ipld-eth-server/vendor/github.com/lucas-clemente/quic-go/session.go
Elizabeth Engelman 36533f7c3f Update vendor directory and make necessary code changes
Fixes for new geth version
2019-09-25 16:32:27 -05:00

1288 lines
38 KiB
Go

package quic
import (
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"reflect"
"sync"
"time"
"github.com/lucas-clemente/quic-go/internal/ackhandler"
"github.com/lucas-clemente/quic-go/internal/congestion"
"github.com/lucas-clemente/quic-go/internal/flowcontrol"
"github.com/lucas-clemente/quic-go/internal/handshake"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/qerr"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
)
type unpacker interface {
Unpack(hdr *wire.Header, data []byte) (*unpackedPacket, error)
}
type streamGetter interface {
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
}
type streamManager interface {
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
OpenStream() (Stream, error)
OpenUniStream() (SendStream, error)
OpenStreamSync() (Stream, error)
OpenUniStreamSync() (SendStream, error)
AcceptStream() (Stream, error)
AcceptUniStream() (ReceiveStream, error)
DeleteStream(protocol.StreamID) error
UpdateLimits(*handshake.TransportParameters) error
HandleMaxStreamsFrame(*wire.MaxStreamsFrame) error
CloseWithError(error)
}
type cryptoStreamHandler interface {
RunHandshake() error
ChangeConnectionID(protocol.ConnectionID) error
io.Closer
ConnectionState() tls.ConnectionState
}
type receivedPacket struct {
remoteAddr net.Addr
rcvTime time.Time
data []byte
buffer *packetBuffer
}
func (p *receivedPacket) Clone() *receivedPacket {
return &receivedPacket{
remoteAddr: p.remoteAddr,
rcvTime: p.rcvTime,
data: p.data,
buffer: p.buffer,
}
}
type closeError struct {
err error
remote bool
sendClose bool
}
var errCloseForRecreating = errors.New("closing session in order to recreate it")
// A Session is a QUIC session
type session struct {
sessionRunner sessionRunner
destConnID protocol.ConnectionID
origDestConnID protocol.ConnectionID // if the server sends a Retry, this is the connection ID we used initially
srcConnID protocol.ConnectionID
perspective protocol.Perspective
initialVersion protocol.VersionNumber // if version negotiation is performed, this is the version we initially tried
version protocol.VersionNumber
config *Config
conn connection
streamsMap streamManager
rttStats *congestion.RTTStats
cryptoStreamManager *cryptoStreamManager
sentPacketHandler ackhandler.SentPacketHandler
receivedPacketHandler ackhandler.ReceivedPacketHandler
framer framer
windowUpdateQueue *windowUpdateQueue
connFlowController flowcontrol.ConnectionFlowController
unpacker unpacker
frameParser wire.FrameParser
packer packer
cryptoStreamHandler cryptoStreamHandler
receivedPackets chan *receivedPacket
sendingScheduled chan struct{}
closeOnce sync.Once
closed utils.AtomicBool
// closeChan is used to notify the run loop that it should terminate
closeChan chan closeError
connectionClosePacket *packedPacket
packetsReceivedAfterClose int
ctx context.Context
ctxCancel context.CancelFunc
undecryptablePackets []*receivedPacket
clientHelloWritten <-chan struct{}
handshakeCompleteChan chan struct{} // is closed when the handshake completes
handshakeComplete bool
receivedRetry bool
receivedFirstPacket bool
receivedFirstForwardSecurePacket bool
sessionCreationTime time.Time
// The idle timeout is set based on the max of the time we received the last packet...
lastPacketReceivedTime time.Time
// ... and the time we sent a new retransmittable packet after receiving a packet.
firstRetransmittablePacketAfterIdleSentTime time.Time
// pacingDeadline is the time when the next packet should be sent
pacingDeadline time.Time
peerParams *handshake.TransportParameters
timer *utils.Timer
// keepAlivePingSent stores whether a Ping frame was sent to the peer or not
// it is reset as soon as we receive a packet from the peer
keepAlivePingSent bool
logger utils.Logger
}
var _ Session = &session{}
var _ streamSender = &session{}
var newSession = func(
conn connection,
runner sessionRunner,
clientDestConnID protocol.ConnectionID,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
conf *Config,
tlsConf *tls.Config,
params *handshake.TransportParameters,
logger utils.Logger,
v protocol.VersionNumber,
) (quicSession, error) {
s := &session{
conn: conn,
sessionRunner: runner,
config: conf,
srcConnID: srcConnID,
destConnID: destConnID,
perspective: protocol.PerspectiveServer,
handshakeCompleteChan: make(chan struct{}),
logger: logger,
version: v,
}
s.preSetup()
s.sentPacketHandler = ackhandler.NewSentPacketHandler(0, s.rttStats, s.logger)
s.streamsMap = newStreamsMap(
s,
s.newFlowController,
uint64(s.config.MaxIncomingStreams),
uint64(s.config.MaxIncomingUniStreams),
s.perspective,
s.version,
)
s.framer = newFramer(s.streamsMap, s.version)
initialStream := newCryptoStream()
handshakeStream := newCryptoStream()
oneRTTStream := newPostHandshakeCryptoStream(s.framer)
cs, err := handshake.NewCryptoSetupServer(
initialStream,
handshakeStream,
oneRTTStream,
clientDestConnID,
conn.RemoteAddr(),
params,
s.processTransportParameters,
tlsConf,
logger,
)
if err != nil {
return nil, err
}
s.cryptoStreamHandler = cs
s.packer = newPacketPacker(
s.destConnID,
s.srcConnID,
initialStream,
handshakeStream,
s.sentPacketHandler,
s.RemoteAddr(),
cs,
s.framer,
s.receivedPacketHandler,
s.perspective,
s.version,
)
s.cryptoStreamManager = newCryptoStreamManager(cs, initialStream, handshakeStream, oneRTTStream)
if err := s.postSetup(); err != nil {
return nil, err
}
s.unpacker = newPacketUnpacker(cs, s.version)
return s, nil
}
// declare this as a variable, such that we can it mock it in the tests
var newClientSession = func(
conn connection,
runner sessionRunner,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
conf *Config,
tlsConf *tls.Config,
initialPacketNumber protocol.PacketNumber,
params *handshake.TransportParameters,
initialVersion protocol.VersionNumber,
logger utils.Logger,
v protocol.VersionNumber,
) (quicSession, error) {
s := &session{
conn: conn,
sessionRunner: runner,
config: conf,
srcConnID: srcConnID,
destConnID: destConnID,
perspective: protocol.PerspectiveClient,
handshakeCompleteChan: make(chan struct{}),
logger: logger,
initialVersion: initialVersion,
version: v,
}
s.preSetup()
s.sentPacketHandler = ackhandler.NewSentPacketHandler(initialPacketNumber, s.rttStats, s.logger)
initialStream := newCryptoStream()
handshakeStream := newCryptoStream()
oneRTTStream := newPostHandshakeCryptoStream(s.framer)
cs, clientHelloWritten, err := handshake.NewCryptoSetupClient(
initialStream,
handshakeStream,
oneRTTStream,
s.destConnID,
conn.RemoteAddr(),
params,
s.processTransportParameters,
tlsConf,
logger,
)
if err != nil {
return nil, err
}
s.clientHelloWritten = clientHelloWritten
s.cryptoStreamHandler = cs
s.cryptoStreamManager = newCryptoStreamManager(cs, initialStream, handshakeStream, oneRTTStream)
s.unpacker = newPacketUnpacker(cs, s.version)
s.streamsMap = newStreamsMap(
s,
s.newFlowController,
uint64(s.config.MaxIncomingStreams),
uint64(s.config.MaxIncomingUniStreams),
s.perspective,
s.version,
)
s.framer = newFramer(s.streamsMap, s.version)
s.packer = newPacketPacker(
s.destConnID,
s.srcConnID,
initialStream,
handshakeStream,
s.sentPacketHandler,
s.RemoteAddr(),
cs,
s.framer,
s.receivedPacketHandler,
s.perspective,
s.version,
)
return s, s.postSetup()
}
func (s *session) preSetup() {
s.frameParser = wire.NewFrameParser(s.version)
s.rttStats = &congestion.RTTStats{}
s.receivedPacketHandler = ackhandler.NewReceivedPacketHandler(s.rttStats, s.logger, s.version)
s.connFlowController = flowcontrol.NewConnectionFlowController(
protocol.InitialMaxData,
protocol.ByteCount(s.config.MaxReceiveConnectionFlowControlWindow),
s.onHasConnectionWindowUpdate,
s.rttStats,
s.logger,
)
}
func (s *session) postSetup() error {
s.receivedPackets = make(chan *receivedPacket, protocol.MaxSessionUnprocessedPackets)
s.closeChan = make(chan closeError, 1)
s.sendingScheduled = make(chan struct{}, 1)
s.undecryptablePackets = make([]*receivedPacket, 0, protocol.MaxUndecryptablePackets)
s.ctx, s.ctxCancel = context.WithCancel(context.Background())
s.timer = utils.NewTimer()
now := time.Now()
s.lastPacketReceivedTime = now
s.sessionCreationTime = now
s.windowUpdateQueue = newWindowUpdateQueue(s.streamsMap, s.connFlowController, s.framer.QueueControlFrame)
return nil
}
// run the session main loop
func (s *session) run() error {
defer s.ctxCancel()
go func() {
if err := s.cryptoStreamHandler.RunHandshake(); err != nil {
s.closeLocal(err)
return
}
close(s.handshakeCompleteChan)
}()
if s.perspective == protocol.PerspectiveClient {
select {
case <-s.clientHelloWritten:
s.scheduleSending()
case closeErr := <-s.closeChan:
// put the close error back into the channel, so that the run loop can receive it
s.closeChan <- closeErr
}
}
var closeErr closeError
runLoop:
for {
// Close immediately if requested
select {
case closeErr = <-s.closeChan:
break runLoop
case <-s.handshakeCompleteChan:
s.handleHandshakeComplete()
default:
}
s.maybeResetTimer()
select {
case closeErr = <-s.closeChan:
break runLoop
case <-s.timer.Chan():
s.timer.SetRead()
// We do all the interesting stuff after the switch statement, so
// nothing to see here.
case <-s.sendingScheduled:
// We do all the interesting stuff after the switch statement, so
// nothing to see here.
case p := <-s.receivedPackets:
// Only reset the timers if this packet was actually processed.
// This avoids modifying any state when handling undecryptable packets,
// which could be injected by an attacker.
if wasProcessed := s.handlePacketImpl(p); !wasProcessed {
continue
}
case <-s.handshakeCompleteChan:
s.handleHandshakeComplete()
}
now := time.Now()
if timeout := s.sentPacketHandler.GetAlarmTimeout(); !timeout.IsZero() && timeout.Before(now) {
// This could cause packets to be retransmitted.
// Check it before trying to send packets.
if err := s.sentPacketHandler.OnAlarm(); err != nil {
s.closeLocal(err)
}
}
var pacingDeadline time.Time
if s.pacingDeadline.IsZero() { // the timer didn't have a pacing deadline set
pacingDeadline = s.sentPacketHandler.TimeUntilSend()
}
if s.config.KeepAlive && !s.keepAlivePingSent && s.handshakeComplete && s.firstRetransmittablePacketAfterIdleSentTime.IsZero() && time.Since(s.lastPacketReceivedTime) >= s.peerParams.IdleTimeout/2 {
// send a PING frame since there is no activity in the session
s.logger.Debugf("Sending a keep-alive ping to keep the connection alive.")
s.framer.QueueControlFrame(&wire.PingFrame{})
s.keepAlivePingSent = true
} else if !pacingDeadline.IsZero() && now.Before(pacingDeadline) {
// If we get to this point before the pacing deadline, we should wait until that deadline.
// This can happen when scheduleSending is called, or a packet is received.
// Set the timer and restart the run loop.
s.pacingDeadline = pacingDeadline
continue
}
if !s.handshakeComplete && now.Sub(s.sessionCreationTime) >= s.config.HandshakeTimeout {
s.destroy(qerr.TimeoutError("Handshake did not complete in time"))
continue
}
if s.handshakeComplete && now.Sub(s.idleTimeoutStartTime()) >= s.config.IdleTimeout {
s.destroy(qerr.TimeoutError("No recent network activity"))
continue
}
if err := s.sendPackets(); err != nil {
s.closeLocal(err)
}
}
s.handleCloseError(closeErr)
s.closed.Set(true)
s.logger.Infof("Connection %s closed.", s.srcConnID)
s.cryptoStreamHandler.Close()
return closeErr.err
}
func (s *session) Context() context.Context {
return s.ctx
}
func (s *session) ConnectionState() tls.ConnectionState {
return s.cryptoStreamHandler.ConnectionState()
}
func (s *session) maybeResetTimer() {
var deadline time.Time
if s.config.KeepAlive && s.handshakeComplete && !s.keepAlivePingSent {
deadline = s.idleTimeoutStartTime().Add(s.peerParams.IdleTimeout / 2)
} else {
deadline = s.idleTimeoutStartTime().Add(s.config.IdleTimeout)
}
if ackAlarm := s.receivedPacketHandler.GetAlarmTimeout(); !ackAlarm.IsZero() {
deadline = utils.MinTime(deadline, ackAlarm)
}
if lossTime := s.sentPacketHandler.GetAlarmTimeout(); !lossTime.IsZero() {
deadline = utils.MinTime(deadline, lossTime)
}
if !s.handshakeComplete {
handshakeDeadline := s.sessionCreationTime.Add(s.config.HandshakeTimeout)
deadline = utils.MinTime(deadline, handshakeDeadline)
}
if !s.pacingDeadline.IsZero() {
deadline = utils.MinTime(deadline, s.pacingDeadline)
}
s.timer.Reset(deadline)
}
func (s *session) idleTimeoutStartTime() time.Time {
return utils.MaxTime(s.lastPacketReceivedTime, s.firstRetransmittablePacketAfterIdleSentTime)
}
func (s *session) handleHandshakeComplete() {
s.handshakeComplete = true
s.handshakeCompleteChan = nil // prevent this case from ever being selected again
s.sessionRunner.OnHandshakeComplete(s)
// The client completes the handshake first (after sending the CFIN).
// We need to make sure they learn about the peer completing the handshake,
// in order to stop retransmitting handshake packets.
// They will stop retransmitting handshake packets when receiving the first forward-secure packet.
// We need to make sure that a retransmittable forward-secure packet is sent,
// independent from the application protocol.
if s.perspective == protocol.PerspectiveServer {
s.queueControlFrame(&wire.PingFrame{})
s.sentPacketHandler.SetHandshakeComplete()
}
}
func (s *session) handlePacketImpl(rp *receivedPacket) bool {
var counter uint8
var lastConnID protocol.ConnectionID
var processed bool
data := rp.data
p := rp
for len(data) > 0 {
if counter > 0 {
p = p.Clone()
p.data = data
}
hdr, packetData, rest, err := wire.ParsePacket(p.data, s.srcConnID.Len())
if err != nil {
s.logger.Debugf("error parsing packet: %s", err)
break
}
if counter > 0 && !hdr.DestConnectionID.Equal(lastConnID) {
s.logger.Debugf("coalesced packet has different destination connection ID: %s, expected %s", hdr.DestConnectionID, lastConnID)
break
}
lastConnID = hdr.DestConnectionID
if counter > 0 {
p.buffer.Split()
}
counter++
// only log if this actually a coalesced packet
if s.logger.Debug() && (counter > 1 || len(rest) > 0) {
s.logger.Debugf("Parsed a coalesced packet. Part %d: %d bytes. Remaining: %d bytes.", counter, len(packetData), len(rest))
}
p.data = packetData
if wasProcessed := s.handleSinglePacket(p, hdr); wasProcessed {
processed = true
}
data = rest
}
p.buffer.MaybeRelease()
return processed
}
func (s *session) handleSinglePacket(p *receivedPacket, hdr *wire.Header) bool /* was the packet successfully processed */ {
var wasQueued bool
defer func() {
// Put back the packet buffer if the packet wasn't queued for later decryption.
if !wasQueued {
p.buffer.Decrement()
}
}()
if hdr.Type == protocol.PacketTypeRetry {
return s.handleRetryPacket(p, hdr)
}
// The server can change the source connection ID with the first Handshake packet.
// After this, all packets with a different source connection have to be ignored.
if s.receivedFirstPacket && hdr.IsLongHeader && !hdr.SrcConnectionID.Equal(s.destConnID) {
s.logger.Debugf("Dropping packet with unexpected source connection ID: %s (expected %s)", hdr.SrcConnectionID, s.destConnID)
return false
}
// drop 0-RTT packets
if hdr.Type == protocol.PacketType0RTT {
return false
}
packet, err := s.unpacker.Unpack(hdr, p.data)
if err != nil {
if err == handshake.ErrOpenerNotYetAvailable {
// Sealer for this encryption level not yet available.
// Try again later.
wasQueued = true
s.tryQueueingUndecryptablePacket(p)
return false
}
// This might be a packet injected by an attacker.
// Drop it.
s.logger.Debugf("Dropping packet that could not be unpacked. Unpack error: %s", err)
return false
}
if s.logger.Debug() {
s.logger.Debugf("<- Reading packet %#x (%d bytes) for connection %s, %s", packet.packetNumber, len(p.data), hdr.DestConnectionID, packet.encryptionLevel)
packet.hdr.Log(s.logger)
}
if err := s.handleUnpackedPacket(packet, p.rcvTime); err != nil {
s.closeLocal(err)
return false
}
return true
}
func (s *session) handleRetryPacket(p *receivedPacket, hdr *wire.Header) bool /* was this a valid Retry */ {
if s.perspective == protocol.PerspectiveServer {
s.logger.Debugf("Ignoring Retry.")
return false
}
if s.receivedFirstPacket {
s.logger.Debugf("Ignoring Retry, since we already received a packet.")
return false
}
(&wire.ExtendedHeader{Header: *hdr}).Log(s.logger)
if !hdr.OrigDestConnectionID.Equal(s.destConnID) {
s.logger.Debugf("Ignoring spoofed Retry. Original Destination Connection ID: %s, expected: %s", hdr.OrigDestConnectionID, s.destConnID)
return false
}
if hdr.SrcConnectionID.Equal(s.destConnID) {
s.logger.Debugf("Ignoring Retry, since the server didn't change the Source Connection ID.")
return false
}
// If a token is already set, this means that we already received a Retry from the server.
// Ignore this Retry packet.
if s.receivedRetry {
s.logger.Debugf("Ignoring Retry, since a Retry was already received.")
return false
}
s.logger.Debugf("<- Received Retry")
s.logger.Debugf("Switching destination connection ID to: %s", hdr.SrcConnectionID)
s.origDestConnID = s.destConnID
s.destConnID = hdr.SrcConnectionID
s.receivedRetry = true
if err := s.sentPacketHandler.ResetForRetry(); err != nil {
s.closeLocal(err)
return false
}
s.cryptoStreamHandler.ChangeConnectionID(s.destConnID)
s.packer.SetToken(hdr.Token)
s.packer.ChangeDestConnectionID(s.destConnID)
s.scheduleSending()
return true
}
func (s *session) handleUnpackedPacket(packet *unpackedPacket, rcvTime time.Time) error {
if len(packet.data) == 0 {
return qerr.Error(qerr.ProtocolViolation, "empty packet")
}
// The server can change the source connection ID with the first Handshake packet.
if s.perspective == protocol.PerspectiveClient && !s.receivedFirstPacket && packet.hdr.IsLongHeader && !packet.hdr.SrcConnectionID.Equal(s.destConnID) {
s.logger.Debugf("Received first packet. Switching destination connection ID to: %s", packet.hdr.SrcConnectionID)
s.destConnID = packet.hdr.SrcConnectionID
s.packer.ChangeDestConnectionID(s.destConnID)
}
s.receivedFirstPacket = true
s.lastPacketReceivedTime = rcvTime
s.firstRetransmittablePacketAfterIdleSentTime = time.Time{}
s.keepAlivePingSent = false
// The client completes the handshake first (after sending the CFIN).
// We know that the server completed the handshake as soon as we receive a forward-secure packet.
if s.perspective == protocol.PerspectiveClient {
if !s.receivedFirstForwardSecurePacket && packet.encryptionLevel == protocol.Encryption1RTT {
s.receivedFirstForwardSecurePacket = true
s.sentPacketHandler.SetHandshakeComplete()
}
}
r := bytes.NewReader(packet.data)
var isRetransmittable bool
for {
frame, err := s.frameParser.ParseNext(r, packet.encryptionLevel)
if err != nil {
return err
}
if frame == nil {
break
}
if ackhandler.IsFrameRetransmittable(frame) {
isRetransmittable = true
}
if err := s.handleFrame(frame, packet.packetNumber, packet.encryptionLevel); err != nil {
return err
}
}
if err := s.receivedPacketHandler.ReceivedPacket(packet.packetNumber, packet.encryptionLevel, rcvTime, isRetransmittable); err != nil {
return err
}
return nil
}
func (s *session) handleFrame(f wire.Frame, pn protocol.PacketNumber, encLevel protocol.EncryptionLevel) error {
var err error
wire.LogFrame(s.logger, f, false)
switch frame := f.(type) {
case *wire.CryptoFrame:
err = s.handleCryptoFrame(frame, encLevel)
case *wire.StreamFrame:
err = s.handleStreamFrame(frame, encLevel)
case *wire.AckFrame:
err = s.handleAckFrame(frame, pn, encLevel)
case *wire.ConnectionCloseFrame:
s.closeRemote(qerr.Error(frame.ErrorCode, frame.ReasonPhrase))
case *wire.ResetStreamFrame:
err = s.handleResetStreamFrame(frame)
case *wire.MaxDataFrame:
s.handleMaxDataFrame(frame)
case *wire.MaxStreamDataFrame:
err = s.handleMaxStreamDataFrame(frame)
case *wire.MaxStreamsFrame:
err = s.handleMaxStreamsFrame(frame)
case *wire.DataBlockedFrame:
case *wire.StreamDataBlockedFrame:
case *wire.StreamsBlockedFrame:
case *wire.StopSendingFrame:
err = s.handleStopSendingFrame(frame)
case *wire.PingFrame:
case *wire.PathChallengeFrame:
s.handlePathChallengeFrame(frame)
case *wire.PathResponseFrame:
// since we don't send PATH_CHALLENGEs, we don't expect PATH_RESPONSEs
err = errors.New("unexpected PATH_RESPONSE frame")
case *wire.NewTokenFrame:
case *wire.NewConnectionIDFrame:
case *wire.RetireConnectionIDFrame:
// since we don't send new connection IDs, we don't expect retirements
err = errors.New("unexpected RETIRE_CONNECTION_ID frame")
default:
err = fmt.Errorf("unexpected frame type: %s", reflect.ValueOf(&frame).Elem().Type().Name())
}
return err
}
// handlePacket is called by the server with a new packet
func (s *session) handlePacket(p *receivedPacket) {
if s.closed.Get() {
s.handlePacketAfterClosed(p)
}
// Discard packets once the amount of queued packets is larger than
// the channel size, protocol.MaxSessionUnprocessedPackets
select {
case s.receivedPackets <- p:
default:
}
}
func (s *session) handlePacketAfterClosed(p *receivedPacket) {
s.packetsReceivedAfterClose++
if s.connectionClosePacket == nil {
return
}
// exponential backoff
// only send a CONNECTION_CLOSE for the 1st, 2nd, 4th, 8th, 16th, ... packet arriving
for n := s.packetsReceivedAfterClose; n > 1; n = n / 2 {
if n%2 != 0 {
return
}
}
s.logger.Debugf("Received %d packets after sending CONNECTION_CLOSE. Retransmitting.", s.packetsReceivedAfterClose)
if err := s.conn.Write(s.connectionClosePacket.raw); err != nil {
s.logger.Debugf("Error retransmitting CONNECTION_CLOSE: %s", err)
}
}
func (s *session) handleCryptoFrame(frame *wire.CryptoFrame, encLevel protocol.EncryptionLevel) error {
encLevelChanged, err := s.cryptoStreamManager.HandleCryptoFrame(frame, encLevel)
if err != nil {
return err
}
s.logger.Debugf("Handled crypto frame at level %s. encLevelChanged: %t", encLevel, encLevelChanged)
if encLevelChanged {
s.tryDecryptingQueuedPackets()
}
return nil
}
func (s *session) handleStreamFrame(frame *wire.StreamFrame, encLevel protocol.EncryptionLevel) error {
// TODO(#1261): implement strict rules for frames types in unencrypted packets
if encLevel < protocol.Encryption1RTT {
return qerr.Error(qerr.ProtocolViolation, fmt.Sprintf("received unencrypted stream data on stream %d", frame.StreamID))
}
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// Stream is closed and already garbage collected
// ignore this StreamFrame
return nil
}
return str.handleStreamFrame(frame)
}
func (s *session) handleMaxDataFrame(frame *wire.MaxDataFrame) {
s.connFlowController.UpdateSendWindow(frame.ByteOffset)
}
func (s *session) handleMaxStreamDataFrame(frame *wire.MaxStreamDataFrame) error {
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.handleMaxStreamDataFrame(frame)
return nil
}
func (s *session) handleMaxStreamsFrame(frame *wire.MaxStreamsFrame) error {
return s.streamsMap.HandleMaxStreamsFrame(frame)
}
func (s *session) handleResetStreamFrame(frame *wire.ResetStreamFrame) error {
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
return str.handleResetStreamFrame(frame)
}
func (s *session) handleStopSendingFrame(frame *wire.StopSendingFrame) error {
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.handleStopSendingFrame(frame)
return nil
}
func (s *session) handlePathChallengeFrame(frame *wire.PathChallengeFrame) {
s.queueControlFrame(&wire.PathResponseFrame{Data: frame.Data})
}
func (s *session) handleAckFrame(frame *wire.AckFrame, pn protocol.PacketNumber, encLevel protocol.EncryptionLevel) error {
if err := s.sentPacketHandler.ReceivedAck(frame, pn, encLevel, s.lastPacketReceivedTime); err != nil {
return err
}
if encLevel == protocol.Encryption1RTT {
s.receivedPacketHandler.IgnoreBelow(s.sentPacketHandler.GetLowestPacketNotConfirmedAcked())
}
return nil
}
// closeLocal closes the session and send a CONNECTION_CLOSE containing the error
func (s *session) closeLocal(e error) {
s.closeOnce.Do(func() {
if e == nil {
s.logger.Infof("Closing session.")
} else {
s.logger.Errorf("Closing session with error: %s", e)
}
s.sessionRunner.Retire(s.srcConnID)
s.closeChan <- closeError{err: e, sendClose: true, remote: false}
})
}
// destroy closes the session without sending the error on the wire
func (s *session) destroy(e error) {
s.closeOnce.Do(func() {
if nerr, ok := e.(net.Error); ok && nerr.Timeout() {
s.logger.Errorf("Destroying session %s: %s", s.destConnID, e)
} else {
s.logger.Errorf("Destroying session %s with error: %s", s.destConnID, e)
}
s.sessionRunner.Remove(s.srcConnID)
s.closeChan <- closeError{err: e, sendClose: false, remote: false}
})
}
// closeForRecreating closes the session in order to recreate it immediately afterwards
// It returns the first packet number that should be used in the new session.
func (s *session) closeForRecreating() protocol.PacketNumber {
s.destroy(errCloseForRecreating)
nextPN, _ := s.sentPacketHandler.PeekPacketNumber(protocol.EncryptionInitial)
return nextPN
}
func (s *session) closeRemote(e error) {
s.closeOnce.Do(func() {
s.logger.Errorf("Peer closed session with error: %s", e)
s.sessionRunner.Remove(s.srcConnID)
s.closeChan <- closeError{err: e, remote: true}
})
}
// Close the connection. It sends a qerr.NoError.
// It waits until the run loop has stopped before returning
func (s *session) Close() error {
s.closeLocal(nil)
<-s.ctx.Done()
return nil
}
func (s *session) CloseWithError(code protocol.ApplicationErrorCode, e error) error {
s.closeLocal(qerr.Error(qerr.ErrorCode(code), e.Error()))
<-s.ctx.Done()
return nil
}
func (s *session) handleCloseError(closeErr closeError) {
if closeErr.err == nil {
closeErr.err = qerr.NoError
}
var quicErr *qerr.QuicError
var ok bool
if quicErr, ok = closeErr.err.(*qerr.QuicError); !ok {
quicErr = qerr.ToQuicError(closeErr.err)
}
s.streamsMap.CloseWithError(quicErr)
if !closeErr.sendClose {
return
}
// If this is a remote close we're done here
if closeErr.remote {
return
}
if err := s.sendConnectionClose(quicErr); err != nil {
s.logger.Debugf("Error sending CONNECTION_CLOSE: %s", err)
}
}
func (s *session) processTransportParameters(data []byte) {
var params *handshake.TransportParameters
var err error
switch s.perspective {
case protocol.PerspectiveClient:
params, err = s.processTransportParametersForClient(data)
case protocol.PerspectiveServer:
params, err = s.processTransportParametersForServer(data)
}
if err != nil {
s.closeLocal(err)
return
}
s.logger.Debugf("Received Transport Parameters: %s", params)
s.peerParams = params
if err := s.streamsMap.UpdateLimits(params); err != nil {
s.closeLocal(err)
return
}
s.packer.HandleTransportParameters(params)
s.frameParser.SetAckDelayExponent(params.AckDelayExponent)
s.connFlowController.UpdateSendWindow(params.InitialMaxData)
if params.StatelessResetToken != nil {
s.sessionRunner.AddResetToken(*params.StatelessResetToken, s)
}
}
func (s *session) processTransportParametersForClient(data []byte) (*handshake.TransportParameters, error) {
params := &handshake.TransportParameters{}
if err := params.Unmarshal(data, s.perspective.Opposite()); err != nil {
return nil, err
}
// check the Retry token
if !params.OriginalConnectionID.Equal(s.origDestConnID) {
return nil, fmt.Errorf("expected original_connection_id to equal %s, is %s", s.origDestConnID, params.OriginalConnectionID)
}
return params, nil
}
func (s *session) processTransportParametersForServer(data []byte) (*handshake.TransportParameters, error) {
params := &handshake.TransportParameters{}
if err := params.Unmarshal(data, s.perspective.Opposite()); err != nil {
return nil, err
}
return params, nil
}
func (s *session) sendPackets() error {
s.pacingDeadline = time.Time{}
sendMode := s.sentPacketHandler.SendMode()
if sendMode == ackhandler.SendNone { // shortcut: return immediately if there's nothing to send
return nil
}
numPackets := s.sentPacketHandler.ShouldSendNumPackets()
var numPacketsSent int
sendLoop:
for {
switch sendMode {
case ackhandler.SendNone:
break sendLoop
case ackhandler.SendAck:
// If we already sent packets, and the send mode switches to SendAck,
// we've just become congestion limited.
// There's no need to try to send an ACK at this moment.
if numPacketsSent > 0 {
return nil
}
// We can at most send a single ACK only packet.
// There will only be a new ACK after receiving new packets.
// SendAck is only returned when we're congestion limited, so we don't need to set the pacingt timer.
return s.maybeSendAckOnlyPacket()
case ackhandler.SendPTO:
if err := s.sendProbePacket(); err != nil {
return err
}
numPacketsSent++
case ackhandler.SendRetransmission:
sentPacket, err := s.maybeSendRetransmission()
if err != nil {
return err
}
if sentPacket {
numPacketsSent++
// This can happen if a retransmission queued, but it wasn't necessary to send it.
// e.g. when an Initial is queued, but we already received a packet from the server.
}
case ackhandler.SendAny:
sentPacket, err := s.sendPacket()
if err != nil {
return err
}
if !sentPacket {
break sendLoop
}
numPacketsSent++
default:
return fmt.Errorf("BUG: invalid send mode %d", sendMode)
}
if numPacketsSent >= numPackets {
break
}
sendMode = s.sentPacketHandler.SendMode()
}
// Only start the pacing timer if we sent as many packets as we were allowed.
// There will probably be more to send when calling sendPacket again.
if numPacketsSent == numPackets {
s.pacingDeadline = s.sentPacketHandler.TimeUntilSend()
}
return nil
}
func (s *session) maybeSendAckOnlyPacket() error {
packet, err := s.packer.MaybePackAckPacket()
if err != nil {
return err
}
if packet == nil {
return nil
}
s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket())
return s.sendPackedPacket(packet)
}
// maybeSendRetransmission sends retransmissions for at most one packet.
// It takes care that Initials aren't retransmitted, if a packet from the server was already received.
func (s *session) maybeSendRetransmission() (bool, error) {
retransmitPacket := s.sentPacketHandler.DequeuePacketForRetransmission()
if retransmitPacket == nil {
return false, nil
}
s.logger.Debugf("Dequeueing retransmission for packet 0x%x (%s)", retransmitPacket.PacketNumber, retransmitPacket.EncryptionLevel)
packets, err := s.packer.PackRetransmission(retransmitPacket)
if err != nil {
return false, err
}
ackhandlerPackets := make([]*ackhandler.Packet, len(packets))
for i, packet := range packets {
ackhandlerPackets[i] = packet.ToAckHandlerPacket()
}
s.sentPacketHandler.SentPacketsAsRetransmission(ackhandlerPackets, retransmitPacket.PacketNumber)
for _, packet := range packets {
if err := s.sendPackedPacket(packet); err != nil {
return false, err
}
}
return true, nil
}
func (s *session) sendProbePacket() error {
p, err := s.sentPacketHandler.DequeueProbePacket()
if err != nil {
return err
}
s.logger.Debugf("Sending a retransmission for %#x as a probe packet.", p.PacketNumber)
packets, err := s.packer.PackRetransmission(p)
if err != nil {
return err
}
ackhandlerPackets := make([]*ackhandler.Packet, len(packets))
for i, packet := range packets {
ackhandlerPackets[i] = packet.ToAckHandlerPacket()
}
s.sentPacketHandler.SentPacketsAsRetransmission(ackhandlerPackets, p.PacketNumber)
for _, packet := range packets {
if err := s.sendPackedPacket(packet); err != nil {
return err
}
}
return nil
}
func (s *session) sendPacket() (bool, error) {
if isBlocked, offset := s.connFlowController.IsNewlyBlocked(); isBlocked {
s.framer.QueueControlFrame(&wire.DataBlockedFrame{DataLimit: offset})
}
s.windowUpdateQueue.QueueAll()
packet, err := s.packer.PackPacket()
if err != nil || packet == nil {
return false, err
}
s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket())
if err := s.sendPackedPacket(packet); err != nil {
return false, err
}
return true, nil
}
func (s *session) sendPackedPacket(packet *packedPacket) error {
defer packet.buffer.Release()
if s.firstRetransmittablePacketAfterIdleSentTime.IsZero() && packet.IsRetransmittable() {
s.firstRetransmittablePacketAfterIdleSentTime = time.Now()
}
s.logPacket(packet)
return s.conn.Write(packet.raw)
}
func (s *session) sendConnectionClose(quicErr *qerr.QuicError) error {
var reason string
// don't send details of crypto errors
if !quicErr.IsCryptoError() {
reason = quicErr.ErrorMessage
}
packet, err := s.packer.PackConnectionClose(&wire.ConnectionCloseFrame{
ErrorCode: quicErr.ErrorCode,
ReasonPhrase: reason,
})
if err != nil {
return err
}
s.connectionClosePacket = packet
s.logPacket(packet)
return s.conn.Write(packet.raw)
}
func (s *session) logPacket(packet *packedPacket) {
if !s.logger.Debug() {
// We don't need to allocate the slices for calling the format functions
return
}
s.logger.Debugf("-> Sending packet 0x%x (%d bytes) for connection %s, %s", packet.header.PacketNumber, len(packet.raw), s.srcConnID, packet.EncryptionLevel())
packet.header.Log(s.logger)
for _, frame := range packet.frames {
wire.LogFrame(s.logger, frame, true)
}
}
// GetOrOpenStream either returns an existing stream, a newly opened stream, or nil if a stream with the provided ID is already closed.
// It is *only* needed for gQUIC's H2.
// It will be removed as soon as gQUIC moves towards the IETF H2/QUIC stream mapping.
func (s *session) GetOrOpenStream(id protocol.StreamID) (Stream, error) {
str, err := s.streamsMap.GetOrOpenSendStream(id)
if str != nil {
if bstr, ok := str.(Stream); ok {
return bstr, err
}
return nil, fmt.Errorf("Stream %d is not a bidirectional stream", id)
}
// make sure to return an actual nil value here, not an Stream with value nil
return nil, err
}
// AcceptStream returns the next stream openend by the peer
func (s *session) AcceptStream() (Stream, error) {
return s.streamsMap.AcceptStream()
}
func (s *session) AcceptUniStream() (ReceiveStream, error) {
return s.streamsMap.AcceptUniStream()
}
// OpenStream opens a stream
func (s *session) OpenStream() (Stream, error) {
return s.streamsMap.OpenStream()
}
func (s *session) OpenStreamSync() (Stream, error) {
return s.streamsMap.OpenStreamSync()
}
func (s *session) OpenUniStream() (SendStream, error) {
return s.streamsMap.OpenUniStream()
}
func (s *session) OpenUniStreamSync() (SendStream, error) {
return s.streamsMap.OpenUniStreamSync()
}
func (s *session) newFlowController(id protocol.StreamID) flowcontrol.StreamFlowController {
var initialSendWindow protocol.ByteCount
if s.peerParams != nil {
if id.Type() == protocol.StreamTypeUni {
initialSendWindow = s.peerParams.InitialMaxStreamDataUni
} else {
if id.InitiatedBy() == s.perspective {
initialSendWindow = s.peerParams.InitialMaxStreamDataBidiRemote
} else {
initialSendWindow = s.peerParams.InitialMaxStreamDataBidiLocal
}
}
}
return flowcontrol.NewStreamFlowController(
id,
s.connFlowController,
protocol.InitialMaxStreamData,
protocol.ByteCount(s.config.MaxReceiveStreamFlowControlWindow),
initialSendWindow,
s.onHasStreamWindowUpdate,
s.rttStats,
s.logger,
)
}
// scheduleSending signals that we have data for sending
func (s *session) scheduleSending() {
select {
case s.sendingScheduled <- struct{}{}:
default:
}
}
func (s *session) tryQueueingUndecryptablePacket(p *receivedPacket) {
if s.handshakeComplete {
s.logger.Debugf("Received undecryptable packet from %s after the handshake (%d bytes)", p.remoteAddr.String(), len(p.data))
return
}
if len(s.undecryptablePackets)+1 > protocol.MaxUndecryptablePackets {
s.logger.Infof("Dropping undecrytable packet (%d bytes). Undecryptable packet queue full.", len(p.data))
return
}
s.logger.Infof("Queueing packet (%d bytes) for later decryption", len(p.data))
s.undecryptablePackets = append(s.undecryptablePackets, p)
}
func (s *session) tryDecryptingQueuedPackets() {
for _, p := range s.undecryptablePackets {
s.handlePacket(p)
}
s.undecryptablePackets = s.undecryptablePackets[:0]
}
func (s *session) queueControlFrame(f wire.Frame) {
s.framer.QueueControlFrame(f)
s.scheduleSending()
}
func (s *session) onHasStreamWindowUpdate(id protocol.StreamID) {
s.windowUpdateQueue.AddStream(id)
s.scheduleSending()
}
func (s *session) onHasConnectionWindowUpdate() {
s.windowUpdateQueue.AddConnection()
s.scheduleSending()
}
func (s *session) onHasStreamData(id protocol.StreamID) {
s.framer.AddActiveStream(id)
s.scheduleSending()
}
func (s *session) onStreamCompleted(id protocol.StreamID) {
if err := s.streamsMap.DeleteStream(id); err != nil {
s.closeLocal(err)
}
}
func (s *session) LocalAddr() net.Addr {
return s.conn.LocalAddr()
}
func (s *session) RemoteAddr() net.Addr {
return s.conn.RemoteAddr()
}
func (s *session) getPerspective() protocol.Perspective {
return s.perspective
}
func (s *session) GetVersion() protocol.VersionNumber {
return s.version
}