mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
7b56206a98
InternalCompilerErrors always have to end the whole compilation process because a serious inconsistency was detected.
1329 lines
45 KiB
C++
1329 lines
45 KiB
C++
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* @author Christian <c@ethdev.com>
|
|
* @date 2015
|
|
* Type analyzer and checker.
|
|
*/
|
|
|
|
#include <libsolidity/TypeChecker.h>
|
|
#include <memory>
|
|
#include <boost/range/adaptor/reversed.hpp>
|
|
#include <libsolidity/AST.h>
|
|
|
|
using namespace std;
|
|
using namespace dev;
|
|
using namespace dev::solidity;
|
|
|
|
|
|
bool TypeChecker::checkTypeRequirements(const ContractDefinition& _contract)
|
|
{
|
|
try
|
|
{
|
|
visit(_contract);
|
|
}
|
|
catch (FatalError const&)
|
|
{
|
|
// We got a fatal error which required to stop further type checking, but we can
|
|
// continue normally from here.
|
|
if (m_errors.empty())
|
|
throw; // Something is weird here, rather throw again.
|
|
}
|
|
return Error::containsOnlyWarnings(m_errors);
|
|
}
|
|
|
|
TypePointer const& TypeChecker::type(Expression const& _expression) const
|
|
{
|
|
solAssert(!!_expression.annotation().type, "Type requested but not present.");
|
|
return _expression.annotation().type;
|
|
}
|
|
|
|
TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
|
|
{
|
|
solAssert(!!_variable.annotation().type, "Type requested but not present.");
|
|
return _variable.annotation().type;
|
|
}
|
|
|
|
bool TypeChecker::visit(ContractDefinition const& _contract)
|
|
{
|
|
// We force our own visiting order here.
|
|
ASTNode::listAccept(_contract.definedStructs(), *this);
|
|
ASTNode::listAccept(_contract.baseContracts(), *this);
|
|
|
|
checkContractDuplicateFunctions(_contract);
|
|
checkContractIllegalOverrides(_contract);
|
|
checkContractAbstractFunctions(_contract);
|
|
checkContractAbstractConstructors(_contract);
|
|
|
|
FunctionDefinition const* function = _contract.constructor();
|
|
if (function && !function->returnParameters().empty())
|
|
typeError(*function->returnParameterList(), "Non-empty \"returns\" directive for constructor.");
|
|
|
|
FunctionDefinition const* fallbackFunction = nullptr;
|
|
for (ASTPointer<FunctionDefinition> const& function: _contract.definedFunctions())
|
|
{
|
|
if (function->name().empty())
|
|
{
|
|
if (fallbackFunction)
|
|
{
|
|
auto err = make_shared<Error>(Error::Type::DeclarationError);
|
|
*err << errinfo_comment("Only one fallback function is allowed.");
|
|
m_errors.push_back(err);
|
|
}
|
|
else
|
|
{
|
|
fallbackFunction = function.get();
|
|
if (!fallbackFunction->parameters().empty())
|
|
typeError(fallbackFunction->parameterList(), "Fallback function cannot take parameters.");
|
|
}
|
|
}
|
|
if (!function->isImplemented())
|
|
_contract.annotation().isFullyImplemented = false;
|
|
}
|
|
|
|
ASTNode::listAccept(_contract.stateVariables(), *this);
|
|
ASTNode::listAccept(_contract.events(), *this);
|
|
ASTNode::listAccept(_contract.functionModifiers(), *this);
|
|
ASTNode::listAccept(_contract.definedFunctions(), *this);
|
|
|
|
checkContractExternalTypeClashes(_contract);
|
|
// check for hash collisions in function signatures
|
|
set<FixedHash<4>> hashes;
|
|
for (auto const& it: _contract.interfaceFunctionList())
|
|
{
|
|
FixedHash<4> const& hash = it.first;
|
|
if (hashes.count(hash))
|
|
typeError(
|
|
_contract,
|
|
string("Function signature hash collision for ") + it.second->externalSignature()
|
|
);
|
|
hashes.insert(hash);
|
|
}
|
|
|
|
if (_contract.isLibrary())
|
|
checkLibraryRequirements(_contract);
|
|
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract)
|
|
{
|
|
/// Checks that two functions with the same name defined in this contract have different
|
|
/// argument types and that there is at most one constructor.
|
|
map<string, vector<FunctionDefinition const*>> functions;
|
|
for (ASTPointer<FunctionDefinition> const& function: _contract.definedFunctions())
|
|
functions[function->name()].push_back(function.get());
|
|
|
|
// Constructor
|
|
if (functions[_contract.name()].size() > 1)
|
|
{
|
|
SecondarySourceLocation ssl;
|
|
auto it = ++functions[_contract.name()].begin();
|
|
for (; it != functions[_contract.name()].end(); ++it)
|
|
ssl.append("Another declaration is here:", (*it)->location());
|
|
|
|
auto err = make_shared<Error>(Error(Error::Type::DeclarationError));
|
|
*err <<
|
|
errinfo_sourceLocation(functions[_contract.name()].front()->location()) <<
|
|
errinfo_comment("More than one constructor defined.") <<
|
|
errinfo_secondarySourceLocation(ssl);
|
|
m_errors.push_back(err);
|
|
}
|
|
for (auto const& it: functions)
|
|
{
|
|
vector<FunctionDefinition const*> const& overloads = it.second;
|
|
for (size_t i = 0; i < overloads.size(); ++i)
|
|
for (size_t j = i + 1; j < overloads.size(); ++j)
|
|
if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j])))
|
|
{
|
|
auto err = make_shared<Error>(Error(Error::Type::DeclarationError));
|
|
*err <<
|
|
errinfo_sourceLocation(overloads[j]->location()) <<
|
|
errinfo_comment("Function with same name and arguments defined twice.") <<
|
|
errinfo_secondarySourceLocation(SecondarySourceLocation().append(
|
|
"Other declaration is here:", overloads[i]->location()));
|
|
m_errors.push_back(err);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract)
|
|
{
|
|
// Mapping from name to function definition (exactly one per argument type equality class) and
|
|
// flag to indicate whether it is fully implemented.
|
|
using FunTypeAndFlag = std::pair<FunctionTypePointer, bool>;
|
|
map<string, vector<FunTypeAndFlag>> functions;
|
|
|
|
// Search from base to derived
|
|
for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts))
|
|
for (ASTPointer<FunctionDefinition> const& function: contract->definedFunctions())
|
|
{
|
|
auto& overloads = functions[function->name()];
|
|
FunctionTypePointer funType = make_shared<FunctionType>(*function);
|
|
auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag)
|
|
{
|
|
return funType->hasEqualArgumentTypes(*_funAndFlag.first);
|
|
});
|
|
if (it == overloads.end())
|
|
overloads.push_back(make_pair(funType, function->isImplemented()));
|
|
else if (it->second)
|
|
{
|
|
if (!function->isImplemented())
|
|
typeError(*function, "Redeclaring an already implemented function as abstract");
|
|
}
|
|
else if (function->isImplemented())
|
|
it->second = true;
|
|
}
|
|
|
|
// Set to not fully implemented if at least one flag is false.
|
|
for (auto const& it: functions)
|
|
for (auto const& funAndFlag: it.second)
|
|
if (!funAndFlag.second)
|
|
{
|
|
_contract.annotation().isFullyImplemented = false;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void TypeChecker::checkContractAbstractConstructors(ContractDefinition const& _contract)
|
|
{
|
|
set<ContractDefinition const*> argumentsNeeded;
|
|
// check that we get arguments for all base constructors that need it.
|
|
// If not mark the contract as abstract (not fully implemented)
|
|
|
|
vector<ContractDefinition const*> const& bases = _contract.annotation().linearizedBaseContracts;
|
|
for (ContractDefinition const* contract: bases)
|
|
if (FunctionDefinition const* constructor = contract->constructor())
|
|
if (contract != &_contract && !constructor->parameters().empty())
|
|
argumentsNeeded.insert(contract);
|
|
|
|
for (ContractDefinition const* contract: bases)
|
|
{
|
|
if (FunctionDefinition const* constructor = contract->constructor())
|
|
for (auto const& modifier: constructor->modifiers())
|
|
{
|
|
auto baseContract = dynamic_cast<ContractDefinition const*>(
|
|
&dereference(*modifier->name())
|
|
);
|
|
if (baseContract)
|
|
argumentsNeeded.erase(baseContract);
|
|
}
|
|
|
|
|
|
for (ASTPointer<InheritanceSpecifier> const& base: contract->baseContracts())
|
|
{
|
|
auto baseContract = dynamic_cast<ContractDefinition const*>(&dereference(base->name()));
|
|
solAssert(baseContract, "");
|
|
if (!base->arguments().empty())
|
|
argumentsNeeded.erase(baseContract);
|
|
}
|
|
}
|
|
if (!argumentsNeeded.empty())
|
|
_contract.annotation().isFullyImplemented = false;
|
|
}
|
|
|
|
void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract)
|
|
{
|
|
// TODO unify this at a later point. for this we need to put the constness and the access specifier
|
|
// into the types
|
|
map<string, vector<FunctionDefinition const*>> functions;
|
|
map<string, ModifierDefinition const*> modifiers;
|
|
|
|
// We search from derived to base, so the stored item causes the error.
|
|
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
|
|
{
|
|
for (ASTPointer<FunctionDefinition> const& function: contract->definedFunctions())
|
|
{
|
|
if (function->isConstructor())
|
|
continue; // constructors can neither be overridden nor override anything
|
|
string const& name = function->name();
|
|
if (modifiers.count(name))
|
|
typeError(*modifiers[name], "Override changes function to modifier.");
|
|
FunctionType functionType(*function);
|
|
// function should not change the return type
|
|
for (FunctionDefinition const* overriding: functions[name])
|
|
{
|
|
FunctionType overridingType(*overriding);
|
|
if (!overridingType.hasEqualArgumentTypes(functionType))
|
|
continue;
|
|
if (
|
|
overriding->visibility() != function->visibility() ||
|
|
overriding->isDeclaredConst() != function->isDeclaredConst() ||
|
|
overridingType != functionType
|
|
)
|
|
typeError(*overriding, "Override changes extended function signature.");
|
|
}
|
|
functions[name].push_back(function.get());
|
|
}
|
|
for (ASTPointer<ModifierDefinition> const& modifier: contract->functionModifiers())
|
|
{
|
|
string const& name = modifier->name();
|
|
ModifierDefinition const*& override = modifiers[name];
|
|
if (!override)
|
|
override = modifier.get();
|
|
else if (ModifierType(*override) != ModifierType(*modifier))
|
|
typeError(*override, "Override changes modifier signature.");
|
|
if (!functions[name].empty())
|
|
typeError(*override, "Override changes modifier to function.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract)
|
|
{
|
|
map<string, vector<pair<Declaration const*, FunctionTypePointer>>> externalDeclarations;
|
|
for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts)
|
|
{
|
|
for (ASTPointer<FunctionDefinition> const& f: contract->definedFunctions())
|
|
if (f->isPartOfExternalInterface())
|
|
{
|
|
auto functionType = make_shared<FunctionType>(*f);
|
|
externalDeclarations[functionType->externalSignature()].push_back(
|
|
make_pair(f.get(), functionType)
|
|
);
|
|
}
|
|
for (ASTPointer<VariableDeclaration> const& v: contract->stateVariables())
|
|
if (v->isPartOfExternalInterface())
|
|
{
|
|
auto functionType = make_shared<FunctionType>(*v);
|
|
externalDeclarations[functionType->externalSignature()].push_back(
|
|
make_pair(v.get(), functionType)
|
|
);
|
|
}
|
|
}
|
|
for (auto const& it: externalDeclarations)
|
|
for (size_t i = 0; i < it.second.size(); ++i)
|
|
for (size_t j = i + 1; j < it.second.size(); ++j)
|
|
if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second))
|
|
typeError(
|
|
*it.second[j].first,
|
|
"Function overload clash during conversion to external types for arguments."
|
|
);
|
|
}
|
|
|
|
void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract)
|
|
{
|
|
solAssert(_contract.isLibrary(), "");
|
|
if (!_contract.baseContracts().empty())
|
|
typeError(_contract, "Library is not allowed to inherit.");
|
|
|
|
for (auto const& var: _contract.stateVariables())
|
|
if (!var->isConstant())
|
|
typeError(*var, "Library cannot have non-constant state variables");
|
|
}
|
|
|
|
void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
|
|
{
|
|
auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
|
|
solAssert(base, "Base contract not available.");
|
|
|
|
if (base->isLibrary())
|
|
typeError(_inheritance, "Libraries cannot be inherited from.");
|
|
|
|
auto const& arguments = _inheritance.arguments();
|
|
TypePointers parameterTypes = ContractType(*base).constructorType()->parameterTypes();
|
|
if (!arguments.empty() && parameterTypes.size() != arguments.size())
|
|
typeError(
|
|
_inheritance,
|
|
"Wrong argument count for constructor call: " +
|
|
toString(arguments.size()) +
|
|
" arguments given but expected " +
|
|
toString(parameterTypes.size()) +
|
|
"."
|
|
);
|
|
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
|
|
typeError(
|
|
*arguments[i],
|
|
"Invalid type for argument in constructor call. "
|
|
"Invalid implicit conversion from " +
|
|
type(*arguments[i])->toString() +
|
|
" to " +
|
|
parameterTypes[i]->toString() +
|
|
" requested."
|
|
);
|
|
}
|
|
|
|
bool TypeChecker::visit(StructDefinition const& _struct)
|
|
{
|
|
for (ASTPointer<VariableDeclaration> const& member: _struct.members())
|
|
if (!type(*member)->canBeStored())
|
|
typeError(*member, "Type cannot be used in struct.");
|
|
|
|
// Check recursion, fatal error if detected.
|
|
using StructPointer = StructDefinition const*;
|
|
using StructPointersSet = set<StructPointer>;
|
|
function<void(StructPointer,StructPointersSet const&)> check = [&](StructPointer _struct, StructPointersSet const& _parents)
|
|
{
|
|
if (_parents.count(_struct))
|
|
fatalTypeError(*_struct, "Recursive struct definition.");
|
|
StructPointersSet parents = _parents;
|
|
parents.insert(_struct);
|
|
for (ASTPointer<VariableDeclaration> const& member: _struct->members())
|
|
if (type(*member)->category() == Type::Category::Struct)
|
|
{
|
|
auto const& typeName = dynamic_cast<UserDefinedTypeName const&>(*member->typeName());
|
|
check(&dynamic_cast<StructDefinition const&>(*typeName.annotation().referencedDeclaration), parents);
|
|
}
|
|
};
|
|
check(&_struct, StructPointersSet{});
|
|
|
|
ASTNode::listAccept(_struct.members(), *this);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(FunctionDefinition const& _function)
|
|
{
|
|
bool isLibraryFunction = dynamic_cast<ContractDefinition const&>(*_function.scope()).isLibrary();
|
|
for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
|
|
{
|
|
if (!type(*var)->canLiveOutsideStorage())
|
|
typeError(*var, "Type is required to live outside storage.");
|
|
if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction)))
|
|
fatalTypeError(*var, "Internal type is not allowed for public or external functions.");
|
|
}
|
|
for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
|
|
visitManually(
|
|
*modifier,
|
|
_function.isConstructor() ?
|
|
dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
|
|
vector<ContractDefinition const*>()
|
|
);
|
|
if (_function.isImplemented())
|
|
_function.body().accept(*this);
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(VariableDeclaration const& _variable)
|
|
{
|
|
// Variables can be declared without type (with "var"), in which case the first assignment
|
|
// sets the type.
|
|
// Note that assignments before the first declaration are legal because of the special scoping
|
|
// rules inherited from JavaScript.
|
|
|
|
// type is filled either by ReferencesResolver directly from the type name or by
|
|
// TypeChecker at the VariableDeclarationStatement level.
|
|
TypePointer varType = _variable.annotation().type;
|
|
solAssert(!!varType, "Failed to infer variable type.");
|
|
if (_variable.isConstant())
|
|
{
|
|
if (!dynamic_cast<ContractDefinition const*>(_variable.scope()))
|
|
typeError(_variable, "Illegal use of \"constant\" specifier.");
|
|
if (!_variable.value())
|
|
typeError(_variable, "Uninitialized \"constant\" variable.");
|
|
if (!varType->isValueType())
|
|
{
|
|
bool constImplemented = false;
|
|
if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
|
|
constImplemented = arrayType->isByteArray();
|
|
if (!constImplemented)
|
|
typeError(
|
|
_variable,
|
|
"Illegal use of \"constant\" specifier. \"constant\" "
|
|
"is not yet implemented for this type."
|
|
);
|
|
}
|
|
}
|
|
if (_variable.value())
|
|
expectType(*_variable.value(), *varType);
|
|
if (!_variable.isStateVariable())
|
|
{
|
|
if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
|
|
if (!varType->canLiveOutsideStorage())
|
|
typeError(_variable, "Type " + varType->toString() + " is only valid in storage.");
|
|
}
|
|
else if (
|
|
_variable.visibility() >= VariableDeclaration::Visibility::Public &&
|
|
!FunctionType(_variable).interfaceFunctionType()
|
|
)
|
|
typeError(_variable, "Internal type is not allowed for public state variables.");
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::visitManually(
|
|
ModifierInvocation const& _modifier,
|
|
vector<ContractDefinition const*> const& _bases
|
|
)
|
|
{
|
|
std::vector<ASTPointer<Expression>> const& arguments = _modifier.arguments();
|
|
for (ASTPointer<Expression> const& argument: arguments)
|
|
argument->accept(*this);
|
|
_modifier.name()->accept(*this);
|
|
|
|
auto const* declaration = &dereference(*_modifier.name());
|
|
vector<ASTPointer<VariableDeclaration>> emptyParameterList;
|
|
vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
|
|
if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
|
|
parameters = &modifierDecl->parameters();
|
|
else
|
|
// check parameters for Base constructors
|
|
for (ContractDefinition const* base: _bases)
|
|
if (declaration == base)
|
|
{
|
|
if (auto referencedConstructor = base->constructor())
|
|
parameters = &referencedConstructor->parameters();
|
|
else
|
|
parameters = &emptyParameterList;
|
|
break;
|
|
}
|
|
if (!parameters)
|
|
typeError(_modifier, "Referenced declaration is neither modifier nor base class.");
|
|
if (parameters->size() != arguments.size())
|
|
typeError(
|
|
_modifier,
|
|
"Wrong argument count for modifier invocation: " +
|
|
toString(arguments.size()) +
|
|
" arguments given but expected " +
|
|
toString(parameters->size()) +
|
|
"."
|
|
);
|
|
for (size_t i = 0; i < _modifier.arguments().size(); ++i)
|
|
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
|
|
typeError(
|
|
*arguments[i],
|
|
"Invalid type for argument in modifier invocation. "
|
|
"Invalid implicit conversion from " +
|
|
type(*arguments[i])->toString() +
|
|
" to " +
|
|
type(*(*parameters)[i])->toString() +
|
|
" requested."
|
|
);
|
|
}
|
|
|
|
bool TypeChecker::visit(EventDefinition const& _eventDef)
|
|
{
|
|
unsigned numIndexed = 0;
|
|
for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
|
|
{
|
|
if (var->isIndexed())
|
|
numIndexed++;
|
|
if (_eventDef.isAnonymous() && numIndexed > 4)
|
|
typeError(_eventDef, "More than 4 indexed arguments for anonymous event.");
|
|
else if (!_eventDef.isAnonymous() && numIndexed > 3)
|
|
typeError(_eventDef, "More than 3 indexed arguments for event.");
|
|
if (!type(*var)->canLiveOutsideStorage())
|
|
typeError(*var, "Type is required to live outside storage.");
|
|
if (!type(*var)->interfaceType(false))
|
|
typeError(*var, "Internal type is not allowed as event parameter type.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool TypeChecker::visit(IfStatement const& _ifStatement)
|
|
{
|
|
expectType(_ifStatement.condition(), BoolType());
|
|
_ifStatement.trueStatement().accept(*this);
|
|
if (_ifStatement.falseStatement())
|
|
_ifStatement.falseStatement()->accept(*this);
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(WhileStatement const& _whileStatement)
|
|
{
|
|
expectType(_whileStatement.condition(), BoolType());
|
|
_whileStatement.body().accept(*this);
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(ForStatement const& _forStatement)
|
|
{
|
|
if (_forStatement.initializationExpression())
|
|
_forStatement.initializationExpression()->accept(*this);
|
|
if (_forStatement.condition())
|
|
expectType(*_forStatement.condition(), BoolType());
|
|
if (_forStatement.loopExpression())
|
|
_forStatement.loopExpression()->accept(*this);
|
|
_forStatement.body().accept(*this);
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::endVisit(Return const& _return)
|
|
{
|
|
if (!_return.expression())
|
|
return;
|
|
ParameterList const* params = _return.annotation().functionReturnParameters;
|
|
if (!params)
|
|
{
|
|
typeError(_return, "Return arguments not allowed.");
|
|
return;
|
|
}
|
|
TypePointers returnTypes;
|
|
for (auto const& var: params->parameters())
|
|
returnTypes.push_back(type(*var));
|
|
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
|
|
{
|
|
if (tupleType->components().size() != params->parameters().size())
|
|
typeError(_return, "Different number of arguments in return statement than in returns declaration.");
|
|
else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
|
|
typeError(
|
|
*_return.expression(),
|
|
"Return argument type " +
|
|
type(*_return.expression())->toString() +
|
|
" is not implicitly convertible to expected type " +
|
|
TupleType(returnTypes).toString(false) +
|
|
"."
|
|
);
|
|
}
|
|
else if (params->parameters().size() != 1)
|
|
typeError(_return, "Different number of arguments in return statement than in returns declaration.");
|
|
else
|
|
{
|
|
TypePointer const& expected = type(*params->parameters().front());
|
|
if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
|
|
typeError(
|
|
*_return.expression(),
|
|
"Return argument type " +
|
|
type(*_return.expression())->toString() +
|
|
" is not implicitly convertible to expected type (type of first return variable) " +
|
|
expected->toString() +
|
|
"."
|
|
);
|
|
}
|
|
}
|
|
|
|
bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
|
|
{
|
|
if (!_statement.initialValue())
|
|
{
|
|
// No initial value is only permitted for single variables with specified type.
|
|
if (_statement.declarations().size() != 1 || !_statement.declarations().front())
|
|
fatalTypeError(_statement, "Assignment necessary for type detection.");
|
|
VariableDeclaration const& varDecl = *_statement.declarations().front();
|
|
if (!varDecl.annotation().type)
|
|
fatalTypeError(_statement, "Assignment necessary for type detection.");
|
|
if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
|
|
{
|
|
if (ref->dataStoredIn(DataLocation::Storage))
|
|
{
|
|
auto err = make_shared<Error>(Error::Type::Warning);
|
|
*err <<
|
|
errinfo_sourceLocation(varDecl.location()) <<
|
|
errinfo_comment("Uninitialized storage pointer. Did you mean '<type> memory " + varDecl.name() + "'?");
|
|
m_errors.push_back(err);
|
|
}
|
|
}
|
|
varDecl.accept(*this);
|
|
return false;
|
|
}
|
|
|
|
// Here we have an initial value and might have to derive some types before we can visit
|
|
// the variable declaration(s).
|
|
|
|
_statement.initialValue()->accept(*this);
|
|
TypePointers valueTypes;
|
|
if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
|
|
valueTypes = tupleType->components();
|
|
else
|
|
valueTypes = TypePointers{type(*_statement.initialValue())};
|
|
|
|
// Determine which component is assigned to which variable.
|
|
// If numbers do not match, fill up if variables begin or end empty (not both).
|
|
vector<VariableDeclaration const*>& assignments = _statement.annotation().assignments;
|
|
assignments.resize(valueTypes.size(), nullptr);
|
|
vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
|
|
if (variables.empty())
|
|
{
|
|
if (!valueTypes.empty())
|
|
fatalTypeError(
|
|
_statement,
|
|
"Too many components (" +
|
|
toString(valueTypes.size()) +
|
|
") in value for variable assignment (0) needed"
|
|
);
|
|
}
|
|
else if (valueTypes.size() != variables.size() && !variables.front() && !variables.back())
|
|
fatalTypeError(
|
|
_statement,
|
|
"Wildcard both at beginning and end of variable declaration list is only allowed "
|
|
"if the number of components is equal."
|
|
);
|
|
size_t minNumValues = variables.size();
|
|
if (!variables.empty() && (!variables.back() || !variables.front()))
|
|
--minNumValues;
|
|
if (valueTypes.size() < minNumValues)
|
|
fatalTypeError(
|
|
_statement,
|
|
"Not enough components (" +
|
|
toString(valueTypes.size()) +
|
|
") in value to assign all variables (" +
|
|
toString(minNumValues) + ")."
|
|
);
|
|
if (valueTypes.size() > variables.size() && variables.front() && variables.back())
|
|
fatalTypeError(
|
|
_statement,
|
|
"Too many components (" +
|
|
toString(valueTypes.size()) +
|
|
") in value for variable assignment (" +
|
|
toString(minNumValues) +
|
|
" needed)."
|
|
);
|
|
bool fillRight = !variables.empty() && (!variables.back() || variables.front());
|
|
for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
|
|
if (fillRight)
|
|
assignments[i] = variables[i].get();
|
|
else
|
|
assignments[assignments.size() - i - 1] = variables[variables.size() - i - 1].get();
|
|
|
|
for (size_t i = 0; i < assignments.size(); ++i)
|
|
{
|
|
if (!assignments[i])
|
|
continue;
|
|
VariableDeclaration const& var = *assignments[i];
|
|
solAssert(!var.value(), "Value has to be tied to statement.");
|
|
TypePointer const& valueComponentType = valueTypes[i];
|
|
solAssert(!!valueComponentType, "");
|
|
if (!var.annotation().type)
|
|
{
|
|
// Infer type from value.
|
|
solAssert(!var.typeName(), "");
|
|
if (
|
|
valueComponentType->category() == Type::Category::IntegerConstant &&
|
|
!dynamic_pointer_cast<IntegerConstantType const>(valueComponentType)->integerType()
|
|
)
|
|
fatalTypeError(*_statement.initialValue(), "Invalid integer constant " + valueComponentType->toString() + ".");
|
|
var.annotation().type = valueComponentType->mobileType();
|
|
var.accept(*this);
|
|
}
|
|
else
|
|
{
|
|
var.accept(*this);
|
|
if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
|
|
typeError(
|
|
_statement,
|
|
"Type " +
|
|
valueComponentType->toString() +
|
|
" is not implicitly convertible to expected type " +
|
|
var.annotation().type->toString() +
|
|
"."
|
|
);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::endVisit(ExpressionStatement const& _statement)
|
|
{
|
|
if (type(_statement.expression())->category() == Type::Category::IntegerConstant)
|
|
if (!dynamic_pointer_cast<IntegerConstantType const>(type(_statement.expression()))->integerType())
|
|
typeError(_statement.expression(), "Invalid integer constant.");
|
|
}
|
|
|
|
bool TypeChecker::visit(Assignment const& _assignment)
|
|
{
|
|
requireLValue(_assignment.leftHandSide());
|
|
TypePointer t = type(_assignment.leftHandSide());
|
|
_assignment.annotation().type = t;
|
|
if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
|
|
{
|
|
// Sequenced assignments of tuples is not valid, make the result a "void" type.
|
|
_assignment.annotation().type = make_shared<TupleType>();
|
|
expectType(_assignment.rightHandSide(), *tupleType);
|
|
}
|
|
else if (t->category() == Type::Category::Mapping)
|
|
{
|
|
typeError(_assignment, "Mappings cannot be assigned to.");
|
|
_assignment.rightHandSide().accept(*this);
|
|
}
|
|
else if (_assignment.assignmentOperator() == Token::Assign)
|
|
expectType(_assignment.rightHandSide(), *t);
|
|
else
|
|
{
|
|
// compound assignment
|
|
_assignment.rightHandSide().accept(*this);
|
|
TypePointer resultType = t->binaryOperatorResult(
|
|
Token::AssignmentToBinaryOp(_assignment.assignmentOperator()),
|
|
type(_assignment.rightHandSide())
|
|
);
|
|
if (!resultType || *resultType != *t)
|
|
typeError(
|
|
_assignment,
|
|
"Operator " +
|
|
string(Token::toString(_assignment.assignmentOperator())) +
|
|
" not compatible with types " +
|
|
t->toString() +
|
|
" and " +
|
|
type(_assignment.rightHandSide())->toString()
|
|
);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(TupleExpression const& _tuple)
|
|
{
|
|
vector<ASTPointer<Expression>> const& components = _tuple.components();
|
|
TypePointers types;
|
|
if (_tuple.annotation().lValueRequested)
|
|
{
|
|
for (auto const& component: components)
|
|
if (component)
|
|
{
|
|
requireLValue(*component);
|
|
types.push_back(type(*component));
|
|
}
|
|
else
|
|
types.push_back(TypePointer());
|
|
_tuple.annotation().type = make_shared<TupleType>(types);
|
|
// If some of the components are not LValues, the error is reported above.
|
|
_tuple.annotation().isLValue = true;
|
|
}
|
|
else
|
|
{
|
|
for (size_t i = 0; i < components.size(); ++i)
|
|
{
|
|
// Outside of an lvalue-context, the only situation where a component can be empty is (x,).
|
|
if (!components[i] && !(i == 1 && components.size() == 2))
|
|
fatalTypeError(_tuple, "Tuple component cannot be empty.");
|
|
else if (components[i])
|
|
{
|
|
components[i]->accept(*this);
|
|
types.push_back(type(*components[i]));
|
|
}
|
|
else
|
|
types.push_back(TypePointer());
|
|
}
|
|
if (components.size() == 1)
|
|
_tuple.annotation().type = type(*components[0]);
|
|
else
|
|
{
|
|
if (components.size() == 2 && !components[1])
|
|
types.pop_back();
|
|
_tuple.annotation().type = make_shared<TupleType>(types);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(UnaryOperation const& _operation)
|
|
{
|
|
// Inc, Dec, Add, Sub, Not, BitNot, Delete
|
|
Token::Value op = _operation.getOperator();
|
|
if (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete)
|
|
requireLValue(_operation.subExpression());
|
|
else
|
|
_operation.subExpression().accept(*this);
|
|
TypePointer const& subExprType = type(_operation.subExpression());
|
|
TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
|
|
if (!t)
|
|
{
|
|
typeError(
|
|
_operation,
|
|
"Unary operator " +
|
|
string(Token::toString(op)) +
|
|
" cannot be applied to type " +
|
|
subExprType->toString()
|
|
);
|
|
t = subExprType;
|
|
}
|
|
_operation.annotation().type = t;
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::endVisit(BinaryOperation const& _operation)
|
|
{
|
|
TypePointer const& leftType = type(_operation.leftExpression());
|
|
TypePointer const& rightType = type(_operation.rightExpression());
|
|
TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
|
|
if (!commonType)
|
|
{
|
|
typeError(
|
|
_operation,
|
|
"Operator " +
|
|
string(Token::toString(_operation.getOperator())) +
|
|
" not compatible with types " +
|
|
leftType->toString() +
|
|
" and " +
|
|
rightType->toString()
|
|
);
|
|
commonType = leftType;
|
|
}
|
|
_operation.annotation().commonType = commonType;
|
|
_operation.annotation().type =
|
|
Token::isCompareOp(_operation.getOperator()) ?
|
|
make_shared<BoolType>() :
|
|
commonType;
|
|
}
|
|
|
|
bool TypeChecker::visit(FunctionCall const& _functionCall)
|
|
{
|
|
bool isPositionalCall = _functionCall.names().empty();
|
|
vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
|
|
vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();
|
|
|
|
// We need to check arguments' type first as they will be needed for overload resolution.
|
|
shared_ptr<TypePointers> argumentTypes;
|
|
if (isPositionalCall)
|
|
argumentTypes = make_shared<TypePointers>();
|
|
for (ASTPointer<Expression const> const& argument: arguments)
|
|
{
|
|
argument->accept(*this);
|
|
// only store them for positional calls
|
|
if (isPositionalCall)
|
|
argumentTypes->push_back(type(*argument));
|
|
}
|
|
if (isPositionalCall)
|
|
_functionCall.expression().annotation().argumentTypes = move(argumentTypes);
|
|
|
|
_functionCall.expression().accept(*this);
|
|
TypePointer expressionType = type(_functionCall.expression());
|
|
|
|
if (auto const* typeType = dynamic_cast<TypeType const*>(expressionType.get()))
|
|
{
|
|
_functionCall.annotation().isStructConstructorCall = (typeType->actualType()->category() == Type::Category::Struct);
|
|
_functionCall.annotation().isTypeConversion = !_functionCall.annotation().isStructConstructorCall;
|
|
}
|
|
else
|
|
_functionCall.annotation().isStructConstructorCall = _functionCall.annotation().isTypeConversion = false;
|
|
|
|
if (_functionCall.annotation().isTypeConversion)
|
|
{
|
|
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
|
|
TypePointer resultType = t.actualType();
|
|
if (arguments.size() != 1)
|
|
typeError(_functionCall, "Exactly one argument expected for explicit type conversion.");
|
|
else if (!isPositionalCall)
|
|
typeError(_functionCall, "Type conversion cannot allow named arguments.");
|
|
else
|
|
{
|
|
TypePointer const& argType = type(*arguments.front());
|
|
if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
|
|
// do not change the data location when converting
|
|
// (data location cannot yet be specified for type conversions)
|
|
resultType = ReferenceType::copyForLocationIfReference(argRefType->location(), resultType);
|
|
if (!argType->isExplicitlyConvertibleTo(*resultType))
|
|
typeError(_functionCall, "Explicit type conversion not allowed.");
|
|
}
|
|
_functionCall.annotation().type = resultType;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Actual function call or struct constructor call.
|
|
|
|
FunctionTypePointer functionType;
|
|
|
|
/// For error message: Struct members that were removed during conversion to memory.
|
|
set<string> membersRemovedForStructConstructor;
|
|
if (_functionCall.annotation().isStructConstructorCall)
|
|
{
|
|
TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
|
|
auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
|
|
functionType = structType.constructorType();
|
|
membersRemovedForStructConstructor = structType.membersMissingInMemory();
|
|
}
|
|
else
|
|
functionType = dynamic_pointer_cast<FunctionType const>(expressionType);
|
|
|
|
if (!functionType)
|
|
{
|
|
typeError(_functionCall, "Type is not callable");
|
|
_functionCall.annotation().type = make_shared<TupleType>();
|
|
return false;
|
|
}
|
|
else if (functionType->returnParameterTypes().size() == 1)
|
|
_functionCall.annotation().type = functionType->returnParameterTypes().front();
|
|
else
|
|
_functionCall.annotation().type = make_shared<TupleType>(functionType->returnParameterTypes());
|
|
|
|
TypePointers const& parameterTypes = functionType->parameterTypes();
|
|
if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
|
|
{
|
|
string msg =
|
|
"Wrong argument count for function call: " +
|
|
toString(arguments.size()) +
|
|
" arguments given but expected " +
|
|
toString(parameterTypes.size()) +
|
|
".";
|
|
// Extend error message in case we try to construct a struct with mapping member.
|
|
if (_functionCall.annotation().isStructConstructorCall && !membersRemovedForStructConstructor.empty())
|
|
{
|
|
msg += " Members that have to be skipped in memory:";
|
|
for (auto const& member: membersRemovedForStructConstructor)
|
|
msg += " " + member;
|
|
}
|
|
typeError(_functionCall, msg);
|
|
}
|
|
else if (isPositionalCall)
|
|
{
|
|
// call by positional arguments
|
|
for (size_t i = 0; i < arguments.size(); ++i)
|
|
{
|
|
auto const& argType = type(*arguments[i]);
|
|
if (functionType->takesArbitraryParameters())
|
|
{
|
|
if (auto t = dynamic_cast<IntegerConstantType const*>(argType.get()))
|
|
if (!t->integerType())
|
|
typeError(*arguments[i], "Integer constant too large.");
|
|
}
|
|
else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
|
|
typeError(
|
|
*arguments[i],
|
|
"Invalid type for argument in function call. "
|
|
"Invalid implicit conversion from " +
|
|
type(*arguments[i])->toString() +
|
|
" to " +
|
|
parameterTypes[i]->toString() +
|
|
" requested."
|
|
);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// call by named arguments
|
|
auto const& parameterNames = functionType->parameterNames();
|
|
if (functionType->takesArbitraryParameters())
|
|
typeError(
|
|
_functionCall,
|
|
"Named arguments cannnot be used for functions that take arbitrary parameters."
|
|
);
|
|
else if (parameterNames.size() > argumentNames.size())
|
|
typeError(_functionCall, "Some argument names are missing.");
|
|
else if (parameterNames.size() < argumentNames.size())
|
|
typeError(_functionCall, "Too many arguments.");
|
|
else
|
|
{
|
|
// check duplicate names
|
|
bool duplication = false;
|
|
for (size_t i = 0; i < argumentNames.size(); i++)
|
|
for (size_t j = i + 1; j < argumentNames.size(); j++)
|
|
if (*argumentNames[i] == *argumentNames[j])
|
|
{
|
|
duplication = true;
|
|
typeError(*arguments[i], "Duplicate named argument.");
|
|
}
|
|
|
|
// check actual types
|
|
if (!duplication)
|
|
for (size_t i = 0; i < argumentNames.size(); i++)
|
|
{
|
|
bool found = false;
|
|
for (size_t j = 0; j < parameterNames.size(); j++)
|
|
if (parameterNames[j] == *argumentNames[i])
|
|
{
|
|
found = true;
|
|
// check type convertible
|
|
if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j]))
|
|
typeError(
|
|
*arguments[i],
|
|
"Invalid type for argument in function call. "
|
|
"Invalid implicit conversion from " +
|
|
type(*arguments[i])->toString() +
|
|
" to " +
|
|
parameterTypes[i]->toString() +
|
|
" requested."
|
|
);
|
|
break;
|
|
}
|
|
|
|
if (!found)
|
|
typeError(
|
|
_functionCall,
|
|
"Named argument does not match function declaration."
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::endVisit(NewExpression const& _newExpression)
|
|
{
|
|
auto contract = dynamic_cast<ContractDefinition const*>(&dereference(_newExpression.contractName()));
|
|
|
|
if (!contract)
|
|
fatalTypeError(_newExpression, "Identifier is not a contract.");
|
|
if (!contract->annotation().isFullyImplemented)
|
|
typeError(_newExpression, "Trying to create an instance of an abstract contract.");
|
|
|
|
auto scopeContract = _newExpression.contractName().annotation().contractScope;
|
|
scopeContract->annotation().contractDependencies.insert(contract);
|
|
solAssert(
|
|
!contract->annotation().linearizedBaseContracts.empty(),
|
|
"Linearized base contracts not yet available."
|
|
);
|
|
if (contractDependenciesAreCyclic(*scopeContract))
|
|
typeError(
|
|
_newExpression,
|
|
"Circular reference for contract creation (cannot create instance of derived or same contract)."
|
|
);
|
|
|
|
auto contractType = make_shared<ContractType>(*contract);
|
|
TypePointers const& parameterTypes = contractType->constructorType()->parameterTypes();
|
|
_newExpression.annotation().type = make_shared<FunctionType>(
|
|
parameterTypes,
|
|
TypePointers{contractType},
|
|
strings(),
|
|
strings(),
|
|
FunctionType::Location::Creation
|
|
);
|
|
}
|
|
|
|
bool TypeChecker::visit(MemberAccess const& _memberAccess)
|
|
{
|
|
_memberAccess.expression().accept(*this);
|
|
TypePointer exprType = type(_memberAccess.expression());
|
|
ASTString const& memberName = _memberAccess.memberName();
|
|
|
|
// Retrieve the types of the arguments if this is used to call a function.
|
|
auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
|
|
MemberList::MemberMap possibleMembers = exprType->members().membersByName(memberName);
|
|
if (possibleMembers.size() > 1 && argumentTypes)
|
|
{
|
|
// do overload resolution
|
|
for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
|
|
if (
|
|
it->type->category() == Type::Category::Function &&
|
|
!dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes)
|
|
)
|
|
it = possibleMembers.erase(it);
|
|
else
|
|
++it;
|
|
}
|
|
if (possibleMembers.size() == 0)
|
|
{
|
|
auto storageType = ReferenceType::copyForLocationIfReference(
|
|
DataLocation::Storage,
|
|
exprType
|
|
);
|
|
if (!storageType->members().membersByName(memberName).empty())
|
|
fatalTypeError(
|
|
_memberAccess,
|
|
"Member \"" + memberName + "\" is not available in " +
|
|
exprType->toString() +
|
|
" outside of storage."
|
|
);
|
|
fatalTypeError(
|
|
_memberAccess,
|
|
"Member \"" + memberName + "\" not found or not visible "
|
|
"after argument-dependent lookup in " + exprType->toString()
|
|
);
|
|
}
|
|
else if (possibleMembers.size() > 1)
|
|
fatalTypeError(
|
|
_memberAccess,
|
|
"Member \"" + memberName + "\" not unique "
|
|
"after argument-dependent lookup in " + exprType->toString()
|
|
);
|
|
|
|
auto& annotation = _memberAccess.annotation();
|
|
annotation.referencedDeclaration = possibleMembers.front().declaration;
|
|
annotation.type = possibleMembers.front().type;
|
|
if (exprType->category() == Type::Category::Struct)
|
|
annotation.isLValue = true;
|
|
else if (exprType->category() == Type::Category::Array)
|
|
{
|
|
auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
|
|
annotation.isLValue = (
|
|
memberName == "length" &&
|
|
arrayType.location() == DataLocation::Storage &&
|
|
arrayType.isDynamicallySized()
|
|
);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(IndexAccess const& _access)
|
|
{
|
|
_access.baseExpression().accept(*this);
|
|
TypePointer baseType = type(_access.baseExpression());
|
|
TypePointer resultType;
|
|
bool isLValue = false;
|
|
Expression const* index = _access.indexExpression();
|
|
switch (baseType->category())
|
|
{
|
|
case Type::Category::Array:
|
|
{
|
|
ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
|
|
if (!index)
|
|
typeError(_access, "Index expression cannot be omitted.");
|
|
else if (actualType.isString())
|
|
{
|
|
typeError(_access, "Index access for string is not possible.");
|
|
index->accept(*this);
|
|
}
|
|
else
|
|
{
|
|
expectType(*index, IntegerType(256));
|
|
if (auto integerType = dynamic_cast<IntegerConstantType const*>(type(*index).get()))
|
|
if (!actualType.isDynamicallySized() && actualType.length() <= integerType->literalValue(nullptr))
|
|
typeError(_access, "Out of bounds array access.");
|
|
}
|
|
resultType = actualType.baseType();
|
|
isLValue = actualType.location() != DataLocation::CallData;
|
|
break;
|
|
}
|
|
case Type::Category::Mapping:
|
|
{
|
|
MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
|
|
if (!index)
|
|
typeError(_access, "Index expression cannot be omitted.");
|
|
else
|
|
expectType(*index, *actualType.keyType());
|
|
resultType = actualType.valueType();
|
|
isLValue = true;
|
|
break;
|
|
}
|
|
case Type::Category::TypeType:
|
|
{
|
|
TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
|
|
if (!index)
|
|
resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
|
|
else
|
|
{
|
|
index->accept(*this);
|
|
if (auto length = dynamic_cast<IntegerConstantType const*>(type(*index).get()))
|
|
resultType = make_shared<TypeType>(make_shared<ArrayType>(
|
|
DataLocation::Memory,
|
|
typeType.actualType(),
|
|
length->literalValue(nullptr)
|
|
));
|
|
else
|
|
typeError(*index, "Integer constant expected.");
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
fatalTypeError(
|
|
_access.baseExpression(),
|
|
"Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
|
|
);
|
|
}
|
|
_access.annotation().type = move(resultType);
|
|
_access.annotation().isLValue = isLValue;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TypeChecker::visit(Identifier const& _identifier)
|
|
{
|
|
IdentifierAnnotation& annotation = _identifier.annotation();
|
|
if (!annotation.referencedDeclaration)
|
|
{
|
|
if (!annotation.argumentTypes)
|
|
fatalTypeError(_identifier, "Unable to determine overloaded type.");
|
|
if (annotation.overloadedDeclarations.empty())
|
|
fatalTypeError(_identifier, "No candidates for overload resolution found.");
|
|
else if (annotation.overloadedDeclarations.size() == 1)
|
|
annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
|
|
else
|
|
{
|
|
vector<Declaration const*> candidates;
|
|
|
|
for (Declaration const* declaration: annotation.overloadedDeclarations)
|
|
{
|
|
TypePointer function = declaration->type(_identifier.annotation().contractScope);
|
|
solAssert(!!function, "Requested type not present.");
|
|
auto const* functionType = dynamic_cast<FunctionType const*>(function.get());
|
|
if (functionType && functionType->canTakeArguments(*annotation.argumentTypes))
|
|
candidates.push_back(declaration);
|
|
}
|
|
if (candidates.empty())
|
|
fatalTypeError(_identifier, "No matching declaration found after argument-dependent lookup.");
|
|
else if (candidates.size() == 1)
|
|
annotation.referencedDeclaration = candidates.front();
|
|
else
|
|
fatalTypeError(_identifier, "No unique declaration found after argument-dependent lookup.");
|
|
}
|
|
}
|
|
solAssert(
|
|
!!annotation.referencedDeclaration,
|
|
"Referenced declaration is null after overload resolution."
|
|
);
|
|
annotation.isLValue = annotation.referencedDeclaration->isLValue();
|
|
annotation.type = annotation.referencedDeclaration->type(_identifier.annotation().contractScope);
|
|
if (!annotation.type)
|
|
fatalTypeError(_identifier, "Declaration referenced before type could be determined.");
|
|
return false;
|
|
}
|
|
|
|
void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
|
|
{
|
|
_expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeToken()));
|
|
}
|
|
|
|
void TypeChecker::endVisit(Literal const& _literal)
|
|
{
|
|
_literal.annotation().type = Type::forLiteral(_literal);
|
|
if (!_literal.annotation().type)
|
|
fatalTypeError(_literal, "Invalid literal value.");
|
|
}
|
|
|
|
bool TypeChecker::contractDependenciesAreCyclic(
|
|
ContractDefinition const& _contract,
|
|
std::set<ContractDefinition const*> const& _seenContracts
|
|
) const
|
|
{
|
|
// Naive depth-first search that remembers nodes already seen.
|
|
if (_seenContracts.count(&_contract))
|
|
return true;
|
|
set<ContractDefinition const*> seen(_seenContracts);
|
|
seen.insert(&_contract);
|
|
for (auto const* c: _contract.annotation().contractDependencies)
|
|
if (contractDependenciesAreCyclic(*c, seen))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
Declaration const& TypeChecker::dereference(Identifier const& _identifier)
|
|
{
|
|
solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
|
|
return *_identifier.annotation().referencedDeclaration;
|
|
}
|
|
|
|
void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
|
|
{
|
|
_expression.accept(*this);
|
|
|
|
if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
|
|
typeError(
|
|
_expression,
|
|
"Type " +
|
|
type(_expression)->toString() +
|
|
" is not implicitly convertible to expected type " +
|
|
_expectedType.toString() +
|
|
"."
|
|
);
|
|
}
|
|
|
|
void TypeChecker::requireLValue(Expression const& _expression)
|
|
{
|
|
_expression.annotation().lValueRequested = true;
|
|
_expression.accept(*this);
|
|
if (!_expression.annotation().isLValue)
|
|
typeError(_expression, "Expression has to be an lvalue.");
|
|
}
|
|
|
|
void TypeChecker::typeError(ASTNode const& _node, string const& _description)
|
|
{
|
|
auto err = make_shared<Error>(Error::Type::TypeError);
|
|
*err <<
|
|
errinfo_sourceLocation(_node.location()) <<
|
|
errinfo_comment(_description);
|
|
|
|
m_errors.push_back(err);
|
|
}
|
|
|
|
void TypeChecker::fatalTypeError(ASTNode const& _node, string const& _description)
|
|
{
|
|
typeError(_node, _description);
|
|
BOOST_THROW_EXCEPTION(FatalError());
|
|
}
|