forked from cerc-io/ipld-eth-server
488 lines
16 KiB
Go
488 lines
16 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package qtls
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/des"
|
|
"crypto/hmac"
|
|
"crypto/rc4"
|
|
"crypto/sha1"
|
|
"crypto/sha256"
|
|
"crypto/x509"
|
|
"hash"
|
|
|
|
"golang.org/x/crypto/chacha20poly1305"
|
|
)
|
|
|
|
// a keyAgreement implements the client and server side of a TLS key agreement
|
|
// protocol by generating and processing key exchange messages.
|
|
type keyAgreement interface {
|
|
// On the server side, the first two methods are called in order.
|
|
|
|
// In the case that the key agreement protocol doesn't use a
|
|
// ServerKeyExchange message, generateServerKeyExchange can return nil,
|
|
// nil.
|
|
generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
|
|
processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
|
|
|
|
// On the client side, the next two methods are called in order.
|
|
|
|
// This method may not be called if the server doesn't send a
|
|
// ServerKeyExchange message.
|
|
processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
|
|
generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
|
|
}
|
|
|
|
const (
|
|
// suiteECDH indicates that the cipher suite involves elliptic curve
|
|
// Diffie-Hellman. This means that it should only be selected when the
|
|
// client indicates that it supports ECC with a curve and point format
|
|
// that we're happy with.
|
|
suiteECDHE = 1 << iota
|
|
// suiteECDSA indicates that the cipher suite involves an ECDSA
|
|
// signature and therefore may only be selected when the server's
|
|
// certificate is ECDSA. If this is not set then the cipher suite is
|
|
// RSA based.
|
|
suiteECDSA
|
|
// suiteTLS12 indicates that the cipher suite should only be advertised
|
|
// and accepted when using TLS 1.2.
|
|
suiteTLS12
|
|
// suiteSHA384 indicates that the cipher suite uses SHA384 as the
|
|
// handshake hash.
|
|
suiteSHA384
|
|
// suiteDefaultOff indicates that this cipher suite is not included by
|
|
// default.
|
|
suiteDefaultOff
|
|
)
|
|
|
|
type CipherSuite struct {
|
|
*cipherSuiteTLS13
|
|
}
|
|
|
|
func (c *CipherSuite) Hash() crypto.Hash { return c.hash }
|
|
func (c *CipherSuite) KeyLen() int { return c.keyLen }
|
|
func (c *CipherSuite) IVLen() int { return aeadNonceLength }
|
|
func (c *CipherSuite) AEAD(key, fixedNonce []byte) cipher.AEAD { return c.aead(key, fixedNonce) }
|
|
|
|
// A cipherSuite is a specific combination of key agreement, cipher and MAC function.
|
|
type cipherSuite struct {
|
|
id uint16
|
|
// the lengths, in bytes, of the key material needed for each component.
|
|
keyLen int
|
|
macLen int
|
|
ivLen int
|
|
ka func(version uint16) keyAgreement
|
|
// flags is a bitmask of the suite* values, above.
|
|
flags int
|
|
cipher func(key, iv []byte, isRead bool) interface{}
|
|
mac func(version uint16, macKey []byte) macFunction
|
|
aead func(key, fixedNonce []byte) aead
|
|
}
|
|
|
|
var cipherSuites = []*cipherSuite{
|
|
// Ciphersuite order is chosen so that ECDHE comes before plain RSA and
|
|
// AEADs are the top preference.
|
|
{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
|
|
{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
|
|
{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
|
|
{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
|
|
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
|
|
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
|
|
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
|
|
{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
|
|
{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
|
|
{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
|
|
{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
|
|
{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
|
|
{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
|
|
{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
|
|
|
|
// RC4-based cipher suites are disabled by default.
|
|
{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil},
|
|
{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil},
|
|
{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil},
|
|
}
|
|
|
|
// A cipherSuiteTLS13 defines only the pair of the AEAD algorithm and hash
|
|
// algorithm to be used with HKDF. See RFC 8446, Appendix B.4.
|
|
type cipherSuiteTLS13 struct {
|
|
id uint16
|
|
keyLen int
|
|
aead func(key, fixedNonce []byte) aead
|
|
hash crypto.Hash
|
|
}
|
|
|
|
var cipherSuitesTLS13 = []*cipherSuiteTLS13{
|
|
{TLS_AES_128_GCM_SHA256, 16, aeadAESGCMTLS13, crypto.SHA256},
|
|
{TLS_CHACHA20_POLY1305_SHA256, 32, aeadChaCha20Poly1305, crypto.SHA256},
|
|
{TLS_AES_256_GCM_SHA384, 32, aeadAESGCMTLS13, crypto.SHA384},
|
|
}
|
|
|
|
func cipherRC4(key, iv []byte, isRead bool) interface{} {
|
|
cipher, _ := rc4.NewCipher(key)
|
|
return cipher
|
|
}
|
|
|
|
func cipher3DES(key, iv []byte, isRead bool) interface{} {
|
|
block, _ := des.NewTripleDESCipher(key)
|
|
if isRead {
|
|
return cipher.NewCBCDecrypter(block, iv)
|
|
}
|
|
return cipher.NewCBCEncrypter(block, iv)
|
|
}
|
|
|
|
func cipherAES(key, iv []byte, isRead bool) interface{} {
|
|
block, _ := aes.NewCipher(key)
|
|
if isRead {
|
|
return cipher.NewCBCDecrypter(block, iv)
|
|
}
|
|
return cipher.NewCBCEncrypter(block, iv)
|
|
}
|
|
|
|
// macSHA1 returns a macFunction for the given protocol version.
|
|
func macSHA1(version uint16, key []byte) macFunction {
|
|
if version == VersionSSL30 {
|
|
mac := ssl30MAC{
|
|
h: sha1.New(),
|
|
key: make([]byte, len(key)),
|
|
}
|
|
copy(mac.key, key)
|
|
return mac
|
|
}
|
|
return tls10MAC{h: hmac.New(newConstantTimeHash(sha1.New), key)}
|
|
}
|
|
|
|
// macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2
|
|
// so the given version is ignored.
|
|
func macSHA256(version uint16, key []byte) macFunction {
|
|
return tls10MAC{h: hmac.New(sha256.New, key)}
|
|
}
|
|
|
|
type macFunction interface {
|
|
// Size returns the length of the MAC.
|
|
Size() int
|
|
// MAC appends the MAC of (seq, header, data) to out. The extra data is fed
|
|
// into the MAC after obtaining the result to normalize timing. The result
|
|
// is only valid until the next invocation of MAC as the buffer is reused.
|
|
MAC(seq, header, data, extra []byte) []byte
|
|
}
|
|
|
|
type aead interface {
|
|
cipher.AEAD
|
|
|
|
// explicitNonceLen returns the number of bytes of explicit nonce
|
|
// included in each record. This is eight for older AEADs and
|
|
// zero for modern ones.
|
|
explicitNonceLen() int
|
|
}
|
|
|
|
const (
|
|
aeadNonceLength = 12
|
|
noncePrefixLength = 4
|
|
)
|
|
|
|
// prefixNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
|
|
// each call.
|
|
type prefixNonceAEAD struct {
|
|
// nonce contains the fixed part of the nonce in the first four bytes.
|
|
nonce [aeadNonceLength]byte
|
|
aead cipher.AEAD
|
|
}
|
|
|
|
func (f *prefixNonceAEAD) NonceSize() int { return aeadNonceLength - noncePrefixLength }
|
|
func (f *prefixNonceAEAD) Overhead() int { return f.aead.Overhead() }
|
|
func (f *prefixNonceAEAD) explicitNonceLen() int { return f.NonceSize() }
|
|
|
|
func (f *prefixNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
|
|
copy(f.nonce[4:], nonce)
|
|
return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
|
|
}
|
|
|
|
func (f *prefixNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
|
|
copy(f.nonce[4:], nonce)
|
|
return f.aead.Open(out, f.nonce[:], ciphertext, additionalData)
|
|
}
|
|
|
|
// xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
|
|
// before each call.
|
|
type xorNonceAEAD struct {
|
|
nonceMask [aeadNonceLength]byte
|
|
aead cipher.AEAD
|
|
}
|
|
|
|
func (f *xorNonceAEAD) NonceSize() int { return 8 } // 64-bit sequence number
|
|
func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() }
|
|
func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
|
|
|
|
func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
|
|
for i, b := range nonce {
|
|
f.nonceMask[4+i] ^= b
|
|
}
|
|
result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
|
|
for i, b := range nonce {
|
|
f.nonceMask[4+i] ^= b
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
func (f *xorNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
|
|
for i, b := range nonce {
|
|
f.nonceMask[4+i] ^= b
|
|
}
|
|
result, err := f.aead.Open(out, f.nonceMask[:], ciphertext, additionalData)
|
|
for i, b := range nonce {
|
|
f.nonceMask[4+i] ^= b
|
|
}
|
|
|
|
return result, err
|
|
}
|
|
|
|
func aeadAESGCM(key, noncePrefix []byte) aead {
|
|
if len(noncePrefix) != noncePrefixLength {
|
|
panic("tls: internal error: wrong nonce length")
|
|
}
|
|
aes, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
aead, err := cipher.NewGCM(aes)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
ret := &prefixNonceAEAD{aead: aead}
|
|
copy(ret.nonce[:], noncePrefix)
|
|
return ret
|
|
}
|
|
|
|
// AEADAESGCMTLS13 creates a new AES-GCM AEAD for TLS 1.3
|
|
func AEADAESGCMTLS13(key, fixedNonce []byte) cipher.AEAD {
|
|
return aeadAESGCMTLS13(key, fixedNonce)
|
|
}
|
|
|
|
func aeadAESGCMTLS13(key, nonceMask []byte) aead {
|
|
if len(nonceMask) != aeadNonceLength {
|
|
panic("tls: internal error: wrong nonce length")
|
|
}
|
|
aes, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
aead, err := cipher.NewGCM(aes)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
ret := &xorNonceAEAD{aead: aead}
|
|
copy(ret.nonceMask[:], nonceMask)
|
|
return ret
|
|
}
|
|
|
|
func aeadChaCha20Poly1305(key, nonceMask []byte) aead {
|
|
if len(nonceMask) != aeadNonceLength {
|
|
panic("tls: internal error: wrong nonce length")
|
|
}
|
|
aead, err := chacha20poly1305.New(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
ret := &xorNonceAEAD{aead: aead}
|
|
copy(ret.nonceMask[:], nonceMask)
|
|
return ret
|
|
}
|
|
|
|
// ssl30MAC implements the SSLv3 MAC function, as defined in
|
|
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
|
|
type ssl30MAC struct {
|
|
h hash.Hash
|
|
key []byte
|
|
buf []byte
|
|
}
|
|
|
|
func (s ssl30MAC) Size() int {
|
|
return s.h.Size()
|
|
}
|
|
|
|
var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
|
|
|
|
var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
|
|
|
|
// MAC does not offer constant timing guarantees for SSL v3.0, since it's deemed
|
|
// useless considering the similar, protocol-level POODLE vulnerability.
|
|
func (s ssl30MAC) MAC(seq, header, data, extra []byte) []byte {
|
|
padLength := 48
|
|
if s.h.Size() == 20 {
|
|
padLength = 40
|
|
}
|
|
|
|
s.h.Reset()
|
|
s.h.Write(s.key)
|
|
s.h.Write(ssl30Pad1[:padLength])
|
|
s.h.Write(seq)
|
|
s.h.Write(header[:1])
|
|
s.h.Write(header[3:5])
|
|
s.h.Write(data)
|
|
s.buf = s.h.Sum(s.buf[:0])
|
|
|
|
s.h.Reset()
|
|
s.h.Write(s.key)
|
|
s.h.Write(ssl30Pad2[:padLength])
|
|
s.h.Write(s.buf)
|
|
return s.h.Sum(s.buf[:0])
|
|
}
|
|
|
|
type constantTimeHash interface {
|
|
hash.Hash
|
|
ConstantTimeSum(b []byte) []byte
|
|
}
|
|
|
|
// cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
|
|
// with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
|
|
type cthWrapper struct {
|
|
h constantTimeHash
|
|
}
|
|
|
|
func (c *cthWrapper) Size() int { return c.h.Size() }
|
|
func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() }
|
|
func (c *cthWrapper) Reset() { c.h.Reset() }
|
|
func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
|
|
func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) }
|
|
|
|
func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
|
|
return func() hash.Hash {
|
|
return &cthWrapper{h().(constantTimeHash)}
|
|
}
|
|
}
|
|
|
|
// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, Section 6.2.3.
|
|
type tls10MAC struct {
|
|
h hash.Hash
|
|
buf []byte
|
|
}
|
|
|
|
func (s tls10MAC) Size() int {
|
|
return s.h.Size()
|
|
}
|
|
|
|
// MAC is guaranteed to take constant time, as long as
|
|
// len(seq)+len(header)+len(data)+len(extra) is constant. extra is not fed into
|
|
// the MAC, but is only provided to make the timing profile constant.
|
|
func (s tls10MAC) MAC(seq, header, data, extra []byte) []byte {
|
|
s.h.Reset()
|
|
s.h.Write(seq)
|
|
s.h.Write(header)
|
|
s.h.Write(data)
|
|
res := s.h.Sum(s.buf[:0])
|
|
if extra != nil {
|
|
s.h.Write(extra)
|
|
}
|
|
return res
|
|
}
|
|
|
|
func rsaKA(version uint16) keyAgreement {
|
|
return rsaKeyAgreement{}
|
|
}
|
|
|
|
func ecdheECDSAKA(version uint16) keyAgreement {
|
|
return &ecdheKeyAgreement{
|
|
isRSA: false,
|
|
version: version,
|
|
}
|
|
}
|
|
|
|
func ecdheRSAKA(version uint16) keyAgreement {
|
|
return &ecdheKeyAgreement{
|
|
isRSA: true,
|
|
version: version,
|
|
}
|
|
}
|
|
|
|
// mutualCipherSuite returns a cipherSuite given a list of supported
|
|
// ciphersuites and the id requested by the peer.
|
|
func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
|
|
for _, id := range have {
|
|
if id == want {
|
|
return cipherSuiteByID(id)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func cipherSuiteByID(id uint16) *cipherSuite {
|
|
for _, cipherSuite := range cipherSuites {
|
|
if cipherSuite.id == id {
|
|
return cipherSuite
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func mutualCipherSuiteTLS13(have []uint16, want uint16) *cipherSuiteTLS13 {
|
|
for _, id := range have {
|
|
if id == want {
|
|
return cipherSuiteTLS13ByID(id)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13 {
|
|
for _, cipherSuite := range cipherSuitesTLS13 {
|
|
if cipherSuite.id == id {
|
|
return cipherSuite
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// A list of cipher suite IDs that are, or have been, implemented by this
|
|
// package.
|
|
//
|
|
// Taken from https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
|
|
const (
|
|
// TLS 1.0 - 1.2 cipher suites.
|
|
TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
|
|
TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
|
|
TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
|
|
TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
|
|
TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c
|
|
TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c
|
|
TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d
|
|
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007
|
|
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
|
|
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
|
|
TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
|
|
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
|
|
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
|
|
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
|
|
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
|
|
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027
|
|
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
|
|
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
|
|
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030
|
|
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
|
|
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca8
|
|
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca9
|
|
|
|
// TLS 1.3 cipher suites.
|
|
TLS_AES_128_GCM_SHA256 uint16 = 0x1301
|
|
TLS_AES_256_GCM_SHA384 uint16 = 0x1302
|
|
TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
|
|
|
|
// TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
|
|
// that the client is doing version fallback. See RFC 7507.
|
|
TLS_FALLBACK_SCSV uint16 = 0x5600
|
|
)
|