ipld-eth-server/vendor/github.com/dgraph-io/badger/levels.go

987 lines
28 KiB
Go

/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bytes"
"fmt"
"math"
"math/rand"
"os"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"golang.org/x/net/trace"
"github.com/dgraph-io/badger/pb"
"github.com/dgraph-io/badger/table"
"github.com/dgraph-io/badger/y"
"github.com/pkg/errors"
)
type levelsController struct {
nextFileID uint64 // Atomic
elog trace.EventLog
// The following are initialized once and const.
levels []*levelHandler
kv *DB
cstatus compactStatus
}
var (
// This is for getting timings between stalls.
lastUnstalled time.Time
)
// revertToManifest checks that all necessary table files exist and removes all table files not
// referenced by the manifest. idMap is a set of table file id's that were read from the directory
// listing.
func revertToManifest(kv *DB, mf *Manifest, idMap map[uint64]struct{}) error {
// 1. Check all files in manifest exist.
for id := range mf.Tables {
if _, ok := idMap[id]; !ok {
return fmt.Errorf("file does not exist for table %d", id)
}
}
// 2. Delete files that shouldn't exist.
for id := range idMap {
if _, ok := mf.Tables[id]; !ok {
kv.elog.Printf("Table file %d not referenced in MANIFEST\n", id)
filename := table.NewFilename(id, kv.opt.Dir)
if err := os.Remove(filename); err != nil {
return y.Wrapf(err, "While removing table %d", id)
}
}
}
return nil
}
func newLevelsController(db *DB, mf *Manifest) (*levelsController, error) {
y.AssertTrue(db.opt.NumLevelZeroTablesStall > db.opt.NumLevelZeroTables)
s := &levelsController{
kv: db,
elog: db.elog,
levels: make([]*levelHandler, db.opt.MaxLevels),
}
s.cstatus.levels = make([]*levelCompactStatus, db.opt.MaxLevels)
for i := 0; i < db.opt.MaxLevels; i++ {
s.levels[i] = newLevelHandler(db, i)
if i == 0 {
// Do nothing.
} else if i == 1 {
// Level 1 probably shouldn't be too much bigger than level 0.
s.levels[i].maxTotalSize = db.opt.LevelOneSize
} else {
s.levels[i].maxTotalSize = s.levels[i-1].maxTotalSize * int64(db.opt.LevelSizeMultiplier)
}
s.cstatus.levels[i] = new(levelCompactStatus)
}
// Compare manifest against directory, check for existent/non-existent files, and remove.
if err := revertToManifest(db, mf, getIDMap(db.opt.Dir)); err != nil {
return nil, err
}
// Some files may be deleted. Let's reload.
var flags uint32 = y.Sync
if db.opt.ReadOnly {
flags |= y.ReadOnly
}
var mu sync.Mutex
tables := make([][]*table.Table, db.opt.MaxLevels)
var maxFileID uint64
// We found that using 3 goroutines allows disk throughput to be utilized to its max.
// Disk utilization is the main thing we should focus on, while trying to read the data. That's
// the one factor that remains constant between HDD and SSD.
throttle := y.NewThrottle(3)
start := time.Now()
var numOpened int32
tick := time.NewTicker(3 * time.Second)
defer tick.Stop()
for fileID, tf := range mf.Tables {
fname := table.NewFilename(fileID, db.opt.Dir)
select {
case <-tick.C:
db.opt.Infof("%d tables out of %d opened in %s\n", atomic.LoadInt32(&numOpened),
len(mf.Tables), time.Since(start).Round(time.Millisecond))
default:
}
if err := throttle.Do(); err != nil {
closeAllTables(tables)
return nil, err
}
if fileID > maxFileID {
maxFileID = fileID
}
go func(fname string, tf TableManifest) {
var rerr error
defer func() {
throttle.Done(rerr)
atomic.AddInt32(&numOpened, 1)
}()
fd, err := y.OpenExistingFile(fname, flags)
if err != nil {
rerr = errors.Wrapf(err, "Opening file: %q", fname)
return
}
t, err := table.OpenTable(fd, db.opt.TableLoadingMode, tf.Checksum)
if err != nil {
if strings.HasPrefix(err.Error(), "CHECKSUM_MISMATCH:") {
db.opt.Errorf(err.Error())
db.opt.Errorf("Ignoring table %s", fd.Name())
// Do not set rerr. We will continue without this table.
} else {
rerr = errors.Wrapf(err, "Opening table: %q", fname)
}
return
}
mu.Lock()
tables[tf.Level] = append(tables[tf.Level], t)
mu.Unlock()
}(fname, tf)
}
if err := throttle.Finish(); err != nil {
closeAllTables(tables)
return nil, err
}
db.opt.Infof("All %d tables opened in %s\n", atomic.LoadInt32(&numOpened),
time.Since(start).Round(time.Millisecond))
s.nextFileID = maxFileID + 1
for i, tbls := range tables {
s.levels[i].initTables(tbls)
}
// Make sure key ranges do not overlap etc.
if err := s.validate(); err != nil {
_ = s.cleanupLevels()
return nil, errors.Wrap(err, "Level validation")
}
// Sync directory (because we have at least removed some files, or previously created the
// manifest file).
if err := syncDir(db.opt.Dir); err != nil {
_ = s.close()
return nil, err
}
return s, nil
}
// Closes the tables, for cleanup in newLevelsController. (We Close() instead of using DecrRef()
// because that would delete the underlying files.) We ignore errors, which is OK because tables
// are read-only.
func closeAllTables(tables [][]*table.Table) {
for _, tableSlice := range tables {
for _, table := range tableSlice {
_ = table.Close()
}
}
}
func (s *levelsController) cleanupLevels() error {
var firstErr error
for _, l := range s.levels {
if err := l.close(); err != nil && firstErr == nil {
firstErr = err
}
}
return firstErr
}
// dropTree picks all tables from all levels, creates a manifest changeset,
// applies it, and then decrements the refs of these tables, which would result
// in their deletion.
func (s *levelsController) dropTree() (int, error) {
// First pick all tables, so we can create a manifest changelog.
var all []*table.Table
for _, l := range s.levels {
l.RLock()
all = append(all, l.tables...)
l.RUnlock()
}
if len(all) == 0 {
return 0, nil
}
// Generate the manifest changes.
changes := []*pb.ManifestChange{}
for _, table := range all {
changes = append(changes, newDeleteChange(table.ID()))
}
changeSet := pb.ManifestChangeSet{Changes: changes}
if err := s.kv.manifest.addChanges(changeSet.Changes); err != nil {
return 0, err
}
// Now that manifest has been successfully written, we can delete the tables.
for _, l := range s.levels {
l.Lock()
l.totalSize = 0
l.tables = l.tables[:0]
l.Unlock()
}
for _, table := range all {
if err := table.DecrRef(); err != nil {
return 0, err
}
}
return len(all), nil
}
// dropPrefix runs a L0->L1 compaction, and then runs same level compaction on the rest of the
// levels. For L0->L1 compaction, it runs compactions normally, but skips over all the keys with the
// provided prefix. For Li->Li compactions, it picks up the tables which would have the prefix. The
// tables who only have keys with this prefix are quickly dropped. The ones which have other keys
// are run through MergeIterator and compacted to create new tables. All the mechanisms of
// compactions apply, i.e. level sizes and MANIFEST are updated as in the normal flow.
func (s *levelsController) dropPrefix(prefix []byte) error {
opt := s.kv.opt
for _, l := range s.levels {
l.RLock()
if l.level == 0 {
size := len(l.tables)
l.RUnlock()
if size > 0 {
cp := compactionPriority{
level: 0,
score: 1.74,
// A unique number greater than 1.0 does two things. Helps identify this
// function in logs, and forces a compaction.
dropPrefix: prefix,
}
if err := s.doCompact(cp); err != nil {
opt.Warningf("While compacting level 0: %v", err)
return nil
}
}
continue
}
var tables []*table.Table
for _, table := range l.tables {
var absent bool
switch {
case bytes.HasPrefix(table.Smallest(), prefix):
case bytes.HasPrefix(table.Biggest(), prefix):
case bytes.Compare(prefix, table.Smallest()) > 0 &&
bytes.Compare(prefix, table.Biggest()) < 0:
default:
absent = true
}
if !absent {
tables = append(tables, table)
}
}
l.RUnlock()
if len(tables) == 0 {
continue
}
cd := compactDef{
elog: trace.New(fmt.Sprintf("Badger.L%d", l.level), "Compact"),
thisLevel: l,
nextLevel: l,
top: []*table.Table{},
bot: tables,
dropPrefix: prefix,
}
if err := s.runCompactDef(l.level, cd); err != nil {
opt.Warningf("While running compact def: %+v. Error: %v", cd, err)
return err
}
}
return nil
}
func (s *levelsController) startCompact(lc *y.Closer) {
n := s.kv.opt.NumCompactors
lc.AddRunning(n - 1)
for i := 0; i < n; i++ {
go s.runWorker(lc)
}
}
func (s *levelsController) runWorker(lc *y.Closer) {
defer lc.Done()
randomDelay := time.NewTimer(time.Duration(rand.Int31n(1000)) * time.Millisecond)
select {
case <-randomDelay.C:
case <-lc.HasBeenClosed():
randomDelay.Stop()
return
}
ticker := time.NewTicker(time.Second)
defer ticker.Stop()
for {
select {
// Can add a done channel or other stuff.
case <-ticker.C:
prios := s.pickCompactLevels()
for _, p := range prios {
if err := s.doCompact(p); err == nil {
break
} else if err == errFillTables {
// pass
} else {
s.kv.opt.Warningf("While running doCompact: %v\n", err)
}
}
case <-lc.HasBeenClosed():
return
}
}
}
// Returns true if level zero may be compacted, without accounting for compactions that already
// might be happening.
func (s *levelsController) isLevel0Compactable() bool {
return s.levels[0].numTables() >= s.kv.opt.NumLevelZeroTables
}
// Returns true if the non-zero level may be compacted. delSize provides the size of the tables
// which are currently being compacted so that we treat them as already having started being
// compacted (because they have been, yet their size is already counted in getTotalSize).
func (l *levelHandler) isCompactable(delSize int64) bool {
return l.getTotalSize()-delSize >= l.maxTotalSize
}
type compactionPriority struct {
level int
score float64
dropPrefix []byte
}
// pickCompactLevel determines which level to compact.
// Based on: https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
func (s *levelsController) pickCompactLevels() (prios []compactionPriority) {
// This function must use identical criteria for guaranteeing compaction's progress that
// addLevel0Table uses.
// cstatus is checked to see if level 0's tables are already being compacted
if !s.cstatus.overlapsWith(0, infRange) && s.isLevel0Compactable() {
pri := compactionPriority{
level: 0,
score: float64(s.levels[0].numTables()) / float64(s.kv.opt.NumLevelZeroTables),
}
prios = append(prios, pri)
}
for i, l := range s.levels[1:] {
// Don't consider those tables that are already being compacted right now.
delSize := s.cstatus.delSize(i + 1)
if l.isCompactable(delSize) {
pri := compactionPriority{
level: i + 1,
score: float64(l.getTotalSize()-delSize) / float64(l.maxTotalSize),
}
prios = append(prios, pri)
}
}
sort.Slice(prios, func(i, j int) bool {
return prios[i].score > prios[j].score
})
return prios
}
// compactBuildTables merge topTables and botTables to form a list of new tables.
func (s *levelsController) compactBuildTables(
lev int, cd compactDef) ([]*table.Table, func() error, error) {
topTables := cd.top
botTables := cd.bot
var hasOverlap bool
{
kr := getKeyRange(cd.top)
for i, lh := range s.levels {
if i <= lev { // Skip upper levels.
continue
}
lh.RLock()
left, right := lh.overlappingTables(levelHandlerRLocked{}, kr)
lh.RUnlock()
if right-left > 0 {
hasOverlap = true
break
}
}
}
// Try to collect stats so that we can inform value log about GC. That would help us find which
// value log file should be GCed.
discardStats := make(map[uint32]int64)
updateStats := func(vs y.ValueStruct) {
if vs.Meta&bitValuePointer > 0 {
var vp valuePointer
vp.Decode(vs.Value)
discardStats[vp.Fid] += int64(vp.Len)
}
}
// Create iterators across all the tables involved first.
var iters []y.Iterator
if lev == 0 {
iters = appendIteratorsReversed(iters, topTables, false)
} else if len(topTables) > 0 {
y.AssertTrue(len(topTables) == 1)
iters = []y.Iterator{topTables[0].NewIterator(false)}
}
// Next level has level>=1 and we can use ConcatIterator as key ranges do not overlap.
var valid []*table.Table
for _, table := range botTables {
if len(cd.dropPrefix) > 0 &&
bytes.HasPrefix(table.Smallest(), cd.dropPrefix) &&
bytes.HasPrefix(table.Biggest(), cd.dropPrefix) {
// All the keys in this table have the dropPrefix. So, this table does not need to be
// in the iterator and can be dropped immediately.
continue
}
valid = append(valid, table)
}
iters = append(iters, table.NewConcatIterator(valid, false))
it := y.NewMergeIterator(iters, false)
defer it.Close() // Important to close the iterator to do ref counting.
it.Rewind()
// Pick a discard ts, so we can discard versions below this ts. We should
// never discard any versions starting from above this timestamp, because
// that would affect the snapshot view guarantee provided by transactions.
discardTs := s.kv.orc.discardAtOrBelow()
// Start generating new tables.
type newTableResult struct {
table *table.Table
err error
}
resultCh := make(chan newTableResult)
var numBuilds, numVersions int
var lastKey, skipKey []byte
for it.Valid() {
timeStart := time.Now()
builder := table.NewTableBuilder()
var numKeys, numSkips uint64
for ; it.Valid(); it.Next() {
// See if we need to skip the prefix.
if len(cd.dropPrefix) > 0 && bytes.HasPrefix(it.Key(), cd.dropPrefix) {
numSkips++
updateStats(it.Value())
continue
}
// See if we need to skip this key.
if len(skipKey) > 0 {
if y.SameKey(it.Key(), skipKey) {
numSkips++
updateStats(it.Value())
continue
} else {
skipKey = skipKey[:0]
}
}
if !y.SameKey(it.Key(), lastKey) {
if builder.ReachedCapacity(s.kv.opt.MaxTableSize) {
// Only break if we are on a different key, and have reached capacity. We want
// to ensure that all versions of the key are stored in the same sstable, and
// not divided across multiple tables at the same level.
break
}
lastKey = y.SafeCopy(lastKey, it.Key())
numVersions = 0
}
vs := it.Value()
version := y.ParseTs(it.Key())
// Do not discard entries inserted by merge operator. These entries will be discarded once they're merged
if version <= discardTs && vs.Meta&bitMergeEntry == 0 {
// Keep track of the number of versions encountered for this key. Only consider the
// versions which are below the minReadTs, otherwise, we might end up discarding the
// only valid version for a running transaction.
numVersions++
lastValidVersion := vs.Meta&bitDiscardEarlierVersions > 0
if isDeletedOrExpired(vs.Meta, vs.ExpiresAt) ||
numVersions > s.kv.opt.NumVersionsToKeep ||
lastValidVersion {
// If this version of the key is deleted or expired, skip all the rest of the
// versions. Ensure that we're only removing versions below readTs.
skipKey = y.SafeCopy(skipKey, it.Key())
if lastValidVersion {
// Add this key. We have set skipKey, so the following key versions
// would be skipped.
} else if hasOverlap {
// If this key range has overlap with lower levels, then keep the deletion
// marker with the latest version, discarding the rest. We have set skipKey,
// so the following key versions would be skipped.
} else {
// If no overlap, we can skip all the versions, by continuing here.
numSkips++
updateStats(vs)
continue // Skip adding this key.
}
}
}
numKeys++
y.Check(builder.Add(it.Key(), it.Value()))
}
// It was true that it.Valid() at least once in the loop above, which means we
// called Add() at least once, and builder is not Empty().
s.kv.opt.Debugf("LOG Compact. Added %d keys. Skipped %d keys. Iteration took: %v",
numKeys, numSkips, time.Since(timeStart))
if !builder.Empty() {
numBuilds++
fileID := s.reserveFileID()
go func(builder *table.Builder) {
defer builder.Close()
fd, err := y.CreateSyncedFile(table.NewFilename(fileID, s.kv.opt.Dir), true)
if err != nil {
resultCh <- newTableResult{nil, errors.Wrapf(err, "While opening new table: %d", fileID)}
return
}
if _, err := fd.Write(builder.Finish()); err != nil {
resultCh <- newTableResult{nil, errors.Wrapf(err, "Unable to write to file: %d", fileID)}
return
}
tbl, err := table.OpenTable(fd, s.kv.opt.TableLoadingMode, nil)
// decrRef is added below.
resultCh <- newTableResult{tbl, errors.Wrapf(err, "Unable to open table: %q", fd.Name())}
}(builder)
}
}
newTables := make([]*table.Table, 0, 20)
// Wait for all table builders to finish.
var firstErr error
for x := 0; x < numBuilds; x++ {
res := <-resultCh
newTables = append(newTables, res.table)
if firstErr == nil {
firstErr = res.err
}
}
if firstErr == nil {
// Ensure created files' directory entries are visible. We don't mind the extra latency
// from not doing this ASAP after all file creation has finished because this is a
// background operation.
firstErr = syncDir(s.kv.opt.Dir)
}
if firstErr != nil {
// An error happened. Delete all the newly created table files (by calling DecrRef
// -- we're the only holders of a ref).
for j := 0; j < numBuilds; j++ {
if newTables[j] != nil {
newTables[j].DecrRef()
}
}
errorReturn := errors.Wrapf(firstErr, "While running compaction for: %+v", cd)
return nil, nil, errorReturn
}
sort.Slice(newTables, func(i, j int) bool {
return y.CompareKeys(newTables[i].Biggest(), newTables[j].Biggest()) < 0
})
s.kv.vlog.updateDiscardStats(discardStats)
s.kv.opt.Debugf("Discard stats: %v", discardStats)
return newTables, func() error { return decrRefs(newTables) }, nil
}
func buildChangeSet(cd *compactDef, newTables []*table.Table) pb.ManifestChangeSet {
changes := []*pb.ManifestChange{}
for _, table := range newTables {
changes = append(changes,
newCreateChange(table.ID(), cd.nextLevel.level, table.Checksum))
}
for _, table := range cd.top {
changes = append(changes, newDeleteChange(table.ID()))
}
for _, table := range cd.bot {
changes = append(changes, newDeleteChange(table.ID()))
}
return pb.ManifestChangeSet{Changes: changes}
}
type compactDef struct {
elog trace.Trace
thisLevel *levelHandler
nextLevel *levelHandler
top []*table.Table
bot []*table.Table
thisRange keyRange
nextRange keyRange
thisSize int64
dropPrefix []byte
}
func (cd *compactDef) lockLevels() {
cd.thisLevel.RLock()
cd.nextLevel.RLock()
}
func (cd *compactDef) unlockLevels() {
cd.nextLevel.RUnlock()
cd.thisLevel.RUnlock()
}
func (s *levelsController) fillTablesL0(cd *compactDef) bool {
cd.lockLevels()
defer cd.unlockLevels()
cd.top = make([]*table.Table, len(cd.thisLevel.tables))
copy(cd.top, cd.thisLevel.tables)
if len(cd.top) == 0 {
return false
}
cd.thisRange = infRange
kr := getKeyRange(cd.top)
left, right := cd.nextLevel.overlappingTables(levelHandlerRLocked{}, kr)
cd.bot = make([]*table.Table, right-left)
copy(cd.bot, cd.nextLevel.tables[left:right])
if len(cd.bot) == 0 {
cd.nextRange = kr
} else {
cd.nextRange = getKeyRange(cd.bot)
}
if !s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd) {
return false
}
return true
}
func (s *levelsController) fillTables(cd *compactDef) bool {
cd.lockLevels()
defer cd.unlockLevels()
tbls := make([]*table.Table, len(cd.thisLevel.tables))
copy(tbls, cd.thisLevel.tables)
if len(tbls) == 0 {
return false
}
// Find the biggest table, and compact that first.
// TODO: Try other table picking strategies.
sort.Slice(tbls, func(i, j int) bool {
return tbls[i].Size() > tbls[j].Size()
})
for _, t := range tbls {
cd.thisSize = t.Size()
cd.thisRange = keyRange{
// We pick all the versions of the smallest and the biggest key.
left: y.KeyWithTs(y.ParseKey(t.Smallest()), math.MaxUint64),
// Note that version zero would be the rightmost key.
right: y.KeyWithTs(y.ParseKey(t.Biggest()), 0),
}
if s.cstatus.overlapsWith(cd.thisLevel.level, cd.thisRange) {
continue
}
cd.top = []*table.Table{t}
left, right := cd.nextLevel.overlappingTables(levelHandlerRLocked{}, cd.thisRange)
cd.bot = make([]*table.Table, right-left)
copy(cd.bot, cd.nextLevel.tables[left:right])
if len(cd.bot) == 0 {
cd.bot = []*table.Table{}
cd.nextRange = cd.thisRange
if !s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd) {
continue
}
return true
}
cd.nextRange = getKeyRange(cd.bot)
if s.cstatus.overlapsWith(cd.nextLevel.level, cd.nextRange) {
continue
}
if !s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd) {
continue
}
return true
}
return false
}
func (s *levelsController) runCompactDef(l int, cd compactDef) (err error) {
timeStart := time.Now()
thisLevel := cd.thisLevel
nextLevel := cd.nextLevel
// Table should never be moved directly between levels, always be rewritten to allow discarding
// invalid versions.
newTables, decr, err := s.compactBuildTables(l, cd)
if err != nil {
return err
}
defer func() {
// Only assign to err, if it's not already nil.
if decErr := decr(); err == nil {
err = decErr
}
}()
changeSet := buildChangeSet(&cd, newTables)
// We write to the manifest _before_ we delete files (and after we created files)
if err := s.kv.manifest.addChanges(changeSet.Changes); err != nil {
return err
}
// See comment earlier in this function about the ordering of these ops, and the order in which
// we access levels when reading.
if err := nextLevel.replaceTables(cd.bot, newTables); err != nil {
return err
}
if err := thisLevel.deleteTables(cd.top); err != nil {
return err
}
// Note: For level 0, while doCompact is running, it is possible that new tables are added.
// However, the tables are added only to the end, so it is ok to just delete the first table.
s.kv.opt.Infof("LOG Compact %d->%d, del %d tables, add %d tables, took %v\n",
thisLevel.level, nextLevel.level, len(cd.top)+len(cd.bot),
len(newTables), time.Since(timeStart))
return nil
}
var errFillTables = errors.New("Unable to fill tables")
// doCompact picks some table on level l and compacts it away to the next level.
func (s *levelsController) doCompact(p compactionPriority) error {
l := p.level
y.AssertTrue(l+1 < s.kv.opt.MaxLevels) // Sanity check.
cd := compactDef{
elog: trace.New(fmt.Sprintf("Badger.L%d", l), "Compact"),
thisLevel: s.levels[l],
nextLevel: s.levels[l+1],
dropPrefix: p.dropPrefix,
}
cd.elog.SetMaxEvents(100)
defer cd.elog.Finish()
s.kv.opt.Infof("Got compaction priority: %+v", p)
// While picking tables to be compacted, both levels' tables are expected to
// remain unchanged.
if l == 0 {
if !s.fillTablesL0(&cd) {
return errFillTables
}
} else {
if !s.fillTables(&cd) {
return errFillTables
}
}
defer s.cstatus.delete(cd) // Remove the ranges from compaction status.
s.kv.opt.Infof("Running for level: %d\n", cd.thisLevel.level)
s.cstatus.toLog(cd.elog)
if err := s.runCompactDef(l, cd); err != nil {
// This compaction couldn't be done successfully.
s.kv.opt.Warningf("LOG Compact FAILED with error: %+v: %+v", err, cd)
return err
}
s.cstatus.toLog(cd.elog)
s.kv.opt.Infof("Compaction for level: %d DONE", cd.thisLevel.level)
return nil
}
func (s *levelsController) addLevel0Table(t *table.Table) error {
// We update the manifest _before_ the table becomes part of a levelHandler, because at that
// point it could get used in some compaction. This ensures the manifest file gets updated in
// the proper order. (That means this update happens before that of some compaction which
// deletes the table.)
err := s.kv.manifest.addChanges([]*pb.ManifestChange{
newCreateChange(t.ID(), 0, t.Checksum),
})
if err != nil {
return err
}
for !s.levels[0].tryAddLevel0Table(t) {
// Stall. Make sure all levels are healthy before we unstall.
var timeStart time.Time
{
s.elog.Printf("STALLED STALLED STALLED: %v\n", time.Since(lastUnstalled))
s.cstatus.RLock()
for i := 0; i < s.kv.opt.MaxLevels; i++ {
s.elog.Printf("level=%d. Status=%s Size=%d\n",
i, s.cstatus.levels[i].debug(), s.levels[i].getTotalSize())
}
s.cstatus.RUnlock()
timeStart = time.Now()
}
// Before we unstall, we need to make sure that level 0 and 1 are healthy. Otherwise, we
// will very quickly fill up level 0 again and if the compaction strategy favors level 0,
// then level 1 is going to super full.
for i := 0; ; i++ {
// Passing 0 for delSize to compactable means we're treating incomplete compactions as
// not having finished -- we wait for them to finish. Also, it's crucial this behavior
// replicates pickCompactLevels' behavior in computing compactability in order to
// guarantee progress.
if !s.isLevel0Compactable() && !s.levels[1].isCompactable(0) {
break
}
time.Sleep(10 * time.Millisecond)
if i%100 == 0 {
prios := s.pickCompactLevels()
s.elog.Printf("Waiting to add level 0 table. Compaction priorities: %+v\n", prios)
i = 0
}
}
{
s.elog.Printf("UNSTALLED UNSTALLED UNSTALLED: %v\n", time.Since(timeStart))
lastUnstalled = time.Now()
}
}
return nil
}
func (s *levelsController) close() error {
err := s.cleanupLevels()
return errors.Wrap(err, "levelsController.Close")
}
// get returns the found value if any. If not found, we return nil.
func (s *levelsController) get(key []byte, maxVs *y.ValueStruct) (y.ValueStruct, error) {
// It's important that we iterate the levels from 0 on upward. The reason is, if we iterated
// in opposite order, or in parallel (naively calling all the h.RLock() in some order) we could
// read level L's tables post-compaction and level L+1's tables pre-compaction. (If we do
// parallelize this, we will need to call the h.RLock() function by increasing order of level
// number.)
version := y.ParseTs(key)
for _, h := range s.levels {
vs, err := h.get(key) // Calls h.RLock() and h.RUnlock().
if err != nil {
return y.ValueStruct{}, errors.Wrapf(err, "get key: %q", key)
}
if vs.Value == nil && vs.Meta == 0 {
continue
}
if maxVs == nil || vs.Version == version {
return vs, nil
}
if maxVs.Version < vs.Version {
*maxVs = vs
}
}
if maxVs != nil {
return *maxVs, nil
}
return y.ValueStruct{}, nil
}
func appendIteratorsReversed(out []y.Iterator, th []*table.Table, reversed bool) []y.Iterator {
for i := len(th) - 1; i >= 0; i-- {
// This will increment the reference of the table handler.
out = append(out, th[i].NewIterator(reversed))
}
return out
}
// appendIterators appends iterators to an array of iterators, for merging.
// Note: This obtains references for the table handlers. Remember to close these iterators.
func (s *levelsController) appendIterators(
iters []y.Iterator, opt *IteratorOptions) []y.Iterator {
// Just like with get, it's important we iterate the levels from 0 on upward, to avoid missing
// data when there's a compaction.
for _, level := range s.levels {
iters = level.appendIterators(iters, opt)
}
return iters
}
// TableInfo represents the information about a table.
type TableInfo struct {
ID uint64
Level int
Left []byte
Right []byte
KeyCount uint64 // Number of keys in the table
}
func (s *levelsController) getTableInfo(withKeysCount bool) (result []TableInfo) {
for _, l := range s.levels {
l.RLock()
for _, t := range l.tables {
var count uint64
if withKeysCount {
it := t.NewIterator(false)
for it.Rewind(); it.Valid(); it.Next() {
count++
}
}
info := TableInfo{
ID: t.ID(),
Level: l.level,
Left: t.Smallest(),
Right: t.Biggest(),
KeyCount: count,
}
result = append(result, info)
}
l.RUnlock()
}
sort.Slice(result, func(i, j int) bool {
if result[i].Level != result[j].Level {
return result[i].Level < result[j].Level
}
return result[i].ID < result[j].ID
})
return
}