forked from cerc-io/ipld-eth-server
267 lines
8.1 KiB
Go
267 lines
8.1 KiB
Go
|
package bip39
|
||
|
|
||
|
import (
|
||
|
"crypto/rand"
|
||
|
"crypto/sha256"
|
||
|
"crypto/sha512"
|
||
|
"encoding/binary"
|
||
|
"errors"
|
||
|
"math/big"
|
||
|
"strings"
|
||
|
|
||
|
"github.com/tyler-smith/go-bip39/wordlists"
|
||
|
"golang.org/x/crypto/pbkdf2"
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// Some bitwise operands for working with big.Ints
|
||
|
last11BitsMask = big.NewInt(2047)
|
||
|
rightShift11BitsDivider = big.NewInt(2048)
|
||
|
bigOne = big.NewInt(1)
|
||
|
bigTwo = big.NewInt(2)
|
||
|
|
||
|
// wordList is the set of words to use
|
||
|
wordList []string
|
||
|
|
||
|
// wordMap is a reverse lookup map for wordList
|
||
|
wordMap map[string]int
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// ErrInvalidMnemonic is returned when trying to use a malformed mnemonic.
|
||
|
ErrInvalidMnemonic = errors.New("Invalid menomic")
|
||
|
|
||
|
// ErrEntropyLengthInvalid is returned when trying to use an entropy set with
|
||
|
// an invalid size.
|
||
|
ErrEntropyLengthInvalid = errors.New("Entropy length must be [128, 256] and a multiple of 32")
|
||
|
|
||
|
// ErrValidatedSeedLengthMismatch is returned when a validated seed is not the
|
||
|
// same size as the given seed. This should never happen is present only as a
|
||
|
// sanity assertion.
|
||
|
ErrValidatedSeedLengthMismatch = errors.New("Seed length does not match validated seed length")
|
||
|
|
||
|
// ErrChecksumIncorrect is returned when entropy has the incorrect checksum.
|
||
|
ErrChecksumIncorrect = errors.New("Checksum incorrect")
|
||
|
)
|
||
|
|
||
|
func init() {
|
||
|
SetWordList(wordlists.English)
|
||
|
}
|
||
|
|
||
|
// SetWordList sets the list of words to use for mnemonics. Currently the list
|
||
|
// that is set is used package-wide.
|
||
|
func SetWordList(list []string) {
|
||
|
wordList = list
|
||
|
wordMap = map[string]int{}
|
||
|
for i, v := range wordList {
|
||
|
wordMap[v] = i
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NewEntropy will create random entropy bytes
|
||
|
// so long as the requested size bitSize is an appropriate size.
|
||
|
func NewEntropy(bitSize int) ([]byte, error) {
|
||
|
err := validateEntropyBitSize(bitSize)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
entropy := make([]byte, bitSize/8)
|
||
|
_, err = rand.Read(entropy)
|
||
|
return entropy, err
|
||
|
}
|
||
|
|
||
|
// NewMnemonic will return a string consisting of the mnemonic words for
|
||
|
// the given entropy.
|
||
|
// If the provide entropy is invalid, an error will be returned.
|
||
|
func NewMnemonic(entropy []byte) (string, error) {
|
||
|
// Compute some lengths for convenience
|
||
|
entropyBitLength := len(entropy) * 8
|
||
|
checksumBitLength := entropyBitLength / 32
|
||
|
sentenceLength := (entropyBitLength + checksumBitLength) / 11
|
||
|
|
||
|
err := validateEntropyBitSize(entropyBitLength)
|
||
|
if err != nil {
|
||
|
return "", err
|
||
|
}
|
||
|
|
||
|
// Add checksum to entropy
|
||
|
entropy = addChecksum(entropy)
|
||
|
|
||
|
// Break entropy up into sentenceLength chunks of 11 bits
|
||
|
// For each word AND mask the rightmost 11 bits and find the word at that index
|
||
|
// Then bitshift entropy 11 bits right and repeat
|
||
|
// Add to the last empty slot so we can work with LSBs instead of MSB
|
||
|
|
||
|
// Entropy as an int so we can bitmask without worrying about bytes slices
|
||
|
entropyInt := new(big.Int).SetBytes(entropy)
|
||
|
|
||
|
// Slice to hold words in
|
||
|
words := make([]string, sentenceLength)
|
||
|
|
||
|
// Throw away big int for AND masking
|
||
|
word := big.NewInt(0)
|
||
|
|
||
|
for i := sentenceLength - 1; i >= 0; i-- {
|
||
|
// Get 11 right most bits and bitshift 11 to the right for next time
|
||
|
word.And(entropyInt, last11BitsMask)
|
||
|
entropyInt.Div(entropyInt, rightShift11BitsDivider)
|
||
|
|
||
|
// Get the bytes representing the 11 bits as a 2 byte slice
|
||
|
wordBytes := padByteSlice(word.Bytes(), 2)
|
||
|
|
||
|
// Convert bytes to an index and add that word to the list
|
||
|
words[i] = wordList[binary.BigEndian.Uint16(wordBytes)]
|
||
|
}
|
||
|
|
||
|
return strings.Join(words, " "), nil
|
||
|
}
|
||
|
|
||
|
// MnemonicToByteArray takes a mnemonic string and turns it into a byte array
|
||
|
// suitable for creating another mnemonic.
|
||
|
// An error is returned if the mnemonic is invalid.
|
||
|
func MnemonicToByteArray(mnemonic string) ([]byte, error) {
|
||
|
var (
|
||
|
mnemonicSlice = strings.Split(mnemonic, " ")
|
||
|
entropyBitSize = len(mnemonicSlice) * 11
|
||
|
checksumBitSize = entropyBitSize % 32
|
||
|
fullByteSize = (entropyBitSize-checksumBitSize)/8 + 1
|
||
|
checksumByteSize = fullByteSize - (fullByteSize % 4)
|
||
|
)
|
||
|
|
||
|
// Pre validate that the mnemonic is well formed and only contains words that
|
||
|
// are present in the word list
|
||
|
if !IsMnemonicValid(mnemonic) {
|
||
|
return nil, ErrInvalidMnemonic
|
||
|
}
|
||
|
|
||
|
// Convert word indices to a `big.Int` representing the entropy
|
||
|
checksummedEntropy := big.NewInt(0)
|
||
|
modulo := big.NewInt(2048)
|
||
|
for _, v := range mnemonicSlice {
|
||
|
index := big.NewInt(int64(wordMap[v]))
|
||
|
checksummedEntropy.Mul(checksummedEntropy, modulo)
|
||
|
checksummedEntropy.Add(checksummedEntropy, index)
|
||
|
}
|
||
|
|
||
|
// Calculate the unchecksummed entropy so we can validate that the checksum is
|
||
|
// correct
|
||
|
checksumModulo := big.NewInt(0).Exp(bigTwo, big.NewInt(int64(checksumBitSize)), nil)
|
||
|
rawEntropy := big.NewInt(0).Div(checksummedEntropy, checksumModulo)
|
||
|
|
||
|
// Convert `big.Int`s to byte padded byte slices
|
||
|
rawEntropyBytes := padByteSlice(rawEntropy.Bytes(), checksumByteSize)
|
||
|
checksummedEntropyBytes := padByteSlice(checksummedEntropy.Bytes(), fullByteSize)
|
||
|
|
||
|
// Validate that the checksum is correct
|
||
|
newChecksummedEntropyBytes := padByteSlice(addChecksum(rawEntropyBytes), fullByteSize)
|
||
|
if !compareByteSlices(checksummedEntropyBytes, newChecksummedEntropyBytes) {
|
||
|
return nil, ErrChecksumIncorrect
|
||
|
}
|
||
|
|
||
|
return checksummedEntropyBytes, nil
|
||
|
}
|
||
|
|
||
|
// NewSeedWithErrorChecking creates a hashed seed output given the mnemonic string and a password.
|
||
|
// An error is returned if the mnemonic is not convertible to a byte array.
|
||
|
func NewSeedWithErrorChecking(mnemonic string, password string) ([]byte, error) {
|
||
|
_, err := MnemonicToByteArray(mnemonic)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return NewSeed(mnemonic, password), nil
|
||
|
}
|
||
|
|
||
|
// NewSeed creates a hashed seed output given a provided string and password.
|
||
|
// No checking is performed to validate that the string provided is a valid mnemonic.
|
||
|
func NewSeed(mnemonic string, password string) []byte {
|
||
|
return pbkdf2.Key([]byte(mnemonic), []byte("mnemonic"+password), 2048, 64, sha512.New)
|
||
|
}
|
||
|
|
||
|
// IsMnemonicValid attempts to verify that the provided mnemonic is valid.
|
||
|
// Validity is determined by both the number of words being appropriate,
|
||
|
// and that all the words in the mnemonic are present in the word list.
|
||
|
func IsMnemonicValid(mnemonic string) bool {
|
||
|
// Create a list of all the words in the mnemonic sentence
|
||
|
words := strings.Fields(mnemonic)
|
||
|
|
||
|
// Get word count
|
||
|
wordCount := len(words)
|
||
|
|
||
|
// The number of words should be 12, 15, 18, 21 or 24
|
||
|
if wordCount%3 != 0 || wordCount < 12 || wordCount > 24 {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Check if all words belong in the wordlist
|
||
|
for _, word := range words {
|
||
|
if _, ok := wordMap[word]; !ok {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// Appends to data the first (len(data) / 32)bits of the result of sha256(data)
|
||
|
// Currently only supports data up to 32 bytes
|
||
|
func addChecksum(data []byte) []byte {
|
||
|
// Get first byte of sha256
|
||
|
hasher := sha256.New()
|
||
|
hasher.Write(data)
|
||
|
hash := hasher.Sum(nil)
|
||
|
firstChecksumByte := hash[0]
|
||
|
|
||
|
// len() is in bytes so we divide by 4
|
||
|
checksumBitLength := uint(len(data) / 4)
|
||
|
|
||
|
// For each bit of check sum we want we shift the data one the left
|
||
|
// and then set the (new) right most bit equal to checksum bit at that index
|
||
|
// staring from the left
|
||
|
dataBigInt := new(big.Int).SetBytes(data)
|
||
|
for i := uint(0); i < checksumBitLength; i++ {
|
||
|
// Bitshift 1 left
|
||
|
dataBigInt.Mul(dataBigInt, bigTwo)
|
||
|
|
||
|
// Set rightmost bit if leftmost checksum bit is set
|
||
|
if uint8(firstChecksumByte&(1<<(7-i))) > 0 {
|
||
|
dataBigInt.Or(dataBigInt, bigOne)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return dataBigInt.Bytes()
|
||
|
}
|
||
|
|
||
|
// validateEntropyBitSize ensures that entropy is the correct size for being a
|
||
|
// mnemonic.
|
||
|
func validateEntropyBitSize(bitSize int) error {
|
||
|
if (bitSize%32) != 0 || bitSize < 128 || bitSize > 256 {
|
||
|
return ErrEntropyLengthInvalid
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// padByteSlice returns a byte slice of the given size with contents of the
|
||
|
// given slice left padded and any empty spaces filled with 0's.
|
||
|
func padByteSlice(slice []byte, length int) []byte {
|
||
|
if len(slice) >= length {
|
||
|
return slice
|
||
|
}
|
||
|
newSlice := make([]byte, length-len(slice))
|
||
|
return append(newSlice, slice...)
|
||
|
}
|
||
|
|
||
|
// compareByteSlices returns true of the byte slices have equal contents and
|
||
|
// returns false otherwise.
|
||
|
func compareByteSlices(a, b []byte) bool {
|
||
|
if len(a) != len(b) {
|
||
|
return false
|
||
|
}
|
||
|
for i := range a {
|
||
|
if a[i] != b[i] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|