mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			430 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
	This file is part of solidity.
 | 
						|
 | 
						|
	solidity is free software: you can redistribute it and/or modify
 | 
						|
	it under the terms of the GNU General Public License as published by
 | 
						|
	the Free Software Foundation, either version 3 of the License, or
 | 
						|
	(at your option) any later version.
 | 
						|
 | 
						|
	solidity is distributed in the hope that it will be useful,
 | 
						|
	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
	GNU General Public License for more details.
 | 
						|
 | 
						|
	You should have received a copy of the GNU General Public License
 | 
						|
	along with solidity.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
// SPDX-License-Identifier: GPL-3.0
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <libyul/backends/evm/ControlFlowGraph.h>
 | 
						|
#include <libyul/Exceptions.h>
 | 
						|
 | 
						|
#include <libsolutil/Visitor.h>
 | 
						|
 | 
						|
#include <range/v3/algorithm/all_of.hpp>
 | 
						|
#include <range/v3/algorithm/any_of.hpp>
 | 
						|
#include <range/v3/view/enumerate.hpp>
 | 
						|
#include <range/v3/view/iota.hpp>
 | 
						|
#include <range/v3/view/reverse.hpp>
 | 
						|
#include <range/v3/view/take.hpp>
 | 
						|
 | 
						|
namespace solidity::yul
 | 
						|
{
 | 
						|
 | 
						|
inline std::string stackSlotToString(StackSlot const& _slot)
 | 
						|
{
 | 
						|
	return std::visit(util::GenericVisitor{
 | 
						|
		[](FunctionCallReturnLabelSlot const& _ret) -> std::string { return "RET[" + _ret.call.get().functionName.name.str() + "]"; },
 | 
						|
		[](FunctionReturnLabelSlot const&) -> std::string { return "RET"; },
 | 
						|
		[](VariableSlot const& _var) { return _var.variable.get().name.str(); },
 | 
						|
		[](LiteralSlot const& _lit) { return toCompactHexWithPrefix(_lit.value); },
 | 
						|
		[](TemporarySlot const& _tmp) -> std::string { return "TMP[" + _tmp.call.get().functionName.name.str() + ", " + std::to_string(_tmp.index) + "]"; },
 | 
						|
		[](JunkSlot const&) -> std::string { return "JUNK"; }
 | 
						|
	}, _slot);
 | 
						|
}
 | 
						|
 | 
						|
inline std::string stackToString(Stack const& _stack)
 | 
						|
{
 | 
						|
	std::string result("[ ");
 | 
						|
	for (auto const& slot: _stack)
 | 
						|
		result += stackSlotToString(slot) + ' ';
 | 
						|
	result += ']';
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Abstraction of stack shuffling operations. Can be defined as actual concept once we switch to C++20.
 | 
						|
// Used as an interface for the stack shuffler below.
 | 
						|
// The shuffle operation class is expected to internally keep track of a current stack layout (the "source layout")
 | 
						|
// that the shuffler is supposed to shuffle to a fixed target stack layout.
 | 
						|
// The shuffler works iteratively. At each iteration it instantiates an instance of the shuffle operations and
 | 
						|
// queries it for various information about the current source stack layout and the target layout, as described
 | 
						|
// in the interface below.
 | 
						|
// Based on that information the shuffler decides which is the next optimal operation to perform on the stack
 | 
						|
// and calls the corresponding entry point in the shuffling operations (swap, pushOrDupTarget or pop).
 | 
						|
/*
 | 
						|
template<typename ShuffleOperations>
 | 
						|
concept ShuffleOperationConcept = requires(ShuffleOperations ops, size_t sourceOffset, size_t targetOffset, size_t depth) {
 | 
						|
	// Returns true, iff the current slot at sourceOffset in source layout is a suitable slot at targetOffset.
 | 
						|
	{ ops.isCompatible(sourceOffset, targetOffset) } -> std::convertible_to<bool>;
 | 
						|
	// Returns true, iff the slots at the two given source offsets are identical.
 | 
						|
	{ ops.sourceIsSame(sourceOffset, sourceOffset) } -> std::convertible_to<bool>;
 | 
						|
	// Returns a positive integer n, if the slot at the given source offset needs n more copies.
 | 
						|
	// Returns a negative integer -n, if the slot at the given source offsets occurs n times too many.
 | 
						|
	// Returns zero if the amount of occurrences, in the current source layout, of the slot at the given source offset
 | 
						|
	// matches the desired amount of occurrences in the target.
 | 
						|
	{ ops.sourceMultiplicity(sourceOffset) } -> std::convertible_to<int>;
 | 
						|
	// Returns a positive integer n, if the slot at the given target offset needs n more copies.
 | 
						|
	// Returns a negative integer -n, if the slot at the given target offsets occurs n times too many.
 | 
						|
	// Returns zero if the amount of occurrences, in the current source layout, of the slot at the given target offset
 | 
						|
	// matches the desired amount of occurrences in the target.
 | 
						|
	{ ops.targetMultiplicity(targetOffset) } -> std::convertible_to<int>;
 | 
						|
	// Returns true, iff any slot is compatible with the given target offset.
 | 
						|
	{ ops.targetIsArbitrary(targetOffset) } -> std::convertible_to<bool>;
 | 
						|
	// Returns the number of slots in the source layout.
 | 
						|
	{ ops.sourceSize() } -> std::convertible_to<size_t>;
 | 
						|
	// Returns the number of slots in the target layout.
 | 
						|
	{ ops.targetSize() } -> std::convertible_to<size_t>;
 | 
						|
	// Swaps the top most slot in the source with the slot `depth` slots below the top.
 | 
						|
	// In terms of EVM opcodes this is supposed to be a `SWAP<depth>`.
 | 
						|
	// In terms of vectors this is supposed to be `std::swap(source.at(source.size() - depth - 1, source.top))`.
 | 
						|
	{ ops.swap(depth) };
 | 
						|
	// Pops the top most slot in the source, i.e. the slot at offset ops.sourceSize() - 1.
 | 
						|
	// In terms of EVM opcodes this is `POP`.
 | 
						|
	// In terms of vectors this is `source.pop();`.
 | 
						|
	{ ops.pop() };
 | 
						|
	// Dups or pushes the slot that is supposed to end up at the given target offset.
 | 
						|
	{ ops.pushOrDupTarget(targetOffset) };
 | 
						|
};
 | 
						|
*/
 | 
						|
/// Helper class that can perform shuffling of a source stack layout to a target stack layout via
 | 
						|
/// abstracted shuffle operations.
 | 
						|
template</*ShuffleOperationConcept*/ typename ShuffleOperations>
 | 
						|
class Shuffler
 | 
						|
{
 | 
						|
public:
 | 
						|
	/// Executes the stack shuffling operations. Instantiates an instance of ShuffleOperations
 | 
						|
	/// in each iteration. Each iteration performs exactly one operation that modifies the stack.
 | 
						|
	/// After `shuffle`, source and target have the same size and all slots in the source layout are
 | 
						|
	/// compatible with the slots at the same target offset.
 | 
						|
	template<typename... Args>
 | 
						|
	static void shuffle(Args&&... args)
 | 
						|
	{
 | 
						|
		bool needsMoreShuffling = true;
 | 
						|
		// The shuffling algorithm should always terminate in polynomial time, but we provide a limit
 | 
						|
		// in case it does not terminate due to a bug.
 | 
						|
		size_t iterationCount = 0;
 | 
						|
		while (iterationCount < 1000 && (needsMoreShuffling = shuffleStep(std::forward<Args>(args)...)))
 | 
						|
			++iterationCount;
 | 
						|
		yulAssert(!needsMoreShuffling, "Could not create stack layout after 1000 iterations.");
 | 
						|
	}
 | 
						|
private:
 | 
						|
	// If dupping an ideal slot causes a slot that will still be required to become unreachable, then dup
 | 
						|
	// the latter slot first.
 | 
						|
	// @returns true, if it performed a dup.
 | 
						|
	static bool dupDeepSlotIfRequired(ShuffleOperations& _ops)
 | 
						|
	{
 | 
						|
		// Check if the stack is large enough for anything to potentially become unreachable.
 | 
						|
		if (_ops.sourceSize() < 15)
 | 
						|
			return false;
 | 
						|
		// Check whether any deep slot might still be needed later (i.e. we still need to reach it with a DUP or SWAP).
 | 
						|
		for (size_t sourceOffset: ranges::views::iota(0u, _ops.sourceSize() - 15))
 | 
						|
		{
 | 
						|
			// This slot needs to be moved.
 | 
						|
			if (!_ops.isCompatible(sourceOffset, sourceOffset))
 | 
						|
			{
 | 
						|
				// If the current top fixes the slot, swap it down now.
 | 
						|
				if (_ops.isCompatible(_ops.sourceSize() - 1, sourceOffset))
 | 
						|
				{
 | 
						|
					_ops.swap(_ops.sourceSize() - sourceOffset - 1);
 | 
						|
					return true;
 | 
						|
				}
 | 
						|
				// Bring up a slot to fix this now, if possible.
 | 
						|
				if (bringUpTargetSlot(_ops, sourceOffset))
 | 
						|
					return true;
 | 
						|
				// Otherwise swap up the slot that will fix the offending slot.
 | 
						|
				for (auto offset: ranges::views::iota(sourceOffset + 1, _ops.sourceSize()))
 | 
						|
					if (_ops.isCompatible(offset, sourceOffset))
 | 
						|
					{
 | 
						|
						_ops.swap(_ops.sourceSize() - offset - 1);
 | 
						|
						return true;
 | 
						|
					}
 | 
						|
				// Otherwise give up - we will need stack compression or stack limit evasion.
 | 
						|
			}
 | 
						|
			// We need another copy of this slot.
 | 
						|
			else if (_ops.sourceMultiplicity(sourceOffset) > 0)
 | 
						|
			{
 | 
						|
				// If this slot occurs again later, we skip this occurrence.
 | 
						|
				if (ranges::any_of(
 | 
						|
					ranges::views::iota(sourceOffset + 1, _ops.sourceSize()),
 | 
						|
					[&](size_t _offset) { return _ops.sourceIsSame(sourceOffset, _offset); }
 | 
						|
				))
 | 
						|
					continue;
 | 
						|
				// Bring up the target slot that would otherwise become unreachable.
 | 
						|
				for (size_t targetOffset: ranges::views::iota(0u, _ops.targetSize()))
 | 
						|
					if (!_ops.targetIsArbitrary(targetOffset) && _ops.isCompatible(sourceOffset, targetOffset))
 | 
						|
					{
 | 
						|
						_ops.pushOrDupTarget(targetOffset);
 | 
						|
						return true;
 | 
						|
					}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	/// Finds a slot to dup or push with the aim of eventually fixing @a _targetOffset in the target.
 | 
						|
	/// In the simplest case, the slot at @a _targetOffset has a multiplicity > 0, i.e. it can directly be dupped or pushed
 | 
						|
	/// and the next iteration will fix @a _targetOffset.
 | 
						|
	/// But, in general, there may already be enough copies of the slot that is supposed to end up at @a _targetOffset
 | 
						|
	/// on stack, s.t. it cannot be dupped again. In that case there has to be a copy of the desired slot on stack already
 | 
						|
	/// elsewhere that is not yet in place (`nextOffset` below). The fact that ``nextOffset`` is not in place means that
 | 
						|
	/// we can (recursively) try bringing up the slot that is supposed to end up at ``nextOffset`` in the *target*.
 | 
						|
	/// When the target slot at ``nextOffset`` is fixed, the current source slot at ``nextOffset`` will be
 | 
						|
	/// at the stack top, which is the slot required at @a _targetOffset.
 | 
						|
	static bool bringUpTargetSlot(ShuffleOperations& _ops, size_t _targetOffset)
 | 
						|
	{
 | 
						|
		std::list<size_t> toVisit{_targetOffset};
 | 
						|
		std::set<size_t> visited;
 | 
						|
 | 
						|
		while (!toVisit.empty())
 | 
						|
		{
 | 
						|
			auto offset = *toVisit.begin();
 | 
						|
			toVisit.erase(toVisit.begin());
 | 
						|
			visited.emplace(offset);
 | 
						|
			if (_ops.targetMultiplicity(offset) > 0)
 | 
						|
			{
 | 
						|
				_ops.pushOrDupTarget(offset);
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
			// There must be another slot we can dup/push that will lead to the target slot at ``offset`` to be fixed.
 | 
						|
			for (auto nextOffset: ranges::views::iota(0u, std::min(_ops.sourceSize(), _ops.targetSize())))
 | 
						|
				if (
 | 
						|
					!_ops.isCompatible(nextOffset, nextOffset) &&
 | 
						|
					_ops.isCompatible(nextOffset, offset)
 | 
						|
				)
 | 
						|
					if (!visited.count(nextOffset))
 | 
						|
						toVisit.emplace_back(nextOffset);
 | 
						|
		}
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	/// Performs a single stack operation, transforming the source layout closer to the target layout.
 | 
						|
	template<typename... Args>
 | 
						|
	static bool shuffleStep(Args&&... args)
 | 
						|
	{
 | 
						|
		ShuffleOperations ops{std::forward<Args>(args)...};
 | 
						|
 | 
						|
		// All source slots are final.
 | 
						|
		if (ranges::all_of(
 | 
						|
			ranges::views::iota(0u, ops.sourceSize()),
 | 
						|
			[&](size_t _index) { return ops.isCompatible(_index, _index); }
 | 
						|
		))
 | 
						|
		{
 | 
						|
			// Bring up all remaining target slots, if any, or terminate otherwise.
 | 
						|
			if (ops.sourceSize() < ops.targetSize())
 | 
						|
			{
 | 
						|
				if (!dupDeepSlotIfRequired(ops))
 | 
						|
					yulAssert(bringUpTargetSlot(ops, ops.sourceSize()), "");
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		size_t sourceTop = ops.sourceSize() - 1;
 | 
						|
		// If we no longer need the current stack top, we pop it, unless we need an arbitrary slot at this position
 | 
						|
		// in the target.
 | 
						|
		if (
 | 
						|
			ops.sourceMultiplicity(sourceTop) < 0 &&
 | 
						|
			!ops.targetIsArbitrary(sourceTop)
 | 
						|
		)
 | 
						|
		{
 | 
						|
			ops.pop();
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
 | 
						|
		yulAssert(ops.targetSize() > 0, "");
 | 
						|
 | 
						|
		// If the top is not supposed to be exactly what is on top right now, try to find a lower position to swap it to.
 | 
						|
		if (!ops.isCompatible(sourceTop, sourceTop) || ops.targetIsArbitrary(sourceTop))
 | 
						|
			for (size_t offset: ranges::views::iota(0u, std::min(ops.sourceSize(), ops.targetSize())))
 | 
						|
				// It makes sense to swap to a lower position, if
 | 
						|
				if (
 | 
						|
					!ops.isCompatible(offset, offset) && // The lower slot is not already in position.
 | 
						|
					!ops.sourceIsSame(offset, sourceTop) && // We would not just swap identical slots.
 | 
						|
					ops.isCompatible(sourceTop, offset) // The lower position wants to have this slot.
 | 
						|
				)
 | 
						|
				{
 | 
						|
					// We cannot swap that deep.
 | 
						|
					if (ops.sourceSize() - offset - 1 > 16)
 | 
						|
					{
 | 
						|
						// If there is a reachable slot to be removed, park the current top there.
 | 
						|
						for (size_t swapDepth: ranges::views::iota(1u, 17u) | ranges::views::reverse)
 | 
						|
							if (ops.sourceMultiplicity(ops.sourceSize() - 1 - swapDepth) < 0)
 | 
						|
							{
 | 
						|
								ops.swap(swapDepth);
 | 
						|
								return true;
 | 
						|
							}
 | 
						|
						// Otherwise we rely on stack compression or stack-to-memory.
 | 
						|
					}
 | 
						|
					ops.swap(ops.sourceSize() - offset - 1);
 | 
						|
					return true;
 | 
						|
				}
 | 
						|
 | 
						|
		// ops.sourceSize() > ops.targetSize() cannot be true anymore, since if the source top is no longer required,
 | 
						|
		// we already popped it, and if it is required, we already swapped it down to a suitable target position.
 | 
						|
		yulAssert(ops.sourceSize() <= ops.targetSize(), "");
 | 
						|
 | 
						|
		// If a lower slot should be removed, try to bring up the slot that should end up there and bring it up.
 | 
						|
		// Note that after the cases above, there will always be a target slot to duplicate in this case.
 | 
						|
		for (size_t offset: ranges::views::iota(0u, ops.sourceSize()))
 | 
						|
			if (
 | 
						|
				!ops.isCompatible(offset, offset) && // The lower slot is not already in position.
 | 
						|
				ops.sourceMultiplicity(offset) < 0 && // We have too many copies of this slot.
 | 
						|
				offset <= ops.targetSize() && // There is a target slot at this position.
 | 
						|
				!ops.targetIsArbitrary(offset) // And that target slot is not arbitrary.
 | 
						|
			)
 | 
						|
			{
 | 
						|
				if (!dupDeepSlotIfRequired(ops))
 | 
						|
					yulAssert(bringUpTargetSlot(ops, offset), "");
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
 | 
						|
		// At this point we want to keep all slots.
 | 
						|
		for (size_t i = 0; i < ops.sourceSize(); ++i)
 | 
						|
			yulAssert(ops.sourceMultiplicity(i) >= 0, "");
 | 
						|
		yulAssert(ops.sourceSize() <= ops.targetSize(), "");
 | 
						|
 | 
						|
		// If the top is not in position, try to find a slot that wants to be at the top and swap it up.
 | 
						|
		if (!ops.isCompatible(sourceTop, sourceTop))
 | 
						|
			for (size_t sourceOffset: ranges::views::iota(0u, ops.sourceSize()))
 | 
						|
				if (
 | 
						|
					!ops.isCompatible(sourceOffset, sourceOffset) &&
 | 
						|
					ops.isCompatible(sourceOffset, sourceTop)
 | 
						|
				)
 | 
						|
				{
 | 
						|
					ops.swap(ops.sourceSize() - sourceOffset - 1);
 | 
						|
					return true;
 | 
						|
				}
 | 
						|
 | 
						|
		// If we still need more slots, produce a suitable one.
 | 
						|
		if (ops.sourceSize() < ops.targetSize())
 | 
						|
		{
 | 
						|
			if (!dupDeepSlotIfRequired(ops))
 | 
						|
				yulAssert(bringUpTargetSlot(ops, ops.sourceSize()), "");
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
 | 
						|
		// The stack has the correct size, each slot has the correct number of copies and the top is in position.
 | 
						|
		yulAssert(ops.sourceSize() == ops.targetSize(), "");
 | 
						|
		size_t size = ops.sourceSize();
 | 
						|
		for (size_t i = 0; i < ops.sourceSize(); ++i)
 | 
						|
			yulAssert(ops.sourceMultiplicity(i) == 0 && (ops.targetIsArbitrary(i) || ops.targetMultiplicity(i) == 0), "");
 | 
						|
		yulAssert(ops.isCompatible(sourceTop, sourceTop), "");
 | 
						|
 | 
						|
		// If we find a lower slot that is out of position, but also compatible with the top, swap that up.
 | 
						|
		for (size_t offset: ranges::views::iota(0u, size))
 | 
						|
			if (!ops.isCompatible(offset, offset) && ops.isCompatible(sourceTop, offset))
 | 
						|
			{
 | 
						|
				ops.swap(size - offset - 1);
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
		// Swap up any slot that is still out of position.
 | 
						|
		for (size_t offset: ranges::views::iota(0u, size))
 | 
						|
			if (!ops.isCompatible(offset, offset) && !ops.sourceIsSame(offset, sourceTop))
 | 
						|
			{
 | 
						|
				ops.swap(size - offset - 1);
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
		yulAssert(false, "");
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// Transforms @a _currentStack to @a _targetStack, invoking the provided shuffling operations.
 | 
						|
/// Modifies @a _currentStack itself after each invocation of the shuffling operations.
 | 
						|
/// @a _swap is a function with signature void(unsigned) that is called when the top most slot is swapped with
 | 
						|
/// the slot `depth` slots below the top. In terms of EVM opcodes this is supposed to be a `SWAP<depth>`.
 | 
						|
/// @a _pushOrDup is a function with signature void(StackSlot const&) that is called to push or dup the slot given as
 | 
						|
/// its argument to the stack top.
 | 
						|
/// @a _pop is a function with signature void() that is called when the top most slot is popped.
 | 
						|
template<typename Swap, typename PushOrDup, typename Pop>
 | 
						|
void createStackLayout(Stack& _currentStack, Stack const& _targetStack, Swap _swap, PushOrDup _pushOrDup, Pop _pop)
 | 
						|
{
 | 
						|
	struct ShuffleOperations
 | 
						|
	{
 | 
						|
		Stack& currentStack;
 | 
						|
		Stack const& targetStack;
 | 
						|
		Swap swapCallback;
 | 
						|
		PushOrDup pushOrDupCallback;
 | 
						|
		Pop popCallback;
 | 
						|
		std::map<StackSlot, int> multiplicity;
 | 
						|
		ShuffleOperations(
 | 
						|
			Stack& _currentStack,
 | 
						|
			Stack const& _targetStack,
 | 
						|
			Swap _swap,
 | 
						|
			PushOrDup _pushOrDup,
 | 
						|
			Pop _pop
 | 
						|
		):
 | 
						|
			currentStack(_currentStack),
 | 
						|
			targetStack(_targetStack),
 | 
						|
			swapCallback(_swap),
 | 
						|
			pushOrDupCallback(_pushOrDup),
 | 
						|
			popCallback(_pop)
 | 
						|
		{
 | 
						|
			for (auto const& slot: currentStack)
 | 
						|
				--multiplicity[slot];
 | 
						|
			for (auto&& [offset, slot]: targetStack | ranges::views::enumerate)
 | 
						|
				if (std::holds_alternative<JunkSlot>(slot) && offset < currentStack.size())
 | 
						|
					++multiplicity[currentStack.at(offset)];
 | 
						|
				else
 | 
						|
					++multiplicity[slot];
 | 
						|
		}
 | 
						|
		bool isCompatible(size_t _source, size_t _target)
 | 
						|
		{
 | 
						|
			return
 | 
						|
				_source < currentStack.size() &&
 | 
						|
				_target < targetStack.size() &&
 | 
						|
				(
 | 
						|
					std::holds_alternative<JunkSlot>(targetStack.at(_target)) ||
 | 
						|
					currentStack.at(_source) == targetStack.at(_target)
 | 
						|
				);
 | 
						|
		}
 | 
						|
		bool sourceIsSame(size_t _lhs, size_t _rhs) { return currentStack.at(_lhs) == currentStack.at(_rhs); }
 | 
						|
		int sourceMultiplicity(size_t _offset) { return multiplicity.at(currentStack.at(_offset)); }
 | 
						|
		int targetMultiplicity(size_t _offset) { return multiplicity.at(targetStack.at(_offset)); }
 | 
						|
		bool targetIsArbitrary(size_t offset)
 | 
						|
		{
 | 
						|
			return offset < targetStack.size() && std::holds_alternative<JunkSlot>(targetStack.at(offset));
 | 
						|
		}
 | 
						|
		void swap(size_t _i)
 | 
						|
		{
 | 
						|
			swapCallback(static_cast<unsigned>(_i));
 | 
						|
			std::swap(currentStack.at(currentStack.size() - _i - 1), currentStack.back());
 | 
						|
		}
 | 
						|
		size_t sourceSize() { return currentStack.size(); }
 | 
						|
		size_t targetSize() { return targetStack.size(); }
 | 
						|
		void pop()
 | 
						|
		{
 | 
						|
			popCallback();
 | 
						|
			currentStack.pop_back();
 | 
						|
		}
 | 
						|
		void pushOrDupTarget(size_t _offset)
 | 
						|
		{
 | 
						|
			auto const& targetSlot = targetStack.at(_offset);
 | 
						|
			pushOrDupCallback(targetSlot);
 | 
						|
			currentStack.push_back(targetSlot);
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	Shuffler<ShuffleOperations>::shuffle(_currentStack, _targetStack, _swap, _pushOrDup, _pop);
 | 
						|
 | 
						|
	yulAssert(_currentStack.size() == _targetStack.size(), "");
 | 
						|
	for (auto&& [current, target]: ranges::zip_view(_currentStack, _targetStack))
 | 
						|
		if (std::holds_alternative<JunkSlot>(target))
 | 
						|
			current = JunkSlot{};
 | 
						|
		else
 | 
						|
			yulAssert(current == target, "");
 | 
						|
}
 | 
						|
 | 
						|
}
 |