stack-orchestrator/stack_orchestrator/deploy/spec.py
A. F. Dudley 87db167d7f
All checks were successful
Lint Checks / Run linter (push) Successful in 14s
Add RuntimeClass support for unlimited RLIMIT_MEMLOCK
The previous approach of mounting cri-base.json into kind nodes failed
because we didn't tell containerd to use it via containerdConfigPatches.

RuntimeClass allows different stacks to have different rlimit profiles,
which is essential since kind only supports one cluster per host and
multiple stacks share the same cluster.

Changes:
- Add containerdConfigPatches to kind-config.yml to define runtime handlers
- Create RuntimeClass resources after cluster creation
- Add runtimeClassName to pod specs based on stack's security settings
- Rename cri-base.json to high-memlock-spec.json for clarity
- Add get_runtime_class() method to Spec that auto-derives from
  unlimited-memlock setting

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 01:58:38 -05:00

193 lines
5.6 KiB
Python

# Copyright © 2022, 2023 Vulcanize
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http:#www.gnu.org/licenses/>.
import typing
from typing import Optional
import humanfriendly
from pathlib import Path
from stack_orchestrator.util import get_yaml
from stack_orchestrator import constants
class ResourceLimits:
cpus: Optional[float] = None
memory: Optional[int] = None
storage: Optional[int] = None
def __init__(self, obj=None):
if obj is None:
obj = {}
if "cpus" in obj:
self.cpus = float(obj["cpus"])
if "memory" in obj:
self.memory = humanfriendly.parse_size(obj["memory"])
if "storage" in obj:
self.storage = humanfriendly.parse_size(obj["storage"])
def __len__(self):
return len(self.__dict__)
def __iter__(self):
for k in self.__dict__:
yield k, self.__dict__[k]
def __repr__(self):
return str(self.__dict__)
class Resources:
limits: Optional[ResourceLimits] = None
reservations: Optional[ResourceLimits] = None
def __init__(self, obj=None):
if obj is None:
obj = {}
if "reservations" in obj:
self.reservations = ResourceLimits(obj["reservations"])
if "limits" in obj:
self.limits = ResourceLimits(obj["limits"])
def __len__(self):
return len(self.__dict__)
def __iter__(self):
for k in self.__dict__:
yield k, self.__dict__[k]
def __repr__(self):
return str(self.__dict__)
class Spec:
obj: typing.Any
file_path: Optional[Path]
def __init__(self, file_path: Optional[Path] = None, obj=None) -> None:
if obj is None:
obj = {}
self.file_path = file_path
self.obj = obj
def __getitem__(self, item):
return self.obj[item]
def __contains__(self, item):
return item in self.obj
def get(self, item, default=None):
return self.obj.get(item, default)
def init_from_file(self, file_path: Path):
self.obj = get_yaml().load(open(file_path, "r"))
self.file_path = file_path
def get_image_registry(self):
return self.obj.get(constants.image_registry_key)
def get_volumes(self):
return self.obj.get(constants.volumes_key, {})
def get_configmaps(self):
return self.obj.get(constants.configmaps_key, {})
def get_container_resources(self):
return Resources(
self.obj.get(constants.resources_key, {}).get("containers", {})
)
def get_volume_resources(self):
return Resources(
self.obj.get(constants.resources_key, {}).get(constants.volumes_key, {})
)
def get_http_proxy(self):
return self.obj.get(constants.network_key, {}).get(constants.http_proxy_key, [])
def get_annotations(self):
return self.obj.get(constants.annotations_key, {})
def get_replicas(self):
return self.obj.get(constants.replicas_key, 1)
def get_node_affinities(self):
return self.obj.get(constants.node_affinities_key, [])
def get_node_tolerations(self):
return self.obj.get(constants.node_tolerations_key, [])
def get_labels(self):
return self.obj.get(constants.labels_key, {})
def get_privileged(self):
return (
"true"
== str(
self.obj.get(constants.security_key, {}).get("privileged", "false")
).lower()
)
def get_capabilities(self):
return self.obj.get(constants.security_key, {}).get("capabilities", [])
def get_unlimited_memlock(self):
return (
"true"
== str(
self.obj.get(constants.security_key, {}).get(
constants.unlimited_memlock_key, "false"
)
).lower()
)
def get_runtime_class(self):
"""Get runtime class name from spec, or derive from security settings.
The runtime class determines which containerd runtime handler to use,
allowing different pods to have different rlimit profiles (e.g., for
unlimited RLIMIT_MEMLOCK).
Returns:
Runtime class name string, or None to use default runtime.
"""
# Explicit runtime class takes precedence
explicit = self.obj.get(constants.security_key, {}).get(
constants.runtime_class_key, None
)
if explicit:
return explicit
# Auto-derive from unlimited-memlock setting
if self.get_unlimited_memlock():
return constants.high_memlock_runtime
return None # Use default runtime
def get_deployment_type(self):
return self.obj.get(constants.deploy_to_key)
def is_kubernetes_deployment(self):
return self.get_deployment_type() in [
constants.k8s_kind_deploy_type,
constants.k8s_deploy_type,
]
def is_kind_deployment(self):
return self.get_deployment_type() in [constants.k8s_kind_deploy_type]
def is_docker_deployment(self):
return self.get_deployment_type() in [constants.compose_deploy_type]