forked from cerc-io/ipld-eth-server
2708 lines
83 KiB
Go
2708 lines
83 KiB
Go
|
// Copyright (c) 2013-2017 The btcsuite developers
|
||
|
// Copyright (c) 2015-2017 The Decred developers
|
||
|
// Use of this source code is governed by an ISC
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package main
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"crypto/rand"
|
||
|
"crypto/tls"
|
||
|
"encoding/binary"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"math"
|
||
|
"net"
|
||
|
"runtime"
|
||
|
"sort"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
"sync"
|
||
|
"sync/atomic"
|
||
|
"time"
|
||
|
|
||
|
"github.com/btcsuite/btcd/addrmgr"
|
||
|
"github.com/btcsuite/btcd/blockchain"
|
||
|
"github.com/btcsuite/btcd/blockchain/indexers"
|
||
|
"github.com/btcsuite/btcd/chaincfg"
|
||
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
||
|
"github.com/btcsuite/btcd/connmgr"
|
||
|
"github.com/btcsuite/btcd/database"
|
||
|
"github.com/btcsuite/btcd/mempool"
|
||
|
"github.com/btcsuite/btcd/mining"
|
||
|
"github.com/btcsuite/btcd/mining/cpuminer"
|
||
|
"github.com/btcsuite/btcd/netsync"
|
||
|
"github.com/btcsuite/btcd/peer"
|
||
|
"github.com/btcsuite/btcd/txscript"
|
||
|
"github.com/btcsuite/btcd/wire"
|
||
|
"github.com/btcsuite/btcutil"
|
||
|
"github.com/btcsuite/btcutil/bloom"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
// defaultServices describes the default services that are supported by
|
||
|
// the server.
|
||
|
defaultServices = wire.SFNodeNetwork | wire.SFNodeBloom | wire.SFNodeWitness
|
||
|
|
||
|
// defaultRequiredServices describes the default services that are
|
||
|
// required to be supported by outbound peers.
|
||
|
defaultRequiredServices = wire.SFNodeNetwork
|
||
|
|
||
|
// defaultTargetOutbound is the default number of outbound peers to target.
|
||
|
defaultTargetOutbound = 8
|
||
|
|
||
|
// connectionRetryInterval is the base amount of time to wait in between
|
||
|
// retries when connecting to persistent peers. It is adjusted by the
|
||
|
// number of retries such that there is a retry backoff.
|
||
|
connectionRetryInterval = time.Second * 5
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// userAgentName is the user agent name and is used to help identify
|
||
|
// ourselves to other bitcoin peers.
|
||
|
userAgentName = "btcd"
|
||
|
|
||
|
// userAgentVersion is the user agent version and is used to help
|
||
|
// identify ourselves to other bitcoin peers.
|
||
|
userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch)
|
||
|
)
|
||
|
|
||
|
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
|
||
|
var zeroHash chainhash.Hash
|
||
|
|
||
|
// onionAddr implements the net.Addr interface and represents a tor address.
|
||
|
type onionAddr struct {
|
||
|
addr string
|
||
|
}
|
||
|
|
||
|
// String returns the onion address.
|
||
|
//
|
||
|
// This is part of the net.Addr interface.
|
||
|
func (oa *onionAddr) String() string {
|
||
|
return oa.addr
|
||
|
}
|
||
|
|
||
|
// Network returns "onion".
|
||
|
//
|
||
|
// This is part of the net.Addr interface.
|
||
|
func (oa *onionAddr) Network() string {
|
||
|
return "onion"
|
||
|
}
|
||
|
|
||
|
// Ensure onionAddr implements the net.Addr interface.
|
||
|
var _ net.Addr = (*onionAddr)(nil)
|
||
|
|
||
|
// onionAddr implements the net.Addr interface with two struct fields
|
||
|
type simpleAddr struct {
|
||
|
net, addr string
|
||
|
}
|
||
|
|
||
|
// String returns the address.
|
||
|
//
|
||
|
// This is part of the net.Addr interface.
|
||
|
func (a simpleAddr) String() string {
|
||
|
return a.addr
|
||
|
}
|
||
|
|
||
|
// Network returns the network.
|
||
|
//
|
||
|
// This is part of the net.Addr interface.
|
||
|
func (a simpleAddr) Network() string {
|
||
|
return a.net
|
||
|
}
|
||
|
|
||
|
// Ensure simpleAddr implements the net.Addr interface.
|
||
|
var _ net.Addr = simpleAddr{}
|
||
|
|
||
|
// broadcastMsg provides the ability to house a bitcoin message to be broadcast
|
||
|
// to all connected peers except specified excluded peers.
|
||
|
type broadcastMsg struct {
|
||
|
message wire.Message
|
||
|
excludePeers []*serverPeer
|
||
|
}
|
||
|
|
||
|
// broadcastInventoryAdd is a type used to declare that the InvVect it contains
|
||
|
// needs to be added to the rebroadcast map
|
||
|
type broadcastInventoryAdd relayMsg
|
||
|
|
||
|
// broadcastInventoryDel is a type used to declare that the InvVect it contains
|
||
|
// needs to be removed from the rebroadcast map
|
||
|
type broadcastInventoryDel *wire.InvVect
|
||
|
|
||
|
// relayMsg packages an inventory vector along with the newly discovered
|
||
|
// inventory so the relay has access to that information.
|
||
|
type relayMsg struct {
|
||
|
invVect *wire.InvVect
|
||
|
data interface{}
|
||
|
}
|
||
|
|
||
|
// updatePeerHeightsMsg is a message sent from the blockmanager to the server
|
||
|
// after a new block has been accepted. The purpose of the message is to update
|
||
|
// the heights of peers that were known to announce the block before we
|
||
|
// connected it to the main chain or recognized it as an orphan. With these
|
||
|
// updates, peer heights will be kept up to date, allowing for fresh data when
|
||
|
// selecting sync peer candidacy.
|
||
|
type updatePeerHeightsMsg struct {
|
||
|
newHash *chainhash.Hash
|
||
|
newHeight int32
|
||
|
originPeer *peer.Peer
|
||
|
}
|
||
|
|
||
|
// peerState maintains state of inbound, persistent, outbound peers as well
|
||
|
// as banned peers and outbound groups.
|
||
|
type peerState struct {
|
||
|
inboundPeers map[int32]*serverPeer
|
||
|
outboundPeers map[int32]*serverPeer
|
||
|
persistentPeers map[int32]*serverPeer
|
||
|
banned map[string]time.Time
|
||
|
outboundGroups map[string]int
|
||
|
}
|
||
|
|
||
|
// Count returns the count of all known peers.
|
||
|
func (ps *peerState) Count() int {
|
||
|
return len(ps.inboundPeers) + len(ps.outboundPeers) +
|
||
|
len(ps.persistentPeers)
|
||
|
}
|
||
|
|
||
|
// forAllOutboundPeers is a helper function that runs closure on all outbound
|
||
|
// peers known to peerState.
|
||
|
func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) {
|
||
|
for _, e := range ps.outboundPeers {
|
||
|
closure(e)
|
||
|
}
|
||
|
for _, e := range ps.persistentPeers {
|
||
|
closure(e)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// forAllPeers is a helper function that runs closure on all peers known to
|
||
|
// peerState.
|
||
|
func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) {
|
||
|
for _, e := range ps.inboundPeers {
|
||
|
closure(e)
|
||
|
}
|
||
|
ps.forAllOutboundPeers(closure)
|
||
|
}
|
||
|
|
||
|
// server provides a bitcoin server for handling communications to and from
|
||
|
// bitcoin peers.
|
||
|
type server struct {
|
||
|
// The following variables must only be used atomically.
|
||
|
// Putting the uint64s first makes them 64-bit aligned for 32-bit systems.
|
||
|
bytesReceived uint64 // Total bytes received from all peers since start.
|
||
|
bytesSent uint64 // Total bytes sent by all peers since start.
|
||
|
started int32
|
||
|
shutdown int32
|
||
|
shutdownSched int32
|
||
|
startupTime int64
|
||
|
|
||
|
chainParams *chaincfg.Params
|
||
|
addrManager *addrmgr.AddrManager
|
||
|
connManager *connmgr.ConnManager
|
||
|
sigCache *txscript.SigCache
|
||
|
hashCache *txscript.HashCache
|
||
|
rpcServer *rpcServer
|
||
|
syncManager *netsync.SyncManager
|
||
|
chain *blockchain.BlockChain
|
||
|
txMemPool *mempool.TxPool
|
||
|
cpuMiner *cpuminer.CPUMiner
|
||
|
modifyRebroadcastInv chan interface{}
|
||
|
newPeers chan *serverPeer
|
||
|
donePeers chan *serverPeer
|
||
|
banPeers chan *serverPeer
|
||
|
query chan interface{}
|
||
|
relayInv chan relayMsg
|
||
|
broadcast chan broadcastMsg
|
||
|
peerHeightsUpdate chan updatePeerHeightsMsg
|
||
|
wg sync.WaitGroup
|
||
|
quit chan struct{}
|
||
|
nat NAT
|
||
|
db database.DB
|
||
|
timeSource blockchain.MedianTimeSource
|
||
|
services wire.ServiceFlag
|
||
|
|
||
|
// The following fields are used for optional indexes. They will be nil
|
||
|
// if the associated index is not enabled. These fields are set during
|
||
|
// initial creation of the server and never changed afterwards, so they
|
||
|
// do not need to be protected for concurrent access.
|
||
|
txIndex *indexers.TxIndex
|
||
|
addrIndex *indexers.AddrIndex
|
||
|
}
|
||
|
|
||
|
// serverPeer extends the peer to maintain state shared by the server and
|
||
|
// the blockmanager.
|
||
|
type serverPeer struct {
|
||
|
// The following variables must only be used atomically
|
||
|
feeFilter int64
|
||
|
|
||
|
*peer.Peer
|
||
|
|
||
|
connReq *connmgr.ConnReq
|
||
|
server *server
|
||
|
persistent bool
|
||
|
continueHash *chainhash.Hash
|
||
|
relayMtx sync.Mutex
|
||
|
disableRelayTx bool
|
||
|
sentAddrs bool
|
||
|
isWhitelisted bool
|
||
|
filter *bloom.Filter
|
||
|
knownAddresses map[string]struct{}
|
||
|
banScore connmgr.DynamicBanScore
|
||
|
quit chan struct{}
|
||
|
// The following chans are used to sync blockmanager and server.
|
||
|
txProcessed chan struct{}
|
||
|
blockProcessed chan struct{}
|
||
|
}
|
||
|
|
||
|
// newServerPeer returns a new serverPeer instance. The peer needs to be set by
|
||
|
// the caller.
|
||
|
func newServerPeer(s *server, isPersistent bool) *serverPeer {
|
||
|
return &serverPeer{
|
||
|
server: s,
|
||
|
persistent: isPersistent,
|
||
|
filter: bloom.LoadFilter(nil),
|
||
|
knownAddresses: make(map[string]struct{}),
|
||
|
quit: make(chan struct{}),
|
||
|
txProcessed: make(chan struct{}, 1),
|
||
|
blockProcessed: make(chan struct{}, 1),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// newestBlock returns the current best block hash and height using the format
|
||
|
// required by the configuration for the peer package.
|
||
|
func (sp *serverPeer) newestBlock() (*chainhash.Hash, int32, error) {
|
||
|
best := sp.server.chain.BestSnapshot()
|
||
|
return &best.Hash, best.Height, nil
|
||
|
}
|
||
|
|
||
|
// addKnownAddresses adds the given addresses to the set of known addresses to
|
||
|
// the peer to prevent sending duplicate addresses.
|
||
|
func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) {
|
||
|
for _, na := range addresses {
|
||
|
sp.knownAddresses[addrmgr.NetAddressKey(na)] = struct{}{}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// addressKnown true if the given address is already known to the peer.
|
||
|
func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool {
|
||
|
_, exists := sp.knownAddresses[addrmgr.NetAddressKey(na)]
|
||
|
return exists
|
||
|
}
|
||
|
|
||
|
// setDisableRelayTx toggles relaying of transactions for the given peer.
|
||
|
// It is safe for concurrent access.
|
||
|
func (sp *serverPeer) setDisableRelayTx(disable bool) {
|
||
|
sp.relayMtx.Lock()
|
||
|
sp.disableRelayTx = disable
|
||
|
sp.relayMtx.Unlock()
|
||
|
}
|
||
|
|
||
|
// relayTxDisabled returns whether or not relaying of transactions for the given
|
||
|
// peer is disabled.
|
||
|
// It is safe for concurrent access.
|
||
|
func (sp *serverPeer) relayTxDisabled() bool {
|
||
|
sp.relayMtx.Lock()
|
||
|
isDisabled := sp.disableRelayTx
|
||
|
sp.relayMtx.Unlock()
|
||
|
|
||
|
return isDisabled
|
||
|
}
|
||
|
|
||
|
// pushAddrMsg sends an addr message to the connected peer using the provided
|
||
|
// addresses.
|
||
|
func (sp *serverPeer) pushAddrMsg(addresses []*wire.NetAddress) {
|
||
|
// Filter addresses already known to the peer.
|
||
|
addrs := make([]*wire.NetAddress, 0, len(addresses))
|
||
|
for _, addr := range addresses {
|
||
|
if !sp.addressKnown(addr) {
|
||
|
addrs = append(addrs, addr)
|
||
|
}
|
||
|
}
|
||
|
known, err := sp.PushAddrMsg(addrs)
|
||
|
if err != nil {
|
||
|
peerLog.Errorf("Can't push address message to %s: %v", sp.Peer, err)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
sp.addKnownAddresses(known)
|
||
|
}
|
||
|
|
||
|
// addBanScore increases the persistent and decaying ban score fields by the
|
||
|
// values passed as parameters. If the resulting score exceeds half of the ban
|
||
|
// threshold, a warning is logged including the reason provided. Further, if
|
||
|
// the score is above the ban threshold, the peer will be banned and
|
||
|
// disconnected.
|
||
|
func (sp *serverPeer) addBanScore(persistent, transient uint32, reason string) {
|
||
|
// No warning is logged and no score is calculated if banning is disabled.
|
||
|
if cfg.DisableBanning {
|
||
|
return
|
||
|
}
|
||
|
if sp.isWhitelisted {
|
||
|
peerLog.Debugf("Misbehaving whitelisted peer %s: %s", sp, reason)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
warnThreshold := cfg.BanThreshold >> 1
|
||
|
if transient == 0 && persistent == 0 {
|
||
|
// The score is not being increased, but a warning message is still
|
||
|
// logged if the score is above the warn threshold.
|
||
|
score := sp.banScore.Int()
|
||
|
if score > warnThreshold {
|
||
|
peerLog.Warnf("Misbehaving peer %s: %s -- ban score is %d, "+
|
||
|
"it was not increased this time", sp, reason, score)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
score := sp.banScore.Increase(persistent, transient)
|
||
|
if score > warnThreshold {
|
||
|
peerLog.Warnf("Misbehaving peer %s: %s -- ban score increased to %d",
|
||
|
sp, reason, score)
|
||
|
if score > cfg.BanThreshold {
|
||
|
peerLog.Warnf("Misbehaving peer %s -- banning and disconnecting",
|
||
|
sp)
|
||
|
sp.server.BanPeer(sp)
|
||
|
sp.Disconnect()
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// OnVersion is invoked when a peer receives a version bitcoin message
|
||
|
// and is used to negotiate the protocol version details as well as kick start
|
||
|
// the communications.
|
||
|
func (sp *serverPeer) OnVersion(_ *peer.Peer, msg *wire.MsgVersion) {
|
||
|
// Add the remote peer time as a sample for creating an offset against
|
||
|
// the local clock to keep the network time in sync.
|
||
|
sp.server.timeSource.AddTimeSample(sp.Addr(), msg.Timestamp)
|
||
|
|
||
|
// Signal the sync manager this peer is a new sync candidate.
|
||
|
sp.server.syncManager.NewPeer(sp.Peer)
|
||
|
|
||
|
// Choose whether or not to relay transactions before a filter command
|
||
|
// is received.
|
||
|
sp.setDisableRelayTx(msg.DisableRelayTx)
|
||
|
|
||
|
// Update the address manager and request known addresses from the
|
||
|
// remote peer for outbound connections. This is skipped when running
|
||
|
// on the simulation test network since it is only intended to connect
|
||
|
// to specified peers and actively avoids advertising and connecting to
|
||
|
// discovered peers.
|
||
|
if !cfg.SimNet {
|
||
|
addrManager := sp.server.addrManager
|
||
|
|
||
|
// Outbound connections.
|
||
|
if !sp.Inbound() {
|
||
|
// After soft-fork activation, only make outbound
|
||
|
// connection to peers if they flag that they're segwit
|
||
|
// enabled.
|
||
|
chain := sp.server.chain
|
||
|
segwitActive, err := chain.IsDeploymentActive(chaincfg.DeploymentSegwit)
|
||
|
if err != nil {
|
||
|
peerLog.Errorf("Unable to query for segwit "+
|
||
|
"soft-fork state: %v", err)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if segwitActive && !sp.IsWitnessEnabled() {
|
||
|
peerLog.Infof("Disconnecting non-segwit "+
|
||
|
"peer %v, isn't segwit enabled and "+
|
||
|
"we need more segwit enabled peers", sp)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// TODO(davec): Only do this if not doing the initial block
|
||
|
// download and the local address is routable.
|
||
|
if !cfg.DisableListen /* && isCurrent? */ {
|
||
|
// Get address that best matches.
|
||
|
lna := addrManager.GetBestLocalAddress(sp.NA())
|
||
|
if addrmgr.IsRoutable(lna) {
|
||
|
// Filter addresses the peer already knows about.
|
||
|
addresses := []*wire.NetAddress{lna}
|
||
|
sp.pushAddrMsg(addresses)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Request known addresses if the server address manager needs
|
||
|
// more and the peer has a protocol version new enough to
|
||
|
// include a timestamp with addresses.
|
||
|
hasTimestamp := sp.ProtocolVersion() >=
|
||
|
wire.NetAddressTimeVersion
|
||
|
if addrManager.NeedMoreAddresses() && hasTimestamp {
|
||
|
sp.QueueMessage(wire.NewMsgGetAddr(), nil)
|
||
|
}
|
||
|
|
||
|
// Mark the address as a known good address.
|
||
|
addrManager.Good(sp.NA())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Add valid peer to the server.
|
||
|
sp.server.AddPeer(sp)
|
||
|
}
|
||
|
|
||
|
// OnMemPool is invoked when a peer receives a mempool bitcoin message.
|
||
|
// It creates and sends an inventory message with the contents of the memory
|
||
|
// pool up to the maximum inventory allowed per message. When the peer has a
|
||
|
// bloom filter loaded, the contents are filtered accordingly.
|
||
|
func (sp *serverPeer) OnMemPool(_ *peer.Peer, msg *wire.MsgMemPool) {
|
||
|
// Only allow mempool requests if the server has bloom filtering
|
||
|
// enabled.
|
||
|
if sp.server.services&wire.SFNodeBloom != wire.SFNodeBloom {
|
||
|
peerLog.Debugf("peer %v sent mempool request with bloom "+
|
||
|
"filtering disabled -- disconnecting", sp)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// A decaying ban score increase is applied to prevent flooding.
|
||
|
// The ban score accumulates and passes the ban threshold if a burst of
|
||
|
// mempool messages comes from a peer. The score decays each minute to
|
||
|
// half of its value.
|
||
|
sp.addBanScore(0, 33, "mempool")
|
||
|
|
||
|
// Generate inventory message with the available transactions in the
|
||
|
// transaction memory pool. Limit it to the max allowed inventory
|
||
|
// per message. The NewMsgInvSizeHint function automatically limits
|
||
|
// the passed hint to the maximum allowed, so it's safe to pass it
|
||
|
// without double checking it here.
|
||
|
txMemPool := sp.server.txMemPool
|
||
|
txDescs := txMemPool.TxDescs()
|
||
|
invMsg := wire.NewMsgInvSizeHint(uint(len(txDescs)))
|
||
|
|
||
|
for _, txDesc := range txDescs {
|
||
|
// Either add all transactions when there is no bloom filter,
|
||
|
// or only the transactions that match the filter when there is
|
||
|
// one.
|
||
|
if !sp.filter.IsLoaded() || sp.filter.MatchTxAndUpdate(txDesc.Tx) {
|
||
|
iv := wire.NewInvVect(wire.InvTypeTx, txDesc.Tx.Hash())
|
||
|
invMsg.AddInvVect(iv)
|
||
|
if len(invMsg.InvList)+1 > wire.MaxInvPerMsg {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Send the inventory message if there is anything to send.
|
||
|
if len(invMsg.InvList) > 0 {
|
||
|
sp.QueueMessage(invMsg, nil)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// OnTx is invoked when a peer receives a tx bitcoin message. It blocks
|
||
|
// until the bitcoin transaction has been fully processed. Unlock the block
|
||
|
// handler this does not serialize all transactions through a single thread
|
||
|
// transactions don't rely on the previous one in a linear fashion like blocks.
|
||
|
func (sp *serverPeer) OnTx(_ *peer.Peer, msg *wire.MsgTx) {
|
||
|
if cfg.BlocksOnly {
|
||
|
peerLog.Tracef("Ignoring tx %v from %v - blocksonly enabled",
|
||
|
msg.TxHash(), sp)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Add the transaction to the known inventory for the peer.
|
||
|
// Convert the raw MsgTx to a btcutil.Tx which provides some convenience
|
||
|
// methods and things such as hash caching.
|
||
|
tx := btcutil.NewTx(msg)
|
||
|
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
|
||
|
sp.AddKnownInventory(iv)
|
||
|
|
||
|
// Queue the transaction up to be handled by the sync manager and
|
||
|
// intentionally block further receives until the transaction is fully
|
||
|
// processed and known good or bad. This helps prevent a malicious peer
|
||
|
// from queuing up a bunch of bad transactions before disconnecting (or
|
||
|
// being disconnected) and wasting memory.
|
||
|
sp.server.syncManager.QueueTx(tx, sp.Peer, sp.txProcessed)
|
||
|
<-sp.txProcessed
|
||
|
}
|
||
|
|
||
|
// OnBlock is invoked when a peer receives a block bitcoin message. It
|
||
|
// blocks until the bitcoin block has been fully processed.
|
||
|
func (sp *serverPeer) OnBlock(_ *peer.Peer, msg *wire.MsgBlock, buf []byte) {
|
||
|
// Convert the raw MsgBlock to a btcutil.Block which provides some
|
||
|
// convenience methods and things such as hash caching.
|
||
|
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
|
||
|
|
||
|
// Add the block to the known inventory for the peer.
|
||
|
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
|
||
|
sp.AddKnownInventory(iv)
|
||
|
|
||
|
// Queue the block up to be handled by the block
|
||
|
// manager and intentionally block further receives
|
||
|
// until the bitcoin block is fully processed and known
|
||
|
// good or bad. This helps prevent a malicious peer
|
||
|
// from queuing up a bunch of bad blocks before
|
||
|
// disconnecting (or being disconnected) and wasting
|
||
|
// memory. Additionally, this behavior is depended on
|
||
|
// by at least the block acceptance test tool as the
|
||
|
// reference implementation processes blocks in the same
|
||
|
// thread and therefore blocks further messages until
|
||
|
// the bitcoin block has been fully processed.
|
||
|
sp.server.syncManager.QueueBlock(block, sp.Peer, sp.blockProcessed)
|
||
|
<-sp.blockProcessed
|
||
|
}
|
||
|
|
||
|
// OnInv is invoked when a peer receives an inv bitcoin message and is
|
||
|
// used to examine the inventory being advertised by the remote peer and react
|
||
|
// accordingly. We pass the message down to blockmanager which will call
|
||
|
// QueueMessage with any appropriate responses.
|
||
|
func (sp *serverPeer) OnInv(_ *peer.Peer, msg *wire.MsgInv) {
|
||
|
if !cfg.BlocksOnly {
|
||
|
if len(msg.InvList) > 0 {
|
||
|
sp.server.syncManager.QueueInv(msg, sp.Peer)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
newInv := wire.NewMsgInvSizeHint(uint(len(msg.InvList)))
|
||
|
for _, invVect := range msg.InvList {
|
||
|
if invVect.Type == wire.InvTypeTx {
|
||
|
peerLog.Tracef("Ignoring tx %v in inv from %v -- "+
|
||
|
"blocksonly enabled", invVect.Hash, sp)
|
||
|
if sp.ProtocolVersion() >= wire.BIP0037Version {
|
||
|
peerLog.Infof("Peer %v is announcing "+
|
||
|
"transactions -- disconnecting", sp)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
continue
|
||
|
}
|
||
|
err := newInv.AddInvVect(invVect)
|
||
|
if err != nil {
|
||
|
peerLog.Errorf("Failed to add inventory vector: %v", err)
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if len(newInv.InvList) > 0 {
|
||
|
sp.server.syncManager.QueueInv(newInv, sp.Peer)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// OnHeaders is invoked when a peer receives a headers bitcoin
|
||
|
// message. The message is passed down to the sync manager.
|
||
|
func (sp *serverPeer) OnHeaders(_ *peer.Peer, msg *wire.MsgHeaders) {
|
||
|
sp.server.syncManager.QueueHeaders(msg, sp.Peer)
|
||
|
}
|
||
|
|
||
|
// handleGetData is invoked when a peer receives a getdata bitcoin message and
|
||
|
// is used to deliver block and transaction information.
|
||
|
func (sp *serverPeer) OnGetData(_ *peer.Peer, msg *wire.MsgGetData) {
|
||
|
numAdded := 0
|
||
|
notFound := wire.NewMsgNotFound()
|
||
|
|
||
|
length := len(msg.InvList)
|
||
|
// A decaying ban score increase is applied to prevent exhausting resources
|
||
|
// with unusually large inventory queries.
|
||
|
// Requesting more than the maximum inventory vector length within a short
|
||
|
// period of time yields a score above the default ban threshold. Sustained
|
||
|
// bursts of small requests are not penalized as that would potentially ban
|
||
|
// peers performing IBD.
|
||
|
// This incremental score decays each minute to half of its value.
|
||
|
sp.addBanScore(0, uint32(length)*99/wire.MaxInvPerMsg, "getdata")
|
||
|
|
||
|
// We wait on this wait channel periodically to prevent queuing
|
||
|
// far more data than we can send in a reasonable time, wasting memory.
|
||
|
// The waiting occurs after the database fetch for the next one to
|
||
|
// provide a little pipelining.
|
||
|
var waitChan chan struct{}
|
||
|
doneChan := make(chan struct{}, 1)
|
||
|
|
||
|
for i, iv := range msg.InvList {
|
||
|
var c chan struct{}
|
||
|
// If this will be the last message we send.
|
||
|
if i == length-1 && len(notFound.InvList) == 0 {
|
||
|
c = doneChan
|
||
|
} else if (i+1)%3 == 0 {
|
||
|
// Buffered so as to not make the send goroutine block.
|
||
|
c = make(chan struct{}, 1)
|
||
|
}
|
||
|
var err error
|
||
|
switch iv.Type {
|
||
|
case wire.InvTypeWitnessTx:
|
||
|
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
|
||
|
case wire.InvTypeTx:
|
||
|
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
|
||
|
case wire.InvTypeWitnessBlock:
|
||
|
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
|
||
|
case wire.InvTypeBlock:
|
||
|
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
|
||
|
case wire.InvTypeFilteredWitnessBlock:
|
||
|
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
|
||
|
case wire.InvTypeFilteredBlock:
|
||
|
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
|
||
|
default:
|
||
|
peerLog.Warnf("Unknown type in inventory request %d",
|
||
|
iv.Type)
|
||
|
continue
|
||
|
}
|
||
|
if err != nil {
|
||
|
notFound.AddInvVect(iv)
|
||
|
|
||
|
// When there is a failure fetching the final entry
|
||
|
// and the done channel was sent in due to there
|
||
|
// being no outstanding not found inventory, consume
|
||
|
// it here because there is now not found inventory
|
||
|
// that will use the channel momentarily.
|
||
|
if i == len(msg.InvList)-1 && c != nil {
|
||
|
<-c
|
||
|
}
|
||
|
}
|
||
|
numAdded++
|
||
|
waitChan = c
|
||
|
}
|
||
|
if len(notFound.InvList) != 0 {
|
||
|
sp.QueueMessage(notFound, doneChan)
|
||
|
}
|
||
|
|
||
|
// Wait for messages to be sent. We can send quite a lot of data at this
|
||
|
// point and this will keep the peer busy for a decent amount of time.
|
||
|
// We don't process anything else by them in this time so that we
|
||
|
// have an idea of when we should hear back from them - else the idle
|
||
|
// timeout could fire when we were only half done sending the blocks.
|
||
|
if numAdded > 0 {
|
||
|
<-doneChan
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// OnGetBlocks is invoked when a peer receives a getblocks bitcoin
|
||
|
// message.
|
||
|
func (sp *serverPeer) OnGetBlocks(_ *peer.Peer, msg *wire.MsgGetBlocks) {
|
||
|
// Find the most recent known block in the best chain based on the block
|
||
|
// locator and fetch all of the block hashes after it until either
|
||
|
// wire.MaxBlocksPerMsg have been fetched or the provided stop hash is
|
||
|
// encountered.
|
||
|
//
|
||
|
// Use the block after the genesis block if no other blocks in the
|
||
|
// provided locator are known. This does mean the client will start
|
||
|
// over with the genesis block if unknown block locators are provided.
|
||
|
//
|
||
|
// This mirrors the behavior in the reference implementation.
|
||
|
chain := sp.server.chain
|
||
|
hashList := chain.LocateBlocks(msg.BlockLocatorHashes, &msg.HashStop,
|
||
|
wire.MaxBlocksPerMsg)
|
||
|
|
||
|
// Generate inventory message.
|
||
|
invMsg := wire.NewMsgInv()
|
||
|
for i := range hashList {
|
||
|
iv := wire.NewInvVect(wire.InvTypeBlock, &hashList[i])
|
||
|
invMsg.AddInvVect(iv)
|
||
|
}
|
||
|
|
||
|
// Send the inventory message if there is anything to send.
|
||
|
if len(invMsg.InvList) > 0 {
|
||
|
invListLen := len(invMsg.InvList)
|
||
|
if invListLen == wire.MaxBlocksPerMsg {
|
||
|
// Intentionally use a copy of the final hash so there
|
||
|
// is not a reference into the inventory slice which
|
||
|
// would prevent the entire slice from being eligible
|
||
|
// for GC as soon as it's sent.
|
||
|
continueHash := invMsg.InvList[invListLen-1].Hash
|
||
|
sp.continueHash = &continueHash
|
||
|
}
|
||
|
sp.QueueMessage(invMsg, nil)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// OnGetHeaders is invoked when a peer receives a getheaders bitcoin
|
||
|
// message.
|
||
|
func (sp *serverPeer) OnGetHeaders(_ *peer.Peer, msg *wire.MsgGetHeaders) {
|
||
|
// Ignore getheaders requests if not in sync.
|
||
|
if !sp.server.syncManager.IsCurrent() {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Find the most recent known block in the best chain based on the block
|
||
|
// locator and fetch all of the headers after it until either
|
||
|
// wire.MaxBlockHeadersPerMsg have been fetched or the provided stop
|
||
|
// hash is encountered.
|
||
|
//
|
||
|
// Use the block after the genesis block if no other blocks in the
|
||
|
// provided locator are known. This does mean the client will start
|
||
|
// over with the genesis block if unknown block locators are provided.
|
||
|
//
|
||
|
// This mirrors the behavior in the reference implementation.
|
||
|
chain := sp.server.chain
|
||
|
headers := chain.LocateHeaders(msg.BlockLocatorHashes, &msg.HashStop)
|
||
|
if len(headers) == 0 {
|
||
|
// Nothing to send.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Send found headers to the requesting peer.
|
||
|
blockHeaders := make([]*wire.BlockHeader, len(headers))
|
||
|
for i := range headers {
|
||
|
blockHeaders[i] = &headers[i]
|
||
|
}
|
||
|
sp.QueueMessage(&wire.MsgHeaders{Headers: blockHeaders}, nil)
|
||
|
}
|
||
|
|
||
|
// enforceNodeBloomFlag disconnects the peer if the server is not configured to
|
||
|
// allow bloom filters. Additionally, if the peer has negotiated to a protocol
|
||
|
// version that is high enough to observe the bloom filter service support bit,
|
||
|
// it will be banned since it is intentionally violating the protocol.
|
||
|
func (sp *serverPeer) enforceNodeBloomFlag(cmd string) bool {
|
||
|
if sp.server.services&wire.SFNodeBloom != wire.SFNodeBloom {
|
||
|
// Ban the peer if the protocol version is high enough that the
|
||
|
// peer is knowingly violating the protocol and banning is
|
||
|
// enabled.
|
||
|
//
|
||
|
// NOTE: Even though the addBanScore function already examines
|
||
|
// whether or not banning is enabled, it is checked here as well
|
||
|
// to ensure the violation is logged and the peer is
|
||
|
// disconnected regardless.
|
||
|
if sp.ProtocolVersion() >= wire.BIP0111Version &&
|
||
|
!cfg.DisableBanning {
|
||
|
|
||
|
// Disconnect the peer regardless of whether it was
|
||
|
// banned.
|
||
|
sp.addBanScore(100, 0, cmd)
|
||
|
sp.Disconnect()
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Disconnect the peer regardless of protocol version or banning
|
||
|
// state.
|
||
|
peerLog.Debugf("%s sent an unsupported %s request -- "+
|
||
|
"disconnecting", sp, cmd)
|
||
|
sp.Disconnect()
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// OnFeeFilter is invoked when a peer receives a feefilter bitcoin message and
|
||
|
// is used by remote peers to request that no transactions which have a fee rate
|
||
|
// lower than provided value are inventoried to them. The peer will be
|
||
|
// disconnected if an invalid fee filter value is provided.
|
||
|
func (sp *serverPeer) OnFeeFilter(_ *peer.Peer, msg *wire.MsgFeeFilter) {
|
||
|
// Check that the passed minimum fee is a valid amount.
|
||
|
if msg.MinFee < 0 || msg.MinFee > btcutil.MaxSatoshi {
|
||
|
peerLog.Debugf("Peer %v sent an invalid feefilter '%v' -- "+
|
||
|
"disconnecting", sp, btcutil.Amount(msg.MinFee))
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
atomic.StoreInt64(&sp.feeFilter, msg.MinFee)
|
||
|
}
|
||
|
|
||
|
// OnFilterAdd is invoked when a peer receives a filteradd bitcoin
|
||
|
// message and is used by remote peers to add data to an already loaded bloom
|
||
|
// filter. The peer will be disconnected if a filter is not loaded when this
|
||
|
// message is received or the server is not configured to allow bloom filters.
|
||
|
func (sp *serverPeer) OnFilterAdd(_ *peer.Peer, msg *wire.MsgFilterAdd) {
|
||
|
// Disconnect and/or ban depending on the node bloom services flag and
|
||
|
// negotiated protocol version.
|
||
|
if !sp.enforceNodeBloomFlag(msg.Command()) {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if sp.filter.IsLoaded() {
|
||
|
peerLog.Debugf("%s sent a filteradd request with no filter "+
|
||
|
"loaded -- disconnecting", sp)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
sp.filter.Add(msg.Data)
|
||
|
}
|
||
|
|
||
|
// OnFilterClear is invoked when a peer receives a filterclear bitcoin
|
||
|
// message and is used by remote peers to clear an already loaded bloom filter.
|
||
|
// The peer will be disconnected if a filter is not loaded when this message is
|
||
|
// received or the server is not configured to allow bloom filters.
|
||
|
func (sp *serverPeer) OnFilterClear(_ *peer.Peer, msg *wire.MsgFilterClear) {
|
||
|
// Disconnect and/or ban depending on the node bloom services flag and
|
||
|
// negotiated protocol version.
|
||
|
if !sp.enforceNodeBloomFlag(msg.Command()) {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if !sp.filter.IsLoaded() {
|
||
|
peerLog.Debugf("%s sent a filterclear request with no "+
|
||
|
"filter loaded -- disconnecting", sp)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
sp.filter.Unload()
|
||
|
}
|
||
|
|
||
|
// OnFilterLoad is invoked when a peer receives a filterload bitcoin
|
||
|
// message and it used to load a bloom filter that should be used for
|
||
|
// delivering merkle blocks and associated transactions that match the filter.
|
||
|
// The peer will be disconnected if the server is not configured to allow bloom
|
||
|
// filters.
|
||
|
func (sp *serverPeer) OnFilterLoad(_ *peer.Peer, msg *wire.MsgFilterLoad) {
|
||
|
// Disconnect and/or ban depending on the node bloom services flag and
|
||
|
// negotiated protocol version.
|
||
|
if !sp.enforceNodeBloomFlag(msg.Command()) {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
sp.setDisableRelayTx(false)
|
||
|
|
||
|
sp.filter.Reload(msg)
|
||
|
}
|
||
|
|
||
|
// OnGetAddr is invoked when a peer receives a getaddr bitcoin message
|
||
|
// and is used to provide the peer with known addresses from the address
|
||
|
// manager.
|
||
|
func (sp *serverPeer) OnGetAddr(_ *peer.Peer, msg *wire.MsgGetAddr) {
|
||
|
// Don't return any addresses when running on the simulation test
|
||
|
// network. This helps prevent the network from becoming another
|
||
|
// public test network since it will not be able to learn about other
|
||
|
// peers that have not specifically been provided.
|
||
|
if cfg.SimNet {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Do not accept getaddr requests from outbound peers. This reduces
|
||
|
// fingerprinting attacks.
|
||
|
if !sp.Inbound() {
|
||
|
peerLog.Debugf("Ignoring getaddr request from outbound peer ",
|
||
|
"%v", sp)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Only allow one getaddr request per connection to discourage
|
||
|
// address stamping of inv announcements.
|
||
|
if sp.sentAddrs {
|
||
|
peerLog.Debugf("Ignoring repeated getaddr request from peer ",
|
||
|
"%v", sp)
|
||
|
return
|
||
|
}
|
||
|
sp.sentAddrs = true
|
||
|
|
||
|
// Get the current known addresses from the address manager.
|
||
|
addrCache := sp.server.addrManager.AddressCache()
|
||
|
|
||
|
// Push the addresses.
|
||
|
sp.pushAddrMsg(addrCache)
|
||
|
}
|
||
|
|
||
|
// OnAddr is invoked when a peer receives an addr bitcoin message and is
|
||
|
// used to notify the server about advertised addresses.
|
||
|
func (sp *serverPeer) OnAddr(_ *peer.Peer, msg *wire.MsgAddr) {
|
||
|
// Ignore addresses when running on the simulation test network. This
|
||
|
// helps prevent the network from becoming another public test network
|
||
|
// since it will not be able to learn about other peers that have not
|
||
|
// specifically been provided.
|
||
|
if cfg.SimNet {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Ignore old style addresses which don't include a timestamp.
|
||
|
if sp.ProtocolVersion() < wire.NetAddressTimeVersion {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// A message that has no addresses is invalid.
|
||
|
if len(msg.AddrList) == 0 {
|
||
|
peerLog.Errorf("Command [%s] from %s does not contain any addresses",
|
||
|
msg.Command(), sp)
|
||
|
sp.Disconnect()
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for _, na := range msg.AddrList {
|
||
|
// Don't add more address if we're disconnecting.
|
||
|
if !sp.Connected() {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Set the timestamp to 5 days ago if it's more than 24 hours
|
||
|
// in the future so this address is one of the first to be
|
||
|
// removed when space is needed.
|
||
|
now := time.Now()
|
||
|
if na.Timestamp.After(now.Add(time.Minute * 10)) {
|
||
|
na.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
|
||
|
}
|
||
|
|
||
|
// Add address to known addresses for this peer.
|
||
|
sp.addKnownAddresses([]*wire.NetAddress{na})
|
||
|
}
|
||
|
|
||
|
// Add addresses to server address manager. The address manager handles
|
||
|
// the details of things such as preventing duplicate addresses, max
|
||
|
// addresses, and last seen updates.
|
||
|
// XXX bitcoind gives a 2 hour time penalty here, do we want to do the
|
||
|
// same?
|
||
|
sp.server.addrManager.AddAddresses(msg.AddrList, sp.NA())
|
||
|
}
|
||
|
|
||
|
// OnRead is invoked when a peer receives a message and it is used to update
|
||
|
// the bytes received by the server.
|
||
|
func (sp *serverPeer) OnRead(_ *peer.Peer, bytesRead int, msg wire.Message, err error) {
|
||
|
sp.server.AddBytesReceived(uint64(bytesRead))
|
||
|
}
|
||
|
|
||
|
// OnWrite is invoked when a peer sends a message and it is used to update
|
||
|
// the bytes sent by the server.
|
||
|
func (sp *serverPeer) OnWrite(_ *peer.Peer, bytesWritten int, msg wire.Message, err error) {
|
||
|
sp.server.AddBytesSent(uint64(bytesWritten))
|
||
|
}
|
||
|
|
||
|
// randomUint16Number returns a random uint16 in a specified input range. Note
|
||
|
// that the range is in zeroth ordering; if you pass it 1800, you will get
|
||
|
// values from 0 to 1800.
|
||
|
func randomUint16Number(max uint16) uint16 {
|
||
|
// In order to avoid modulo bias and ensure every possible outcome in
|
||
|
// [0, max) has equal probability, the random number must be sampled
|
||
|
// from a random source that has a range limited to a multiple of the
|
||
|
// modulus.
|
||
|
var randomNumber uint16
|
||
|
var limitRange = (math.MaxUint16 / max) * max
|
||
|
for {
|
||
|
binary.Read(rand.Reader, binary.LittleEndian, &randomNumber)
|
||
|
if randomNumber < limitRange {
|
||
|
return (randomNumber % max)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// AddRebroadcastInventory adds 'iv' to the list of inventories to be
|
||
|
// rebroadcasted at random intervals until they show up in a block.
|
||
|
func (s *server) AddRebroadcastInventory(iv *wire.InvVect, data interface{}) {
|
||
|
// Ignore if shutting down.
|
||
|
if atomic.LoadInt32(&s.shutdown) != 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
s.modifyRebroadcastInv <- broadcastInventoryAdd{invVect: iv, data: data}
|
||
|
}
|
||
|
|
||
|
// RemoveRebroadcastInventory removes 'iv' from the list of items to be
|
||
|
// rebroadcasted if present.
|
||
|
func (s *server) RemoveRebroadcastInventory(iv *wire.InvVect) {
|
||
|
// Ignore if shutting down.
|
||
|
if atomic.LoadInt32(&s.shutdown) != 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
s.modifyRebroadcastInv <- broadcastInventoryDel(iv)
|
||
|
}
|
||
|
|
||
|
// relayTransactions generates and relays inventory vectors for all of the
|
||
|
// passed transactions to all connected peers.
|
||
|
func (s *server) relayTransactions(txns []*mempool.TxDesc) {
|
||
|
for _, txD := range txns {
|
||
|
iv := wire.NewInvVect(wire.InvTypeTx, txD.Tx.Hash())
|
||
|
s.RelayInventory(iv, txD)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// AnnounceNewTransactions generates and relays inventory vectors and notifies
|
||
|
// both websocket and getblocktemplate long poll clients of the passed
|
||
|
// transactions. This function should be called whenever new transactions
|
||
|
// are added to the mempool.
|
||
|
func (s *server) AnnounceNewTransactions(txns []*mempool.TxDesc) {
|
||
|
// Generate and relay inventory vectors for all newly accepted
|
||
|
// transactions.
|
||
|
s.relayTransactions(txns)
|
||
|
|
||
|
// Notify both websocket and getblocktemplate long poll clients of all
|
||
|
// newly accepted transactions.
|
||
|
if s.rpcServer != nil {
|
||
|
s.rpcServer.NotifyNewTransactions(txns)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Transaction has one confirmation on the main chain. Now we can mark it as no
|
||
|
// longer needing rebroadcasting.
|
||
|
func (s *server) TransactionConfirmed(tx *btcutil.Tx) {
|
||
|
// Rebroadcasting is only necessary when the RPC server is active.
|
||
|
if s.rpcServer == nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
|
||
|
s.RemoveRebroadcastInventory(iv)
|
||
|
}
|
||
|
|
||
|
// pushTxMsg sends a tx message for the provided transaction hash to the
|
||
|
// connected peer. An error is returned if the transaction hash is not known.
|
||
|
func (s *server) pushTxMsg(sp *serverPeer, hash *chainhash.Hash, doneChan chan<- struct{},
|
||
|
waitChan <-chan struct{}, encoding wire.MessageEncoding) error {
|
||
|
|
||
|
// Attempt to fetch the requested transaction from the pool. A
|
||
|
// call could be made to check for existence first, but simply trying
|
||
|
// to fetch a missing transaction results in the same behavior.
|
||
|
tx, err := s.txMemPool.FetchTransaction(hash)
|
||
|
if err != nil {
|
||
|
peerLog.Tracef("Unable to fetch tx %v from transaction "+
|
||
|
"pool: %v", hash, err)
|
||
|
|
||
|
if doneChan != nil {
|
||
|
doneChan <- struct{}{}
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Once we have fetched data wait for any previous operation to finish.
|
||
|
if waitChan != nil {
|
||
|
<-waitChan
|
||
|
}
|
||
|
|
||
|
sp.QueueMessageWithEncoding(tx.MsgTx(), doneChan, encoding)
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// pushBlockMsg sends a block message for the provided block hash to the
|
||
|
// connected peer. An error is returned if the block hash is not known.
|
||
|
func (s *server) pushBlockMsg(sp *serverPeer, hash *chainhash.Hash, doneChan chan<- struct{},
|
||
|
waitChan <-chan struct{}, encoding wire.MessageEncoding) error {
|
||
|
|
||
|
// Fetch the raw block bytes from the database.
|
||
|
var blockBytes []byte
|
||
|
err := sp.server.db.View(func(dbTx database.Tx) error {
|
||
|
var err error
|
||
|
blockBytes, err = dbTx.FetchBlock(hash)
|
||
|
return err
|
||
|
})
|
||
|
if err != nil {
|
||
|
peerLog.Tracef("Unable to fetch requested block hash %v: %v",
|
||
|
hash, err)
|
||
|
|
||
|
if doneChan != nil {
|
||
|
doneChan <- struct{}{}
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Deserialize the block.
|
||
|
var msgBlock wire.MsgBlock
|
||
|
err = msgBlock.Deserialize(bytes.NewReader(blockBytes))
|
||
|
if err != nil {
|
||
|
peerLog.Tracef("Unable to deserialize requested block hash "+
|
||
|
"%v: %v", hash, err)
|
||
|
|
||
|
if doneChan != nil {
|
||
|
doneChan <- struct{}{}
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Once we have fetched data wait for any previous operation to finish.
|
||
|
if waitChan != nil {
|
||
|
<-waitChan
|
||
|
}
|
||
|
|
||
|
// We only send the channel for this message if we aren't sending
|
||
|
// an inv straight after.
|
||
|
var dc chan<- struct{}
|
||
|
continueHash := sp.continueHash
|
||
|
sendInv := continueHash != nil && continueHash.IsEqual(hash)
|
||
|
if !sendInv {
|
||
|
dc = doneChan
|
||
|
}
|
||
|
sp.QueueMessageWithEncoding(&msgBlock, dc, encoding)
|
||
|
|
||
|
// When the peer requests the final block that was advertised in
|
||
|
// response to a getblocks message which requested more blocks than
|
||
|
// would fit into a single message, send it a new inventory message
|
||
|
// to trigger it to issue another getblocks message for the next
|
||
|
// batch of inventory.
|
||
|
if sendInv {
|
||
|
best := sp.server.chain.BestSnapshot()
|
||
|
invMsg := wire.NewMsgInvSizeHint(1)
|
||
|
iv := wire.NewInvVect(wire.InvTypeBlock, &best.Hash)
|
||
|
invMsg.AddInvVect(iv)
|
||
|
sp.QueueMessage(invMsg, doneChan)
|
||
|
sp.continueHash = nil
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// pushMerkleBlockMsg sends a merkleblock message for the provided block hash to
|
||
|
// the connected peer. Since a merkle block requires the peer to have a filter
|
||
|
// loaded, this call will simply be ignored if there is no filter loaded. An
|
||
|
// error is returned if the block hash is not known.
|
||
|
func (s *server) pushMerkleBlockMsg(sp *serverPeer, hash *chainhash.Hash,
|
||
|
doneChan chan<- struct{}, waitChan <-chan struct{}, encoding wire.MessageEncoding) error {
|
||
|
|
||
|
// Do not send a response if the peer doesn't have a filter loaded.
|
||
|
if !sp.filter.IsLoaded() {
|
||
|
if doneChan != nil {
|
||
|
doneChan <- struct{}{}
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Fetch the raw block bytes from the database.
|
||
|
blk, err := sp.server.chain.BlockByHash(hash)
|
||
|
if err != nil {
|
||
|
peerLog.Tracef("Unable to fetch requested block hash %v: %v",
|
||
|
hash, err)
|
||
|
|
||
|
if doneChan != nil {
|
||
|
doneChan <- struct{}{}
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Generate a merkle block by filtering the requested block according
|
||
|
// to the filter for the peer.
|
||
|
merkle, matchedTxIndices := bloom.NewMerkleBlock(blk, sp.filter)
|
||
|
|
||
|
// Once we have fetched data wait for any previous operation to finish.
|
||
|
if waitChan != nil {
|
||
|
<-waitChan
|
||
|
}
|
||
|
|
||
|
// Send the merkleblock. Only send the done channel with this message
|
||
|
// if no transactions will be sent afterwards.
|
||
|
var dc chan<- struct{}
|
||
|
if len(matchedTxIndices) == 0 {
|
||
|
dc = doneChan
|
||
|
}
|
||
|
sp.QueueMessage(merkle, dc)
|
||
|
|
||
|
// Finally, send any matched transactions.
|
||
|
blkTransactions := blk.MsgBlock().Transactions
|
||
|
for i, txIndex := range matchedTxIndices {
|
||
|
// Only send the done channel on the final transaction.
|
||
|
var dc chan<- struct{}
|
||
|
if i == len(matchedTxIndices)-1 {
|
||
|
dc = doneChan
|
||
|
}
|
||
|
if txIndex < uint32(len(blkTransactions)) {
|
||
|
sp.QueueMessageWithEncoding(blkTransactions[txIndex], dc,
|
||
|
encoding)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// handleUpdatePeerHeight updates the heights of all peers who were known to
|
||
|
// announce a block we recently accepted.
|
||
|
func (s *server) handleUpdatePeerHeights(state *peerState, umsg updatePeerHeightsMsg) {
|
||
|
state.forAllPeers(func(sp *serverPeer) {
|
||
|
// The origin peer should already have the updated height.
|
||
|
if sp.Peer == umsg.originPeer {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// This is a pointer to the underlying memory which doesn't
|
||
|
// change.
|
||
|
latestBlkHash := sp.LastAnnouncedBlock()
|
||
|
|
||
|
// Skip this peer if it hasn't recently announced any new blocks.
|
||
|
if latestBlkHash == nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// If the peer has recently announced a block, and this block
|
||
|
// matches our newly accepted block, then update their block
|
||
|
// height.
|
||
|
if *latestBlkHash == *umsg.newHash {
|
||
|
sp.UpdateLastBlockHeight(umsg.newHeight)
|
||
|
sp.UpdateLastAnnouncedBlock(nil)
|
||
|
}
|
||
|
})
|
||
|
}
|
||
|
|
||
|
// handleAddPeerMsg deals with adding new peers. It is invoked from the
|
||
|
// peerHandler goroutine.
|
||
|
func (s *server) handleAddPeerMsg(state *peerState, sp *serverPeer) bool {
|
||
|
if sp == nil {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Ignore new peers if we're shutting down.
|
||
|
if atomic.LoadInt32(&s.shutdown) != 0 {
|
||
|
srvrLog.Infof("New peer %s ignored - server is shutting down", sp)
|
||
|
sp.Disconnect()
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Disconnect banned peers.
|
||
|
host, _, err := net.SplitHostPort(sp.Addr())
|
||
|
if err != nil {
|
||
|
srvrLog.Debugf("can't split hostport %v", err)
|
||
|
sp.Disconnect()
|
||
|
return false
|
||
|
}
|
||
|
if banEnd, ok := state.banned[host]; ok {
|
||
|
if time.Now().Before(banEnd) {
|
||
|
srvrLog.Debugf("Peer %s is banned for another %v - disconnecting",
|
||
|
host, time.Until(banEnd))
|
||
|
sp.Disconnect()
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
srvrLog.Infof("Peer %s is no longer banned", host)
|
||
|
delete(state.banned, host)
|
||
|
}
|
||
|
|
||
|
// TODO: Check for max peers from a single IP.
|
||
|
|
||
|
// Limit max number of total peers.
|
||
|
if state.Count() >= cfg.MaxPeers {
|
||
|
srvrLog.Infof("Max peers reached [%d] - disconnecting peer %s",
|
||
|
cfg.MaxPeers, sp)
|
||
|
sp.Disconnect()
|
||
|
// TODO: how to handle permanent peers here?
|
||
|
// they should be rescheduled.
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Add the new peer and start it.
|
||
|
srvrLog.Debugf("New peer %s", sp)
|
||
|
if sp.Inbound() {
|
||
|
state.inboundPeers[sp.ID()] = sp
|
||
|
} else {
|
||
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]++
|
||
|
if sp.persistent {
|
||
|
state.persistentPeers[sp.ID()] = sp
|
||
|
} else {
|
||
|
state.outboundPeers[sp.ID()] = sp
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// handleDonePeerMsg deals with peers that have signalled they are done. It is
|
||
|
// invoked from the peerHandler goroutine.
|
||
|
func (s *server) handleDonePeerMsg(state *peerState, sp *serverPeer) {
|
||
|
var list map[int32]*serverPeer
|
||
|
if sp.persistent {
|
||
|
list = state.persistentPeers
|
||
|
} else if sp.Inbound() {
|
||
|
list = state.inboundPeers
|
||
|
} else {
|
||
|
list = state.outboundPeers
|
||
|
}
|
||
|
if _, ok := list[sp.ID()]; ok {
|
||
|
if !sp.Inbound() && sp.VersionKnown() {
|
||
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
||
|
}
|
||
|
if !sp.Inbound() && sp.connReq != nil {
|
||
|
s.connManager.Disconnect(sp.connReq.ID())
|
||
|
}
|
||
|
delete(list, sp.ID())
|
||
|
srvrLog.Debugf("Removed peer %s", sp)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if sp.connReq != nil {
|
||
|
s.connManager.Disconnect(sp.connReq.ID())
|
||
|
}
|
||
|
|
||
|
// Update the address' last seen time if the peer has acknowledged
|
||
|
// our version and has sent us its version as well.
|
||
|
if sp.VerAckReceived() && sp.VersionKnown() && sp.NA() != nil {
|
||
|
s.addrManager.Connected(sp.NA())
|
||
|
}
|
||
|
|
||
|
// If we get here it means that either we didn't know about the peer
|
||
|
// or we purposefully deleted it.
|
||
|
}
|
||
|
|
||
|
// handleBanPeerMsg deals with banning peers. It is invoked from the
|
||
|
// peerHandler goroutine.
|
||
|
func (s *server) handleBanPeerMsg(state *peerState, sp *serverPeer) {
|
||
|
host, _, err := net.SplitHostPort(sp.Addr())
|
||
|
if err != nil {
|
||
|
srvrLog.Debugf("can't split ban peer %s %v", sp.Addr(), err)
|
||
|
return
|
||
|
}
|
||
|
direction := directionString(sp.Inbound())
|
||
|
srvrLog.Infof("Banned peer %s (%s) for %v", host, direction,
|
||
|
cfg.BanDuration)
|
||
|
state.banned[host] = time.Now().Add(cfg.BanDuration)
|
||
|
}
|
||
|
|
||
|
// handleRelayInvMsg deals with relaying inventory to peers that are not already
|
||
|
// known to have it. It is invoked from the peerHandler goroutine.
|
||
|
func (s *server) handleRelayInvMsg(state *peerState, msg relayMsg) {
|
||
|
state.forAllPeers(func(sp *serverPeer) {
|
||
|
if !sp.Connected() {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// If the inventory is a block and the peer prefers headers,
|
||
|
// generate and send a headers message instead of an inventory
|
||
|
// message.
|
||
|
if msg.invVect.Type == wire.InvTypeBlock && sp.WantsHeaders() {
|
||
|
blockHeader, ok := msg.data.(wire.BlockHeader)
|
||
|
if !ok {
|
||
|
peerLog.Warnf("Underlying data for headers" +
|
||
|
" is not a block header")
|
||
|
return
|
||
|
}
|
||
|
msgHeaders := wire.NewMsgHeaders()
|
||
|
if err := msgHeaders.AddBlockHeader(&blockHeader); err != nil {
|
||
|
peerLog.Errorf("Failed to add block"+
|
||
|
" header: %v", err)
|
||
|
return
|
||
|
}
|
||
|
sp.QueueMessage(msgHeaders, nil)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if msg.invVect.Type == wire.InvTypeTx {
|
||
|
// Don't relay the transaction to the peer when it has
|
||
|
// transaction relaying disabled.
|
||
|
if sp.relayTxDisabled() {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
txD, ok := msg.data.(*mempool.TxDesc)
|
||
|
if !ok {
|
||
|
peerLog.Warnf("Underlying data for tx inv "+
|
||
|
"relay is not a *mempool.TxDesc: %T",
|
||
|
msg.data)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Don't relay the transaction if the transaction fee-per-kb
|
||
|
// is less than the peer's feefilter.
|
||
|
feeFilter := atomic.LoadInt64(&sp.feeFilter)
|
||
|
if feeFilter > 0 && txD.FeePerKB < feeFilter {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Don't relay the transaction if there is a bloom
|
||
|
// filter loaded and the transaction doesn't match it.
|
||
|
if sp.filter.IsLoaded() {
|
||
|
if !sp.filter.MatchTxAndUpdate(txD.Tx) {
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Queue the inventory to be relayed with the next batch.
|
||
|
// It will be ignored if the peer is already known to
|
||
|
// have the inventory.
|
||
|
sp.QueueInventory(msg.invVect)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
// handleBroadcastMsg deals with broadcasting messages to peers. It is invoked
|
||
|
// from the peerHandler goroutine.
|
||
|
func (s *server) handleBroadcastMsg(state *peerState, bmsg *broadcastMsg) {
|
||
|
state.forAllPeers(func(sp *serverPeer) {
|
||
|
if !sp.Connected() {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for _, ep := range bmsg.excludePeers {
|
||
|
if sp == ep {
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sp.QueueMessage(bmsg.message, nil)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
type getConnCountMsg struct {
|
||
|
reply chan int32
|
||
|
}
|
||
|
|
||
|
type getPeersMsg struct {
|
||
|
reply chan []*serverPeer
|
||
|
}
|
||
|
|
||
|
type getOutboundGroup struct {
|
||
|
key string
|
||
|
reply chan int
|
||
|
}
|
||
|
|
||
|
type getAddedNodesMsg struct {
|
||
|
reply chan []*serverPeer
|
||
|
}
|
||
|
|
||
|
type disconnectNodeMsg struct {
|
||
|
cmp func(*serverPeer) bool
|
||
|
reply chan error
|
||
|
}
|
||
|
|
||
|
type connectNodeMsg struct {
|
||
|
addr string
|
||
|
permanent bool
|
||
|
reply chan error
|
||
|
}
|
||
|
|
||
|
type removeNodeMsg struct {
|
||
|
cmp func(*serverPeer) bool
|
||
|
reply chan error
|
||
|
}
|
||
|
|
||
|
// handleQuery is the central handler for all queries and commands from other
|
||
|
// goroutines related to peer state.
|
||
|
func (s *server) handleQuery(state *peerState, querymsg interface{}) {
|
||
|
switch msg := querymsg.(type) {
|
||
|
case getConnCountMsg:
|
||
|
nconnected := int32(0)
|
||
|
state.forAllPeers(func(sp *serverPeer) {
|
||
|
if sp.Connected() {
|
||
|
nconnected++
|
||
|
}
|
||
|
})
|
||
|
msg.reply <- nconnected
|
||
|
|
||
|
case getPeersMsg:
|
||
|
peers := make([]*serverPeer, 0, state.Count())
|
||
|
state.forAllPeers(func(sp *serverPeer) {
|
||
|
if !sp.Connected() {
|
||
|
return
|
||
|
}
|
||
|
peers = append(peers, sp)
|
||
|
})
|
||
|
msg.reply <- peers
|
||
|
|
||
|
case connectNodeMsg:
|
||
|
// TODO: duplicate oneshots?
|
||
|
// Limit max number of total peers.
|
||
|
if state.Count() >= cfg.MaxPeers {
|
||
|
msg.reply <- errors.New("max peers reached")
|
||
|
return
|
||
|
}
|
||
|
for _, peer := range state.persistentPeers {
|
||
|
if peer.Addr() == msg.addr {
|
||
|
if msg.permanent {
|
||
|
msg.reply <- errors.New("peer already connected")
|
||
|
} else {
|
||
|
msg.reply <- errors.New("peer exists as a permanent peer")
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
netAddr, err := addrStringToNetAddr(msg.addr)
|
||
|
if err != nil {
|
||
|
msg.reply <- err
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// TODO: if too many, nuke a non-perm peer.
|
||
|
go s.connManager.Connect(&connmgr.ConnReq{
|
||
|
Addr: netAddr,
|
||
|
Permanent: msg.permanent,
|
||
|
})
|
||
|
msg.reply <- nil
|
||
|
case removeNodeMsg:
|
||
|
found := disconnectPeer(state.persistentPeers, msg.cmp, func(sp *serverPeer) {
|
||
|
// Keep group counts ok since we remove from
|
||
|
// the list now.
|
||
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
||
|
})
|
||
|
|
||
|
if found {
|
||
|
msg.reply <- nil
|
||
|
} else {
|
||
|
msg.reply <- errors.New("peer not found")
|
||
|
}
|
||
|
case getOutboundGroup:
|
||
|
count, ok := state.outboundGroups[msg.key]
|
||
|
if ok {
|
||
|
msg.reply <- count
|
||
|
} else {
|
||
|
msg.reply <- 0
|
||
|
}
|
||
|
// Request a list of the persistent (added) peers.
|
||
|
case getAddedNodesMsg:
|
||
|
// Respond with a slice of the relevant peers.
|
||
|
peers := make([]*serverPeer, 0, len(state.persistentPeers))
|
||
|
for _, sp := range state.persistentPeers {
|
||
|
peers = append(peers, sp)
|
||
|
}
|
||
|
msg.reply <- peers
|
||
|
case disconnectNodeMsg:
|
||
|
// Check inbound peers. We pass a nil callback since we don't
|
||
|
// require any additional actions on disconnect for inbound peers.
|
||
|
found := disconnectPeer(state.inboundPeers, msg.cmp, nil)
|
||
|
if found {
|
||
|
msg.reply <- nil
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Check outbound peers.
|
||
|
found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) {
|
||
|
// Keep group counts ok since we remove from
|
||
|
// the list now.
|
||
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
||
|
})
|
||
|
if found {
|
||
|
// If there are multiple outbound connections to the same
|
||
|
// ip:port, continue disconnecting them all until no such
|
||
|
// peers are found.
|
||
|
for found {
|
||
|
found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) {
|
||
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
||
|
})
|
||
|
}
|
||
|
msg.reply <- nil
|
||
|
return
|
||
|
}
|
||
|
|
||
|
msg.reply <- errors.New("peer not found")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// disconnectPeer attempts to drop the connection of a targeted peer in the
|
||
|
// passed peer list. Targets are identified via usage of the passed
|
||
|
// `compareFunc`, which should return `true` if the passed peer is the target
|
||
|
// peer. This function returns true on success and false if the peer is unable
|
||
|
// to be located. If the peer is found, and the passed callback: `whenFound'
|
||
|
// isn't nil, we call it with the peer as the argument before it is removed
|
||
|
// from the peerList, and is disconnected from the server.
|
||
|
func disconnectPeer(peerList map[int32]*serverPeer, compareFunc func(*serverPeer) bool, whenFound func(*serverPeer)) bool {
|
||
|
for addr, peer := range peerList {
|
||
|
if compareFunc(peer) {
|
||
|
if whenFound != nil {
|
||
|
whenFound(peer)
|
||
|
}
|
||
|
|
||
|
// This is ok because we are not continuing
|
||
|
// to iterate so won't corrupt the loop.
|
||
|
delete(peerList, addr)
|
||
|
peer.Disconnect()
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// newPeerConfig returns the configuration for the given serverPeer.
|
||
|
func newPeerConfig(sp *serverPeer) *peer.Config {
|
||
|
return &peer.Config{
|
||
|
Listeners: peer.MessageListeners{
|
||
|
OnVersion: sp.OnVersion,
|
||
|
OnMemPool: sp.OnMemPool,
|
||
|
OnTx: sp.OnTx,
|
||
|
OnBlock: sp.OnBlock,
|
||
|
OnInv: sp.OnInv,
|
||
|
OnHeaders: sp.OnHeaders,
|
||
|
OnGetData: sp.OnGetData,
|
||
|
OnGetBlocks: sp.OnGetBlocks,
|
||
|
OnGetHeaders: sp.OnGetHeaders,
|
||
|
OnFeeFilter: sp.OnFeeFilter,
|
||
|
OnFilterAdd: sp.OnFilterAdd,
|
||
|
OnFilterClear: sp.OnFilterClear,
|
||
|
OnFilterLoad: sp.OnFilterLoad,
|
||
|
OnGetAddr: sp.OnGetAddr,
|
||
|
OnAddr: sp.OnAddr,
|
||
|
OnRead: sp.OnRead,
|
||
|
OnWrite: sp.OnWrite,
|
||
|
|
||
|
// Note: The reference client currently bans peers that send alerts
|
||
|
// not signed with its key. We could verify against their key, but
|
||
|
// since the reference client is currently unwilling to support
|
||
|
// other implementations' alert messages, we will not relay theirs.
|
||
|
OnAlert: nil,
|
||
|
},
|
||
|
NewestBlock: sp.newestBlock,
|
||
|
HostToNetAddress: sp.server.addrManager.HostToNetAddress,
|
||
|
Proxy: cfg.Proxy,
|
||
|
UserAgentName: userAgentName,
|
||
|
UserAgentVersion: userAgentVersion,
|
||
|
UserAgentComments: cfg.UserAgentComments,
|
||
|
ChainParams: sp.server.chainParams,
|
||
|
Services: sp.server.services,
|
||
|
DisableRelayTx: cfg.BlocksOnly,
|
||
|
ProtocolVersion: peer.MaxProtocolVersion,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// inboundPeerConnected is invoked by the connection manager when a new inbound
|
||
|
// connection is established. It initializes a new inbound server peer
|
||
|
// instance, associates it with the connection, and starts a goroutine to wait
|
||
|
// for disconnection.
|
||
|
func (s *server) inboundPeerConnected(conn net.Conn) {
|
||
|
sp := newServerPeer(s, false)
|
||
|
sp.isWhitelisted = isWhitelisted(conn.RemoteAddr())
|
||
|
sp.Peer = peer.NewInboundPeer(newPeerConfig(sp))
|
||
|
sp.AssociateConnection(conn)
|
||
|
go s.peerDoneHandler(sp)
|
||
|
}
|
||
|
|
||
|
// outboundPeerConnected is invoked by the connection manager when a new
|
||
|
// outbound connection is established. It initializes a new outbound server
|
||
|
// peer instance, associates it with the relevant state such as the connection
|
||
|
// request instance and the connection itself, and finally notifies the address
|
||
|
// manager of the attempt.
|
||
|
func (s *server) outboundPeerConnected(c *connmgr.ConnReq, conn net.Conn) {
|
||
|
sp := newServerPeer(s, c.Permanent)
|
||
|
p, err := peer.NewOutboundPeer(newPeerConfig(sp), c.Addr.String())
|
||
|
if err != nil {
|
||
|
srvrLog.Debugf("Cannot create outbound peer %s: %v", c.Addr, err)
|
||
|
s.connManager.Disconnect(c.ID())
|
||
|
}
|
||
|
sp.Peer = p
|
||
|
sp.connReq = c
|
||
|
sp.isWhitelisted = isWhitelisted(conn.RemoteAddr())
|
||
|
sp.AssociateConnection(conn)
|
||
|
go s.peerDoneHandler(sp)
|
||
|
s.addrManager.Attempt(sp.NA())
|
||
|
}
|
||
|
|
||
|
// peerDoneHandler handles peer disconnects by notifiying the server that it's
|
||
|
// done along with other performing other desirable cleanup.
|
||
|
func (s *server) peerDoneHandler(sp *serverPeer) {
|
||
|
sp.WaitForDisconnect()
|
||
|
s.donePeers <- sp
|
||
|
|
||
|
// Only tell sync manager we are gone if we ever told it we existed.
|
||
|
if sp.VersionKnown() {
|
||
|
s.syncManager.DonePeer(sp.Peer)
|
||
|
|
||
|
// Evict any remaining orphans that were sent by the peer.
|
||
|
numEvicted := s.txMemPool.RemoveOrphansByTag(mempool.Tag(sp.ID()))
|
||
|
if numEvicted > 0 {
|
||
|
txmpLog.Debugf("Evicted %d %s from peer %v (id %d)",
|
||
|
numEvicted, pickNoun(numEvicted, "orphan",
|
||
|
"orphans"), sp, sp.ID())
|
||
|
}
|
||
|
}
|
||
|
close(sp.quit)
|
||
|
}
|
||
|
|
||
|
// peerHandler is used to handle peer operations such as adding and removing
|
||
|
// peers to and from the server, banning peers, and broadcasting messages to
|
||
|
// peers. It must be run in a goroutine.
|
||
|
func (s *server) peerHandler() {
|
||
|
// Start the address manager and sync manager, both of which are needed
|
||
|
// by peers. This is done here since their lifecycle is closely tied
|
||
|
// to this handler and rather than adding more channels to sychronize
|
||
|
// things, it's easier and slightly faster to simply start and stop them
|
||
|
// in this handler.
|
||
|
s.addrManager.Start()
|
||
|
s.syncManager.Start()
|
||
|
|
||
|
srvrLog.Tracef("Starting peer handler")
|
||
|
|
||
|
state := &peerState{
|
||
|
inboundPeers: make(map[int32]*serverPeer),
|
||
|
persistentPeers: make(map[int32]*serverPeer),
|
||
|
outboundPeers: make(map[int32]*serverPeer),
|
||
|
banned: make(map[string]time.Time),
|
||
|
outboundGroups: make(map[string]int),
|
||
|
}
|
||
|
|
||
|
if !cfg.DisableDNSSeed {
|
||
|
// Add peers discovered through DNS to the address manager.
|
||
|
connmgr.SeedFromDNS(activeNetParams.Params, defaultRequiredServices,
|
||
|
btcdLookup, func(addrs []*wire.NetAddress) {
|
||
|
// Bitcoind uses a lookup of the dns seeder here. This
|
||
|
// is rather strange since the values looked up by the
|
||
|
// DNS seed lookups will vary quite a lot.
|
||
|
// to replicate this behaviour we put all addresses as
|
||
|
// having come from the first one.
|
||
|
s.addrManager.AddAddresses(addrs, addrs[0])
|
||
|
})
|
||
|
}
|
||
|
go s.connManager.Start()
|
||
|
|
||
|
out:
|
||
|
for {
|
||
|
select {
|
||
|
// New peers connected to the server.
|
||
|
case p := <-s.newPeers:
|
||
|
s.handleAddPeerMsg(state, p)
|
||
|
|
||
|
// Disconnected peers.
|
||
|
case p := <-s.donePeers:
|
||
|
s.handleDonePeerMsg(state, p)
|
||
|
|
||
|
// Block accepted in mainchain or orphan, update peer height.
|
||
|
case umsg := <-s.peerHeightsUpdate:
|
||
|
s.handleUpdatePeerHeights(state, umsg)
|
||
|
|
||
|
// Peer to ban.
|
||
|
case p := <-s.banPeers:
|
||
|
s.handleBanPeerMsg(state, p)
|
||
|
|
||
|
// New inventory to potentially be relayed to other peers.
|
||
|
case invMsg := <-s.relayInv:
|
||
|
s.handleRelayInvMsg(state, invMsg)
|
||
|
|
||
|
// Message to broadcast to all connected peers except those
|
||
|
// which are excluded by the message.
|
||
|
case bmsg := <-s.broadcast:
|
||
|
s.handleBroadcastMsg(state, &bmsg)
|
||
|
|
||
|
case qmsg := <-s.query:
|
||
|
s.handleQuery(state, qmsg)
|
||
|
|
||
|
case <-s.quit:
|
||
|
// Disconnect all peers on server shutdown.
|
||
|
state.forAllPeers(func(sp *serverPeer) {
|
||
|
srvrLog.Tracef("Shutdown peer %s", sp)
|
||
|
sp.Disconnect()
|
||
|
})
|
||
|
break out
|
||
|
}
|
||
|
}
|
||
|
|
||
|
s.connManager.Stop()
|
||
|
s.syncManager.Stop()
|
||
|
s.addrManager.Stop()
|
||
|
|
||
|
// Drain channels before exiting so nothing is left waiting around
|
||
|
// to send.
|
||
|
cleanup:
|
||
|
for {
|
||
|
select {
|
||
|
case <-s.newPeers:
|
||
|
case <-s.donePeers:
|
||
|
case <-s.peerHeightsUpdate:
|
||
|
case <-s.relayInv:
|
||
|
case <-s.broadcast:
|
||
|
case <-s.query:
|
||
|
default:
|
||
|
break cleanup
|
||
|
}
|
||
|
}
|
||
|
s.wg.Done()
|
||
|
srvrLog.Tracef("Peer handler done")
|
||
|
}
|
||
|
|
||
|
// AddPeer adds a new peer that has already been connected to the server.
|
||
|
func (s *server) AddPeer(sp *serverPeer) {
|
||
|
s.newPeers <- sp
|
||
|
}
|
||
|
|
||
|
// BanPeer bans a peer that has already been connected to the server by ip.
|
||
|
func (s *server) BanPeer(sp *serverPeer) {
|
||
|
s.banPeers <- sp
|
||
|
}
|
||
|
|
||
|
// RelayInventory relays the passed inventory vector to all connected peers
|
||
|
// that are not already known to have it.
|
||
|
func (s *server) RelayInventory(invVect *wire.InvVect, data interface{}) {
|
||
|
s.relayInv <- relayMsg{invVect: invVect, data: data}
|
||
|
}
|
||
|
|
||
|
// BroadcastMessage sends msg to all peers currently connected to the server
|
||
|
// except those in the passed peers to exclude.
|
||
|
func (s *server) BroadcastMessage(msg wire.Message, exclPeers ...*serverPeer) {
|
||
|
// XXX: Need to determine if this is an alert that has already been
|
||
|
// broadcast and refrain from broadcasting again.
|
||
|
bmsg := broadcastMsg{message: msg, excludePeers: exclPeers}
|
||
|
s.broadcast <- bmsg
|
||
|
}
|
||
|
|
||
|
// ConnectedCount returns the number of currently connected peers.
|
||
|
func (s *server) ConnectedCount() int32 {
|
||
|
replyChan := make(chan int32)
|
||
|
|
||
|
s.query <- getConnCountMsg{reply: replyChan}
|
||
|
|
||
|
return <-replyChan
|
||
|
}
|
||
|
|
||
|
// OutboundGroupCount returns the number of peers connected to the given
|
||
|
// outbound group key.
|
||
|
func (s *server) OutboundGroupCount(key string) int {
|
||
|
replyChan := make(chan int)
|
||
|
s.query <- getOutboundGroup{key: key, reply: replyChan}
|
||
|
return <-replyChan
|
||
|
}
|
||
|
|
||
|
// AddBytesSent adds the passed number of bytes to the total bytes sent counter
|
||
|
// for the server. It is safe for concurrent access.
|
||
|
func (s *server) AddBytesSent(bytesSent uint64) {
|
||
|
atomic.AddUint64(&s.bytesSent, bytesSent)
|
||
|
}
|
||
|
|
||
|
// AddBytesReceived adds the passed number of bytes to the total bytes received
|
||
|
// counter for the server. It is safe for concurrent access.
|
||
|
func (s *server) AddBytesReceived(bytesReceived uint64) {
|
||
|
atomic.AddUint64(&s.bytesReceived, bytesReceived)
|
||
|
}
|
||
|
|
||
|
// NetTotals returns the sum of all bytes received and sent across the network
|
||
|
// for all peers. It is safe for concurrent access.
|
||
|
func (s *server) NetTotals() (uint64, uint64) {
|
||
|
return atomic.LoadUint64(&s.bytesReceived),
|
||
|
atomic.LoadUint64(&s.bytesSent)
|
||
|
}
|
||
|
|
||
|
// UpdatePeerHeights updates the heights of all peers who have have announced
|
||
|
// the latest connected main chain block, or a recognized orphan. These height
|
||
|
// updates allow us to dynamically refresh peer heights, ensuring sync peer
|
||
|
// selection has access to the latest block heights for each peer.
|
||
|
func (s *server) UpdatePeerHeights(latestBlkHash *chainhash.Hash, latestHeight int32, updateSource *peer.Peer) {
|
||
|
s.peerHeightsUpdate <- updatePeerHeightsMsg{
|
||
|
newHash: latestBlkHash,
|
||
|
newHeight: latestHeight,
|
||
|
originPeer: updateSource,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// rebroadcastHandler keeps track of user submitted inventories that we have
|
||
|
// sent out but have not yet made it into a block. We periodically rebroadcast
|
||
|
// them in case our peers restarted or otherwise lost track of them.
|
||
|
func (s *server) rebroadcastHandler() {
|
||
|
// Wait 5 min before first tx rebroadcast.
|
||
|
timer := time.NewTimer(5 * time.Minute)
|
||
|
pendingInvs := make(map[wire.InvVect]interface{})
|
||
|
|
||
|
out:
|
||
|
for {
|
||
|
select {
|
||
|
case riv := <-s.modifyRebroadcastInv:
|
||
|
switch msg := riv.(type) {
|
||
|
// Incoming InvVects are added to our map of RPC txs.
|
||
|
case broadcastInventoryAdd:
|
||
|
pendingInvs[*msg.invVect] = msg.data
|
||
|
|
||
|
// When an InvVect has been added to a block, we can
|
||
|
// now remove it, if it was present.
|
||
|
case broadcastInventoryDel:
|
||
|
if _, ok := pendingInvs[*msg]; ok {
|
||
|
delete(pendingInvs, *msg)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
case <-timer.C:
|
||
|
// Any inventory we have has not made it into a block
|
||
|
// yet. We periodically resubmit them until they have.
|
||
|
for iv, data := range pendingInvs {
|
||
|
ivCopy := iv
|
||
|
s.RelayInventory(&ivCopy, data)
|
||
|
}
|
||
|
|
||
|
// Process at a random time up to 30mins (in seconds)
|
||
|
// in the future.
|
||
|
timer.Reset(time.Second *
|
||
|
time.Duration(randomUint16Number(1800)))
|
||
|
|
||
|
case <-s.quit:
|
||
|
break out
|
||
|
}
|
||
|
}
|
||
|
|
||
|
timer.Stop()
|
||
|
|
||
|
// Drain channels before exiting so nothing is left waiting around
|
||
|
// to send.
|
||
|
cleanup:
|
||
|
for {
|
||
|
select {
|
||
|
case <-s.modifyRebroadcastInv:
|
||
|
default:
|
||
|
break cleanup
|
||
|
}
|
||
|
}
|
||
|
s.wg.Done()
|
||
|
}
|
||
|
|
||
|
// Start begins accepting connections from peers.
|
||
|
func (s *server) Start() {
|
||
|
// Already started?
|
||
|
if atomic.AddInt32(&s.started, 1) != 1 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
srvrLog.Trace("Starting server")
|
||
|
|
||
|
// Server startup time. Used for the uptime command for uptime calculation.
|
||
|
s.startupTime = time.Now().Unix()
|
||
|
|
||
|
// Start the peer handler which in turn starts the address and block
|
||
|
// managers.
|
||
|
s.wg.Add(1)
|
||
|
go s.peerHandler()
|
||
|
|
||
|
if s.nat != nil {
|
||
|
s.wg.Add(1)
|
||
|
go s.upnpUpdateThread()
|
||
|
}
|
||
|
|
||
|
if !cfg.DisableRPC {
|
||
|
s.wg.Add(1)
|
||
|
|
||
|
// Start the rebroadcastHandler, which ensures user tx received by
|
||
|
// the RPC server are rebroadcast until being included in a block.
|
||
|
go s.rebroadcastHandler()
|
||
|
|
||
|
s.rpcServer.Start()
|
||
|
}
|
||
|
|
||
|
// Start the CPU miner if generation is enabled.
|
||
|
if cfg.Generate {
|
||
|
s.cpuMiner.Start()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Stop gracefully shuts down the server by stopping and disconnecting all
|
||
|
// peers and the main listener.
|
||
|
func (s *server) Stop() error {
|
||
|
// Make sure this only happens once.
|
||
|
if atomic.AddInt32(&s.shutdown, 1) != 1 {
|
||
|
srvrLog.Infof("Server is already in the process of shutting down")
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
srvrLog.Warnf("Server shutting down")
|
||
|
|
||
|
// Stop the CPU miner if needed
|
||
|
s.cpuMiner.Stop()
|
||
|
|
||
|
// Shutdown the RPC server if it's not disabled.
|
||
|
if !cfg.DisableRPC {
|
||
|
s.rpcServer.Stop()
|
||
|
}
|
||
|
|
||
|
// Signal the remaining goroutines to quit.
|
||
|
close(s.quit)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// WaitForShutdown blocks until the main listener and peer handlers are stopped.
|
||
|
func (s *server) WaitForShutdown() {
|
||
|
s.wg.Wait()
|
||
|
}
|
||
|
|
||
|
// ScheduleShutdown schedules a server shutdown after the specified duration.
|
||
|
// It also dynamically adjusts how often to warn the server is going down based
|
||
|
// on remaining duration.
|
||
|
func (s *server) ScheduleShutdown(duration time.Duration) {
|
||
|
// Don't schedule shutdown more than once.
|
||
|
if atomic.AddInt32(&s.shutdownSched, 1) != 1 {
|
||
|
return
|
||
|
}
|
||
|
srvrLog.Warnf("Server shutdown in %v", duration)
|
||
|
go func() {
|
||
|
remaining := duration
|
||
|
tickDuration := dynamicTickDuration(remaining)
|
||
|
done := time.After(remaining)
|
||
|
ticker := time.NewTicker(tickDuration)
|
||
|
out:
|
||
|
for {
|
||
|
select {
|
||
|
case <-done:
|
||
|
ticker.Stop()
|
||
|
s.Stop()
|
||
|
break out
|
||
|
case <-ticker.C:
|
||
|
remaining = remaining - tickDuration
|
||
|
if remaining < time.Second {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Change tick duration dynamically based on remaining time.
|
||
|
newDuration := dynamicTickDuration(remaining)
|
||
|
if tickDuration != newDuration {
|
||
|
tickDuration = newDuration
|
||
|
ticker.Stop()
|
||
|
ticker = time.NewTicker(tickDuration)
|
||
|
}
|
||
|
srvrLog.Warnf("Server shutdown in %v", remaining)
|
||
|
}
|
||
|
}
|
||
|
}()
|
||
|
}
|
||
|
|
||
|
// parseListeners determines whether each listen address is IPv4 and IPv6 and
|
||
|
// returns a slice of appropriate net.Addrs to listen on with TCP. It also
|
||
|
// properly detects addresses which apply to "all interfaces" and adds the
|
||
|
// address as both IPv4 and IPv6.
|
||
|
func parseListeners(addrs []string) ([]net.Addr, error) {
|
||
|
netAddrs := make([]net.Addr, 0, len(addrs)*2)
|
||
|
for _, addr := range addrs {
|
||
|
host, _, err := net.SplitHostPort(addr)
|
||
|
if err != nil {
|
||
|
// Shouldn't happen due to already being normalized.
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// Empty host or host of * on plan9 is both IPv4 and IPv6.
|
||
|
if host == "" || (host == "*" && runtime.GOOS == "plan9") {
|
||
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp4", addr: addr})
|
||
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp6", addr: addr})
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Strip IPv6 zone id if present since net.ParseIP does not
|
||
|
// handle it.
|
||
|
zoneIndex := strings.LastIndex(host, "%")
|
||
|
if zoneIndex > 0 {
|
||
|
host = host[:zoneIndex]
|
||
|
}
|
||
|
|
||
|
// Parse the IP.
|
||
|
ip := net.ParseIP(host)
|
||
|
if ip == nil {
|
||
|
return nil, fmt.Errorf("'%s' is not a valid IP address", host)
|
||
|
}
|
||
|
|
||
|
// To4 returns nil when the IP is not an IPv4 address, so use
|
||
|
// this determine the address type.
|
||
|
if ip.To4() == nil {
|
||
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp6", addr: addr})
|
||
|
} else {
|
||
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp4", addr: addr})
|
||
|
}
|
||
|
}
|
||
|
return netAddrs, nil
|
||
|
}
|
||
|
|
||
|
func (s *server) upnpUpdateThread() {
|
||
|
// Go off immediately to prevent code duplication, thereafter we renew
|
||
|
// lease every 15 minutes.
|
||
|
timer := time.NewTimer(0 * time.Second)
|
||
|
lport, _ := strconv.ParseInt(activeNetParams.DefaultPort, 10, 16)
|
||
|
first := true
|
||
|
out:
|
||
|
for {
|
||
|
select {
|
||
|
case <-timer.C:
|
||
|
// TODO: pick external port more cleverly
|
||
|
// TODO: know which ports we are listening to on an external net.
|
||
|
// TODO: if specific listen port doesn't work then ask for wildcard
|
||
|
// listen port?
|
||
|
// XXX this assumes timeout is in seconds.
|
||
|
listenPort, err := s.nat.AddPortMapping("tcp", int(lport), int(lport),
|
||
|
"btcd listen port", 20*60)
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("can't add UPnP port mapping: %v", err)
|
||
|
}
|
||
|
if first && err == nil {
|
||
|
// TODO: look this up periodically to see if upnp domain changed
|
||
|
// and so did ip.
|
||
|
externalip, err := s.nat.GetExternalAddress()
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("UPnP can't get external address: %v", err)
|
||
|
continue out
|
||
|
}
|
||
|
na := wire.NewNetAddressIPPort(externalip, uint16(listenPort),
|
||
|
s.services)
|
||
|
err = s.addrManager.AddLocalAddress(na, addrmgr.UpnpPrio)
|
||
|
if err != nil {
|
||
|
// XXX DeletePortMapping?
|
||
|
}
|
||
|
srvrLog.Warnf("Successfully bound via UPnP to %s", addrmgr.NetAddressKey(na))
|
||
|
first = false
|
||
|
}
|
||
|
timer.Reset(time.Minute * 15)
|
||
|
case <-s.quit:
|
||
|
break out
|
||
|
}
|
||
|
}
|
||
|
|
||
|
timer.Stop()
|
||
|
|
||
|
if err := s.nat.DeletePortMapping("tcp", int(lport), int(lport)); err != nil {
|
||
|
srvrLog.Warnf("unable to remove UPnP port mapping: %v", err)
|
||
|
} else {
|
||
|
srvrLog.Debugf("successfully disestablished UPnP port mapping")
|
||
|
}
|
||
|
|
||
|
s.wg.Done()
|
||
|
}
|
||
|
|
||
|
// setupRPCListeners returns a slice of listners that are configured for use
|
||
|
// with the RPC server depending on the configuration settings for listen
|
||
|
// addresses and TLS.
|
||
|
func setupRPCListeners() ([]net.Listener, error) {
|
||
|
// Setup TLS if not disabled.
|
||
|
listenFunc := net.Listen
|
||
|
if !cfg.DisableTLS {
|
||
|
// Generate the TLS cert and key file if both don't already
|
||
|
// exist.
|
||
|
if !fileExists(cfg.RPCKey) && !fileExists(cfg.RPCCert) {
|
||
|
err := genCertPair(cfg.RPCCert, cfg.RPCKey)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
}
|
||
|
keypair, err := tls.LoadX509KeyPair(cfg.RPCCert, cfg.RPCKey)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
tlsConfig := tls.Config{
|
||
|
Certificates: []tls.Certificate{keypair},
|
||
|
MinVersion: tls.VersionTLS12,
|
||
|
}
|
||
|
|
||
|
// Change the standard net.Listen function to the tls one.
|
||
|
listenFunc = func(net string, laddr string) (net.Listener, error) {
|
||
|
return tls.Listen(net, laddr, &tlsConfig)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
netAddrs, err := parseListeners(cfg.RPCListeners)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
listeners := make([]net.Listener, 0, len(netAddrs))
|
||
|
for _, addr := range netAddrs {
|
||
|
listener, err := listenFunc(addr.Network(), addr.String())
|
||
|
if err != nil {
|
||
|
rpcsLog.Warnf("Can't listen on %s: %v", addr, err)
|
||
|
continue
|
||
|
}
|
||
|
listeners = append(listeners, listener)
|
||
|
}
|
||
|
|
||
|
return listeners, nil
|
||
|
}
|
||
|
|
||
|
// newServer returns a new btcd server configured to listen on addr for the
|
||
|
// bitcoin network type specified by chainParams. Use start to begin accepting
|
||
|
// connections from peers.
|
||
|
func newServer(listenAddrs []string, db database.DB, chainParams *chaincfg.Params, interrupt <-chan struct{}) (*server, error) {
|
||
|
services := defaultServices
|
||
|
if cfg.NoPeerBloomFilters {
|
||
|
services &^= wire.SFNodeBloom
|
||
|
}
|
||
|
|
||
|
amgr := addrmgr.New(cfg.DataDir, btcdLookup)
|
||
|
|
||
|
var listeners []net.Listener
|
||
|
var nat NAT
|
||
|
if !cfg.DisableListen {
|
||
|
var err error
|
||
|
listeners, nat, err = initListeners(amgr, listenAddrs, services)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
if len(listeners) == 0 {
|
||
|
return nil, errors.New("no valid listen address")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
s := server{
|
||
|
chainParams: chainParams,
|
||
|
addrManager: amgr,
|
||
|
newPeers: make(chan *serverPeer, cfg.MaxPeers),
|
||
|
donePeers: make(chan *serverPeer, cfg.MaxPeers),
|
||
|
banPeers: make(chan *serverPeer, cfg.MaxPeers),
|
||
|
query: make(chan interface{}),
|
||
|
relayInv: make(chan relayMsg, cfg.MaxPeers),
|
||
|
broadcast: make(chan broadcastMsg, cfg.MaxPeers),
|
||
|
quit: make(chan struct{}),
|
||
|
modifyRebroadcastInv: make(chan interface{}),
|
||
|
peerHeightsUpdate: make(chan updatePeerHeightsMsg),
|
||
|
nat: nat,
|
||
|
db: db,
|
||
|
timeSource: blockchain.NewMedianTime(),
|
||
|
services: services,
|
||
|
sigCache: txscript.NewSigCache(cfg.SigCacheMaxSize),
|
||
|
hashCache: txscript.NewHashCache(cfg.SigCacheMaxSize),
|
||
|
}
|
||
|
|
||
|
// Create the transaction and address indexes if needed.
|
||
|
//
|
||
|
// CAUTION: the txindex needs to be first in the indexes array because
|
||
|
// the addrindex uses data from the txindex during catchup. If the
|
||
|
// addrindex is run first, it may not have the transactions from the
|
||
|
// current block indexed.
|
||
|
var indexes []indexers.Indexer
|
||
|
if cfg.TxIndex || cfg.AddrIndex {
|
||
|
// Enable transaction index if address index is enabled since it
|
||
|
// requires it.
|
||
|
if !cfg.TxIndex {
|
||
|
indxLog.Infof("Transaction index enabled because it " +
|
||
|
"is required by the address index")
|
||
|
cfg.TxIndex = true
|
||
|
} else {
|
||
|
indxLog.Info("Transaction index is enabled")
|
||
|
}
|
||
|
|
||
|
s.txIndex = indexers.NewTxIndex(db)
|
||
|
indexes = append(indexes, s.txIndex)
|
||
|
}
|
||
|
if cfg.AddrIndex {
|
||
|
indxLog.Info("Address index is enabled")
|
||
|
s.addrIndex = indexers.NewAddrIndex(db, chainParams)
|
||
|
indexes = append(indexes, s.addrIndex)
|
||
|
}
|
||
|
|
||
|
// Create an index manager if any of the optional indexes are enabled.
|
||
|
var indexManager blockchain.IndexManager
|
||
|
if len(indexes) > 0 {
|
||
|
indexManager = indexers.NewManager(db, indexes)
|
||
|
}
|
||
|
|
||
|
// Merge given checkpoints with the default ones unless they are disabled.
|
||
|
var checkpoints []chaincfg.Checkpoint
|
||
|
if !cfg.DisableCheckpoints {
|
||
|
checkpoints = mergeCheckpoints(s.chainParams.Checkpoints, cfg.addCheckpoints)
|
||
|
}
|
||
|
|
||
|
// Create a new block chain instance with the appropriate configuration.
|
||
|
var err error
|
||
|
s.chain, err = blockchain.New(&blockchain.Config{
|
||
|
DB: s.db,
|
||
|
Interrupt: interrupt,
|
||
|
ChainParams: s.chainParams,
|
||
|
Checkpoints: checkpoints,
|
||
|
TimeSource: s.timeSource,
|
||
|
SigCache: s.sigCache,
|
||
|
IndexManager: indexManager,
|
||
|
HashCache: s.hashCache,
|
||
|
})
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
txC := mempool.Config{
|
||
|
Policy: mempool.Policy{
|
||
|
DisableRelayPriority: cfg.NoRelayPriority,
|
||
|
AcceptNonStd: cfg.RelayNonStd,
|
||
|
FreeTxRelayLimit: cfg.FreeTxRelayLimit,
|
||
|
MaxOrphanTxs: cfg.MaxOrphanTxs,
|
||
|
MaxOrphanTxSize: defaultMaxOrphanTxSize,
|
||
|
MaxSigOpCostPerTx: blockchain.MaxBlockSigOpsCost / 4,
|
||
|
MinRelayTxFee: cfg.minRelayTxFee,
|
||
|
MaxTxVersion: 2,
|
||
|
},
|
||
|
ChainParams: chainParams,
|
||
|
FetchUtxoView: s.chain.FetchUtxoView,
|
||
|
BestHeight: func() int32 { return s.chain.BestSnapshot().Height },
|
||
|
MedianTimePast: func() time.Time { return s.chain.BestSnapshot().MedianTime },
|
||
|
CalcSequenceLock: func(tx *btcutil.Tx, view *blockchain.UtxoViewpoint) (*blockchain.SequenceLock, error) {
|
||
|
return s.chain.CalcSequenceLock(tx, view, true)
|
||
|
},
|
||
|
IsDeploymentActive: s.chain.IsDeploymentActive,
|
||
|
SigCache: s.sigCache,
|
||
|
HashCache: s.hashCache,
|
||
|
AddrIndex: s.addrIndex,
|
||
|
}
|
||
|
s.txMemPool = mempool.New(&txC)
|
||
|
|
||
|
s.syncManager, err = netsync.New(&netsync.Config{
|
||
|
PeerNotifier: &s,
|
||
|
Chain: s.chain,
|
||
|
TxMemPool: s.txMemPool,
|
||
|
ChainParams: s.chainParams,
|
||
|
DisableCheckpoints: cfg.DisableCheckpoints,
|
||
|
MaxPeers: cfg.MaxPeers,
|
||
|
})
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// Create the mining policy and block template generator based on the
|
||
|
// configuration options.
|
||
|
//
|
||
|
// NOTE: The CPU miner relies on the mempool, so the mempool has to be
|
||
|
// created before calling the function to create the CPU miner.
|
||
|
policy := mining.Policy{
|
||
|
BlockMinWeight: cfg.BlockMinWeight,
|
||
|
BlockMaxWeight: cfg.BlockMaxWeight,
|
||
|
BlockMinSize: cfg.BlockMinSize,
|
||
|
BlockMaxSize: cfg.BlockMaxSize,
|
||
|
BlockPrioritySize: cfg.BlockPrioritySize,
|
||
|
TxMinFreeFee: cfg.minRelayTxFee,
|
||
|
}
|
||
|
blockTemplateGenerator := mining.NewBlkTmplGenerator(&policy,
|
||
|
s.chainParams, s.txMemPool, s.chain, s.timeSource,
|
||
|
s.sigCache, s.hashCache)
|
||
|
s.cpuMiner = cpuminer.New(&cpuminer.Config{
|
||
|
ChainParams: chainParams,
|
||
|
BlockTemplateGenerator: blockTemplateGenerator,
|
||
|
MiningAddrs: cfg.miningAddrs,
|
||
|
ProcessBlock: s.syncManager.ProcessBlock,
|
||
|
ConnectedCount: s.ConnectedCount,
|
||
|
IsCurrent: s.syncManager.IsCurrent,
|
||
|
})
|
||
|
|
||
|
// Only setup a function to return new addresses to connect to when
|
||
|
// not running in connect-only mode. The simulation network is always
|
||
|
// in connect-only mode since it is only intended to connect to
|
||
|
// specified peers and actively avoid advertising and connecting to
|
||
|
// discovered peers in order to prevent it from becoming a public test
|
||
|
// network.
|
||
|
var newAddressFunc func() (net.Addr, error)
|
||
|
if !cfg.SimNet && len(cfg.ConnectPeers) == 0 {
|
||
|
newAddressFunc = func() (net.Addr, error) {
|
||
|
for tries := 0; tries < 100; tries++ {
|
||
|
addr := s.addrManager.GetAddress()
|
||
|
if addr == nil {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
// Address will not be invalid, local or unroutable
|
||
|
// because addrmanager rejects those on addition.
|
||
|
// Just check that we don't already have an address
|
||
|
// in the same group so that we are not connecting
|
||
|
// to the same network segment at the expense of
|
||
|
// others.
|
||
|
key := addrmgr.GroupKey(addr.NetAddress())
|
||
|
if s.OutboundGroupCount(key) != 0 {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// only allow recent nodes (10mins) after we failed 30
|
||
|
// times
|
||
|
if tries < 30 && time.Since(addr.LastAttempt()) < 10*time.Minute {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// allow nondefault ports after 50 failed tries.
|
||
|
if tries < 50 && fmt.Sprintf("%d", addr.NetAddress().Port) !=
|
||
|
activeNetParams.DefaultPort {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
addrString := addrmgr.NetAddressKey(addr.NetAddress())
|
||
|
return addrStringToNetAddr(addrString)
|
||
|
}
|
||
|
|
||
|
return nil, errors.New("no valid connect address")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create a connection manager.
|
||
|
targetOutbound := defaultTargetOutbound
|
||
|
if cfg.MaxPeers < targetOutbound {
|
||
|
targetOutbound = cfg.MaxPeers
|
||
|
}
|
||
|
cmgr, err := connmgr.New(&connmgr.Config{
|
||
|
Listeners: listeners,
|
||
|
OnAccept: s.inboundPeerConnected,
|
||
|
RetryDuration: connectionRetryInterval,
|
||
|
TargetOutbound: uint32(targetOutbound),
|
||
|
Dial: btcdDial,
|
||
|
OnConnection: s.outboundPeerConnected,
|
||
|
GetNewAddress: newAddressFunc,
|
||
|
})
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
s.connManager = cmgr
|
||
|
|
||
|
// Start up persistent peers.
|
||
|
permanentPeers := cfg.ConnectPeers
|
||
|
if len(permanentPeers) == 0 {
|
||
|
permanentPeers = cfg.AddPeers
|
||
|
}
|
||
|
for _, addr := range permanentPeers {
|
||
|
netAddr, err := addrStringToNetAddr(addr)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
go s.connManager.Connect(&connmgr.ConnReq{
|
||
|
Addr: netAddr,
|
||
|
Permanent: true,
|
||
|
})
|
||
|
}
|
||
|
|
||
|
if !cfg.DisableRPC {
|
||
|
// Setup listeners for the configured RPC listen addresses and
|
||
|
// TLS settings.
|
||
|
rpcListeners, err := setupRPCListeners()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
if len(rpcListeners) == 0 {
|
||
|
return nil, errors.New("RPCS: No valid listen address")
|
||
|
}
|
||
|
|
||
|
s.rpcServer, err = newRPCServer(&rpcserverConfig{
|
||
|
Listeners: rpcListeners,
|
||
|
StartupTime: s.startupTime,
|
||
|
ConnMgr: &rpcConnManager{&s},
|
||
|
SyncMgr: &rpcSyncMgr{&s, s.syncManager},
|
||
|
TimeSource: s.timeSource,
|
||
|
Chain: s.chain,
|
||
|
ChainParams: chainParams,
|
||
|
DB: db,
|
||
|
TxMemPool: s.txMemPool,
|
||
|
Generator: blockTemplateGenerator,
|
||
|
CPUMiner: s.cpuMiner,
|
||
|
TxIndex: s.txIndex,
|
||
|
AddrIndex: s.addrIndex,
|
||
|
})
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// Signal process shutdown when the RPC server requests it.
|
||
|
go func() {
|
||
|
<-s.rpcServer.RequestedProcessShutdown()
|
||
|
shutdownRequestChannel <- struct{}{}
|
||
|
}()
|
||
|
}
|
||
|
|
||
|
return &s, nil
|
||
|
}
|
||
|
|
||
|
// initListeners initializes the configured net listeners and adds any bound
|
||
|
// addresses to the address manager. Returns the listeners and a NAT interface,
|
||
|
// which is non-nil if UPnP is in use.
|
||
|
func initListeners(amgr *addrmgr.AddrManager, listenAddrs []string, services wire.ServiceFlag) ([]net.Listener, NAT, error) {
|
||
|
// Listen for TCP connections at the configured addresses
|
||
|
netAddrs, err := parseListeners(listenAddrs)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
listeners := make([]net.Listener, 0, len(netAddrs))
|
||
|
for _, addr := range netAddrs {
|
||
|
listener, err := net.Listen(addr.Network(), addr.String())
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("Can't listen on %s: %v", addr, err)
|
||
|
continue
|
||
|
}
|
||
|
listeners = append(listeners, listener)
|
||
|
}
|
||
|
|
||
|
var nat NAT
|
||
|
if len(cfg.ExternalIPs) != 0 {
|
||
|
defaultPort, err := strconv.ParseUint(activeNetParams.DefaultPort, 10, 16)
|
||
|
if err != nil {
|
||
|
srvrLog.Errorf("Can not parse default port %s for active chain: %v",
|
||
|
activeNetParams.DefaultPort, err)
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
for _, sip := range cfg.ExternalIPs {
|
||
|
eport := uint16(defaultPort)
|
||
|
host, portstr, err := net.SplitHostPort(sip)
|
||
|
if err != nil {
|
||
|
// no port, use default.
|
||
|
host = sip
|
||
|
} else {
|
||
|
port, err := strconv.ParseUint(portstr, 10, 16)
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("Can not parse port from %s for "+
|
||
|
"externalip: %v", sip, err)
|
||
|
continue
|
||
|
}
|
||
|
eport = uint16(port)
|
||
|
}
|
||
|
na, err := amgr.HostToNetAddress(host, eport, services)
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("Not adding %s as externalip: %v", sip, err)
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
err = amgr.AddLocalAddress(na, addrmgr.ManualPrio)
|
||
|
if err != nil {
|
||
|
amgrLog.Warnf("Skipping specified external IP: %v", err)
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if cfg.Upnp {
|
||
|
var err error
|
||
|
nat, err = Discover()
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("Can't discover upnp: %v", err)
|
||
|
}
|
||
|
// nil nat here is fine, just means no upnp on network.
|
||
|
}
|
||
|
|
||
|
// Add bound addresses to address manager to be advertised to peers.
|
||
|
for _, listener := range listeners {
|
||
|
addr := listener.Addr().String()
|
||
|
err := addLocalAddress(amgr, addr, services)
|
||
|
if err != nil {
|
||
|
amgrLog.Warnf("Skipping bound address %s: %v", addr, err)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return listeners, nat, nil
|
||
|
}
|
||
|
|
||
|
// addrStringToNetAddr takes an address in the form of 'host:port' and returns
|
||
|
// a net.Addr which maps to the original address with any host names resolved
|
||
|
// to IP addresses. It also handles tor addresses properly by returning a
|
||
|
// net.Addr that encapsulates the address.
|
||
|
func addrStringToNetAddr(addr string) (net.Addr, error) {
|
||
|
host, strPort, err := net.SplitHostPort(addr)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
port, err := strconv.Atoi(strPort)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// Skip if host is already an IP address.
|
||
|
if ip := net.ParseIP(host); ip != nil {
|
||
|
return &net.TCPAddr{
|
||
|
IP: ip,
|
||
|
Port: port,
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// Tor addresses cannot be resolved to an IP, so just return an onion
|
||
|
// address instead.
|
||
|
if strings.HasSuffix(host, ".onion") {
|
||
|
if cfg.NoOnion {
|
||
|
return nil, errors.New("tor has been disabled")
|
||
|
}
|
||
|
|
||
|
return &onionAddr{addr: addr}, nil
|
||
|
}
|
||
|
|
||
|
// Attempt to look up an IP address associated with the parsed host.
|
||
|
ips, err := btcdLookup(host)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
if len(ips) == 0 {
|
||
|
return nil, fmt.Errorf("no addresses found for %s", host)
|
||
|
}
|
||
|
|
||
|
return &net.TCPAddr{
|
||
|
IP: ips[0],
|
||
|
Port: port,
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// addLocalAddress adds an address that this node is listening on to the
|
||
|
// address manager so that it may be relayed to peers.
|
||
|
func addLocalAddress(addrMgr *addrmgr.AddrManager, addr string, services wire.ServiceFlag) error {
|
||
|
host, portStr, err := net.SplitHostPort(addr)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
port, err := strconv.ParseUint(portStr, 10, 16)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
if ip := net.ParseIP(host); ip != nil && ip.IsUnspecified() {
|
||
|
// If bound to unspecified address, advertise all local interfaces
|
||
|
addrs, err := net.InterfaceAddrs()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
for _, addr := range addrs {
|
||
|
ifaceIP, _, err := net.ParseCIDR(addr.String())
|
||
|
if err != nil {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// If bound to 0.0.0.0, do not add IPv6 interfaces and if bound to
|
||
|
// ::, do not add IPv4 interfaces.
|
||
|
if (ip.To4() == nil) != (ifaceIP.To4() == nil) {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
netAddr := wire.NewNetAddressIPPort(ifaceIP, uint16(port), services)
|
||
|
addrMgr.AddLocalAddress(netAddr, addrmgr.BoundPrio)
|
||
|
}
|
||
|
} else {
|
||
|
netAddr, err := addrMgr.HostToNetAddress(host, uint16(port), services)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
addrMgr.AddLocalAddress(netAddr, addrmgr.BoundPrio)
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// dynamicTickDuration is a convenience function used to dynamically choose a
|
||
|
// tick duration based on remaining time. It is primarily used during
|
||
|
// server shutdown to make shutdown warnings more frequent as the shutdown time
|
||
|
// approaches.
|
||
|
func dynamicTickDuration(remaining time.Duration) time.Duration {
|
||
|
switch {
|
||
|
case remaining <= time.Second*5:
|
||
|
return time.Second
|
||
|
case remaining <= time.Second*15:
|
||
|
return time.Second * 5
|
||
|
case remaining <= time.Minute:
|
||
|
return time.Second * 15
|
||
|
case remaining <= time.Minute*5:
|
||
|
return time.Minute
|
||
|
case remaining <= time.Minute*15:
|
||
|
return time.Minute * 5
|
||
|
case remaining <= time.Hour:
|
||
|
return time.Minute * 15
|
||
|
}
|
||
|
return time.Hour
|
||
|
}
|
||
|
|
||
|
// isWhitelisted returns whether the IP address is included in the whitelisted
|
||
|
// networks and IPs.
|
||
|
func isWhitelisted(addr net.Addr) bool {
|
||
|
if len(cfg.whitelists) == 0 {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
host, _, err := net.SplitHostPort(addr.String())
|
||
|
if err != nil {
|
||
|
srvrLog.Warnf("Unable to SplitHostPort on '%s': %v", addr, err)
|
||
|
return false
|
||
|
}
|
||
|
ip := net.ParseIP(host)
|
||
|
if ip == nil {
|
||
|
srvrLog.Warnf("Unable to parse IP '%s'", addr)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
for _, ipnet := range cfg.whitelists {
|
||
|
if ipnet.Contains(ip) {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// checkpointSorter implements sort.Interface to allow a slice of checkpoints to
|
||
|
// be sorted.
|
||
|
type checkpointSorter []chaincfg.Checkpoint
|
||
|
|
||
|
// Len returns the number of checkpoints in the slice. It is part of the
|
||
|
// sort.Interface implementation.
|
||
|
func (s checkpointSorter) Len() int {
|
||
|
return len(s)
|
||
|
}
|
||
|
|
||
|
// Swap swaps the checkpoints at the passed indices. It is part of the
|
||
|
// sort.Interface implementation.
|
||
|
func (s checkpointSorter) Swap(i, j int) {
|
||
|
s[i], s[j] = s[j], s[i]
|
||
|
}
|
||
|
|
||
|
// Less returns whether the checkpoint with index i should sort before the
|
||
|
// checkpoint with index j. It is part of the sort.Interface implementation.
|
||
|
func (s checkpointSorter) Less(i, j int) bool {
|
||
|
return s[i].Height < s[j].Height
|
||
|
}
|
||
|
|
||
|
// mergeCheckpoints returns two slices of checkpoints merged into one slice
|
||
|
// such that the checkpoints are sorted by height. In the case the additional
|
||
|
// checkpoints contain a checkpoint with the same height as a checkpoint in the
|
||
|
// default checkpoints, the additional checkpoint will take precedence and
|
||
|
// overwrite the default one.
|
||
|
func mergeCheckpoints(defaultCheckpoints, additional []chaincfg.Checkpoint) []chaincfg.Checkpoint {
|
||
|
// Create a map of the additional checkpoints to remove duplicates while
|
||
|
// leaving the most recently-specified checkpoint.
|
||
|
extra := make(map[int32]chaincfg.Checkpoint)
|
||
|
for _, checkpoint := range additional {
|
||
|
extra[checkpoint.Height] = checkpoint
|
||
|
}
|
||
|
|
||
|
// Add all default checkpoints that do not have an override in the
|
||
|
// additional checkpoints.
|
||
|
numDefault := len(defaultCheckpoints)
|
||
|
checkpoints := make([]chaincfg.Checkpoint, 0, numDefault+len(extra))
|
||
|
for _, checkpoint := range defaultCheckpoints {
|
||
|
if _, exists := extra[checkpoint.Height]; !exists {
|
||
|
checkpoints = append(checkpoints, checkpoint)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Append the additional checkpoints and return the sorted results.
|
||
|
for _, checkpoint := range extra {
|
||
|
checkpoints = append(checkpoints, checkpoint)
|
||
|
}
|
||
|
sort.Sort(checkpointSorter(checkpoints))
|
||
|
return checkpoints
|
||
|
}
|