq.quit:
|
|
sq.wg.Done()
|
|
return
|
|
}
|
|
} else {
|
|
select {
|
|
case threadCountTarget = <-sq.setThreadsCh:
|
|
case <-sq.quit:
|
|
sq.wg.Done()
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// setThreads sets the allowed processing thread count, suspending tasks as soon as
|
|
// possible if necessary.
|
|
func (sq *servingQueue) setThreads(threadCount int) {
|
|
select {
|
|
case sq.setThreadsCh <- threadCount:
|
|
case <-sq.quit:
|
|
return
|
|
}
|
|
}
|
|
|
|
// stop stops task processing as soon as possible and shuts down the serving queue.
|
|
func (sq *servingQueue) stop() {
|
|
close(sq.quit)
|
|
sq.wg.Wait()
|
|
}
|